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Generative Adversarial Networks (GANs) have become influential tools in unsupervised 

image generation, significantly impacting fields like computer vision and the creative 

arts. However, challenges such as training instability and mode collapse often hinder 

their performance and the quality of generated images. This study introduces a hybrid 

GAN architecture that combines techniques from AdaptiveMix, which enhances model 

stability, with insights from EIGGAN, known for its innovative image generation 

methods. The primary goal is to improve both training stability and the visual quality of 

generated images. 

The generator incorporates differentiable data augmentation (DiffAugment) and 

Exponential Moving Average (EMA) updates. DiffAugment introduces dynamic 

transformations to training data, enhancing diversity and robustness, while EMA updates 

stabilize training by smoothing parameter changes, resulting in more consistent outputs. 

The discriminator is regularized using the R1 penalty, improving its ability to distinguish 

between real and generated images, and benefits from feature space shrinkage through 

AdaptiveMix to maintain compact feature representations. 

Trained on the CIFAR-10 dataset for 1000 epochs, the model achieved a peak Inception 

Score (IS) of 6.80 ± 0.22, indicating significant improvements in generative quality and 

diversity, along with a best Fréchet Inception Distance (FID) score of 20.90, reflecting 

high realism in generated samples. The discriminator's accuracy remained stable between 

50% and 60%, suggesting a balanced adversarial relationship. These findings 

demonstrate the effectiveness of the hybrid model.  

They also open new directions for improving stability and image quality in GAN training. 
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I. Introduction 

Generative Adversarial Networks (GANs), introduced in 

2014 by Goodfellow et al., represent a significant 

breakthrough in the field of unsupervised machine learning, 

demonstrating remarkable capabilities in generating 

synthetic data, particularly realistic images [1]. The basic 

GAN architecture consists of two deep neural networks: a 

generator, responsible for producing new data samples (e.g., 

images) from random noise, and a discriminator, tasked with 

distinguishing real samples from those generated by the 

generator. 

The training process of GANs can be likened to a zero-

sum game in which the two components compete with 

opposing objectives. The generator aims to produce images 

so realistic that the discriminator cannot differentiate them 

from real ones. Conversely, the discriminator strives to 

correctly classify images as either real or fake. This dynamic 

competition ultimately leads to the simultaneous 

improvement of both networks: the generator becomes 

capable of producing highly realistic data, while the 

discriminator becomes more adept at detecting subtle 

differences between real and generated data. This adversarial 

nature makes GANs a powerful tool for tasks such as image 

generation, image-to-image translation, image super-

resolution, and many other applications [1]. 

However, despite their impressive potential, achieving 

stable and effective GAN training remains one of the major 

challenges in deep learning. Instability during training can 

manifest in various forms, such as vanishing or exploding 

gradients, which hinder effective learning; mode collapse, 

where the generator produces only a limited subset of the 

training data distribution; and oscillatory behavior, where the 

model fails to converge and alternates between different 

states. These issues primarily arise from a delicate imbalance 

between the generator and discriminator as well as the 

inherently dynamic and unstable nature of the 

discriminator’s data distribution during training [1]. 

In recent years, extensive research has been devoted to 

overcoming these challenges and enhancing GAN stability 

and output quality. Efforts have included developing novel 

architectures (e.g., DCGAN [1], StyleGAN [2]) introducing 

more advanced loss functions (e.g., WGAN-GP [5], 

LSGAN [6]) and employing new regularization [3] and data 

augmentation strategies [4]. Among these approaches, two 

recent advancements that are of particular interest in this 

study are the methods presented in [3] and [4], namely 

AdaptiveMix and EIGGAN, respectively, both of which 

propose innovative solutions to improve training stability 

and the quality of generated images. 

The main objective of this research is to implement and 

evaluate an advanced GAN model that strategically 

combines the best practices and techniques inspired by 

AdaptiveMix with selected components of EIGGAN. This 

combination is designed with the ultimate goal of achieving 

higher Inception Scores (IS) — a key metric for assessing 

the quality and diversity of generated images — while also 

substantially improving training stability. 

AdaptiveMix addresses GAN training stability through a 

novel approach: reducing and compressing the training data 

regions in the discriminator’s feature space. This is achieved 

by creating hard samples via linear interpolation of pairs of 

real training images using the Mixup technique [5]. By 

forcing the discriminator to bring the features of these mixed 

samples closer to their original samples, the decision 

boundaries become more stable, preventing excessive 

overlap between real and generated distributions. This, in 

turn, improves quality and mitigates mode collapse. In this 

project’s implementation, specific Mixup parameters (e.g., 

mixup_alpha) are used to control this process. 

On the other hand, EIGGAN focuses on enhancing the 

generator’s capabilities to produce higher-quality images by 

introducing several innovations, including spatial attention 

in the generator to extract salient information and increase 

realism, parallel residual operations to capture richer 

structural details from different network layers, and a 

composite loss function to balance speed and accuracy in 

optimization. In the provided code, learning rate adjustments 

inspired by EIGGAN are applied to accelerate 

convergence [4]. Additionally, R1 regularization [6] — a 

gradient penalty that helps stabilize the discriminator — and 

feature matching [7], which encourages the generator to 

match the intermediate feature statistics of the discriminator 

to those of real data, are directly inspired by EIGGAN 

principles. The inclusion of self-attention further aligns with 

EIGGAN’s objective of capturing long-range dependencies 

in images. 

In addition to integrating AdaptiveMix and EIGGAN 

techniques, this study employs other advanced methods such 

as Differentiable Augmentation (DiffAugment) [8] —

essential for improving stability and boosting IS— and 

Exponential Moving Average (EMA) [9] for the generator, 

which has been empirically shown to produce smoother and 

higher-quality images, resulting in improved evaluation 

metrics. 

The remainder of this paper first provides a detailed 

analysis of the theoretical foundations and operational 

mechanisms of AdaptiveMix and EIGGAN. Next, the exact 

structure of the implemented code is described, illustrating 

how these two key approaches, along with other advanced 

techniques, are integrated into the proposed model. Finally, 

experimental results from training on the CIFAR-10 dataset 

including IS progression and discriminator accuracy over 

time are presented and thoroughly analyzed to assess the 

effectiveness of the proposed hybrid approach. 
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II. Background and Literature Review 

Generative Adversarial Networks (GANs), introduced in 

2014, revolutionized the field of realistic image 

synthesis [1]. This innovative framework, based on a 

minimax game between two competing networks —a 

generator that produces synthetic images and a discriminator 

that attempts to distinguish real images from fake ones— has 

demonstrated unprecedented capabilities in synthesizing 

novel data. However, training these networks has 

consistently posed significant challenges, including 

instability in convergence, issues with unstable gradients, 

and mode collapse, where the generator produces only a 

limited variety of samples [2]. 

To address these fundamental problems, numerous studies 

have proposed solutions such as Wasserstein GAN 

(WGAN) [2] and WGAN-GP [10], which introduce novel 

loss functions such as the Wasserstein distance and gradient 

penalty to improve training stability. Normalization 

techniques like Batch Normalization [11] and Spectral 

Normalization [12] also play a crucial role in stabilizing 

training and controlling gradient behavior. Moreover, to 

enhance visual quality and the fine details of generated 

images, methods such as Self-Attention GAN [13], which 

incorporates attention layers into the architecture, and 

EMA [9] to smooth generator weights over time, have been 

employed. DiffAugment [8] has also proven to be an 

effective approach for stabilizing GAN training, particularly 

in low-data scenarios. 

Building on these advancements, two recent and 

influential approaches namely AdaptiveMix [3] and 

EIGGAN [4] have emerged as promising methods for 

improving GAN stability and output quality. 

AdaptiveMix Inspired by research in robust image 

classification, introduces a simple yet highly effective 

module for GANs [3]. It stabilizes training and mitigates 

mode collapse by compressing the training data regions 

within the discriminator’s feature space. This compression is 

achieved using the Mixup technique [5], which linearly 

interpolates pairs of real images to create hard samples. 

AdaptiveMix then reduces the feature-space distance 

between these hard samples and easy samples in the 

discriminator’s latent space. This approach ensures that the 

discriminator focuses on learning the real data distribution, 

providing healthier gradients to the generator and ultimately 

leading to higher-quality and more diverse outputs. Due to 

its “plug-and-play” nature, AdaptiveMix can be seamlessly 

integrated into existing GAN architectures [3]. 

EIGGAN designed to enhance the generator’s ability to 

produce high quality images [4]. It introduces several 

architectural and training innovations. It employs a spatial 

attention mechanism [12] within the generator to capture 

salient features and improve realism, and integrates parallel 

residual operations [13] to extract richer structural 

information from multiple layers. EIGGAN also adopts a 

composite loss function [14] incorporating regularization 

techniques such as R1 Regularization [6] and Feature 

Matching [7]. These regularizes help stabilize training and 

improve the final image quality, striking a balance between 

speed and accuracy in generating realistic outputs. 

A summary of related studies from recent years is 

provided in Table I. 

Inspired by these advancements, this study aims to 

intelligently and selectively integrate techniques from 

AdaptiveMix [3], optimization and regularization strategies 

proposed in EIGGAN [4], and other effective methods such 

as DiffAugment [8], EMA [9], R1 Regularization [6], and 

Feature Matching [7] into a unified GAN architecture. This 

hybrid approach is designed to produce a stable and efficient 

GAN capable of achieving higher Inception Scores (IS), 

reducing Fréchet Inception Distance (FID), and significantly 

improving training stability. 

 

III. Dataset 

In this study, the publicly available and widely used 

CIFAR-10 dataset [14] was employed to evaluate the 

performance of the proposed model. This dataset consists of 

60,000 color images of size 32×32 pixels, categorized into 

10 distinct classes. Each class contains 6,000 images, with 

5,000 allocated for training and 1,000 reserved for testing. 

The classes in CIFAR-10 include airplane, automobile, bird, 

cat, deer, dog, frog, horse, ship, and truck. The selection of 

CIFAR-10 was motivated by its diverse class composition 

and relatively small image size, making it a standard and 

suitable benchmark for assessing the generative capabilities 

and training stability of GAN models. These characteristics 

also enable fair comparison with results from previous GAN-

related studies. 

 

IV. Data Preprocessing 

To train GAN models using the CIFAR-10 dataset, 

specific preprocessing and data augmentation procedures 

were applied to enhance training stability and the quality of 

generated images. These steps are as follows: 

 

A. Image Standardization and Tensor Conversion 

CIFAR-10 color images, which are natively 32×32 pixels, 

were resized to the same dimensions to ensure a standardized 

data processing pipeline. This ensures that even if images 

with different resolutions are used in the future, the model 

consistently receives inputs with the expected dimensions. 

The images were then converted into PyTorch tensors, the 

required format for GPU-based computation. 

 

B. Pixel Value Normalization 

This step consists of two parts. First, pixel values were 

normalized from the range [0, 255] to [0, 1], a standard step 

in deep learning for scaling input data. 
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Second, to align with the tanh activation function typically 

used in the generator’s output layer (which produces values 

in the range [−1, 1]), the images were further normalized to 

the range [−1, 1]. This alignment facilitates more stable 

convergence by ensuring that the real data distribution 

matches the generator’s output distribution, thus enabling 

more efficient learning. 

 

C. Differentiable Data Augmentation 

This is one of the most important techniques for 

improving GAN performance, particularly when working 

with small datasets. Unlike traditional augmentation 

methods that apply transformations once before training 

(e.g., cropping or rotation), DiffAugment applies random, 

differentiable transformations such as slight rotations, color 

changes, and cropping at every training step. These 

transformations are implemented in a way that allows 

gradients to flow through them during backpropagation. 

This approach prevents memorization by forcing the 

discriminator to learn the actual data distribution rather than 

memorizing specific training samples. It also mitigates 

overfitting, encouraging the generator to produce more 

diverse and higher-quality images, thereby improving 

training stability. 



 

 

TABLE I: Summary of Related GAN Architectures and Their Evaluation Metrics 

No. YEAR Method Description 
Dataset(s) 

 
 

1 2014 
Generative Adversarial 

Networks[1](GANs) 

Introduction of the original GAN architecture consisting 

of a generator and a discriminator 

MNIST, CelebA 

(implicitly) 

 
 

2 2017 

Wasserstein GAN Error! 

Reference source not 
found.(WGAN) 

Introduction of the Wasserstein distance as a loss 

function to improve training stability and reduce mode 
collapse 

 
 

CIFAR-10, LSUN 

3 2023 AdaptiveMix[3] 

Compressing training data regions in the 

discriminator’s feature space using the Mixup 
technique for improved stability 

 
 

LSUN-Bedroom, 

CelebA-HQ 

4 2024 

EIGGAN (Enhanced GAN) 

Error! Reference source not 

found. 

Incorporates spatial attention, parallel residual 

operations, and a composite loss function for higher-

quality image generation and faster convergence 

 
 

CIFAR-10, 
CelebA 

5 2020 

Differentiable Augmentation 

(DiffAugment)Error! 

Reference source not found. 

Differentiable data augmentation for efficient GAN 

training in limited-data scenarios and improved 

stability 

 
 

CIFAR-10, Tiny 
ImageNet 

6 2019 

Exponential Moving Average 

(EMA) Error! Reference 

source not found. 

Applies exponential moving average to generator 

weights for smoother and higher-quality image outputs 

 
 

CelebA-HQ, 

FFHQ 

 



 

 

 

Fig. 1. Architecture of the proposed model. 



 

 

Overall, these preprocessing steps prepare the input data 

for effective and efficient GAN training, contributing to 

improved accuracy and realism in the generated image. 

 

V. Proposed Model Architecture 

In this study, a Generative Adversarial Network (GAN) 

architecture comprising a generator and a discriminator was 

designed for generating CIFAR-10 images. The generator 

transforms random noise into an image, while the 

discriminator distinguishes between real and generated 

images. This architecture incorporates principles from 

AdaptiveMix Error! Reference source not found. and 

selected techniques from EIGGAN Error! Reference source 

not found. to achieve higher stability and quality. 

Furthermore, differentiable data augmentation Error! 

Reference source not found. is applied to the discriminator’s 

input, and an Exponential Moving Average (EMA) Error! 

Reference source not found. is used for the generator’s 

weights, both of which contribute to improved stability and 

enhanced image quality. Figure 1 illustrates the proposed 

model architecture. 

The proposed architecture is built upon the foundation of 

GANs, which consist of two cores, competing components: 

the generator and the discriminator. The objective of this 

structure is to generate realistic, high-quality images 

specifically for the CIFAR-10 dataset, while leveraging 

novel approaches in GAN training Error! Reference source 

not found.. The following subsections detail the key 

components and techniques that shaped the proposed 

architecture. 

 

A. General GAN Architecture (Generator and 

Discriminator) 

At the heart of the architecture, the generator is 

responsible for transforming a random noise vector into a 

synthetic image, while the discriminator differentiates 

between real images and those generated by the generator. 

These two networks are trained alternately in an adversarial 

manner. 

The generator is constructed using upsampling layers 

(e.g., transposed convolutions), and the discriminator is built 

using downsampling layers (e.g., convolutions). To stabilize 

training, normalization layers are employed: Batch 

Normalization Error! Reference source not found. in the 

generator and Spectral Normalization Error! Reference 

source not found. in the discriminator. 

The primary goal of a GAN is to train both the generator 

(G) and discriminator (D) in a zero-sum game. The Minimax 

objective function for GANs is defined as Error! Reference 

source not found.]: 

 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺)

= {𝐸}{𝑥 ∼𝑝{𝑑𝑎𝑡𝑎}(𝑥)}[𝑙𝑜𝑔 𝐷(𝑥)]

+  {𝐸}
{𝑧 ∼𝑝𝑧(𝑧)}[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]

 

 

(1) 

𝐷(𝑥): Probability that X is a real sample (discriminator output 

for real data). 

𝐺(𝑧): Sample generated by the generator from noise 𝑧. 

  𝐷(𝐺(𝑧)): Probability that the generated sample is real 

(discriminator output for fake data). 

  𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥): Expectation over real samples from the data 

distribution. 

  𝐸𝑧∼𝑝𝑧(𝑧): Expectation over noise vectors from the noise 

distribution. 

 

B. AdaptiveMix Technique 

AdaptiveMix Error! Reference source not found. is a 

novel approach designed to improve GAN training stability, 

with a particular focus on the discriminator. This technique 

compresses the discriminator’s feature space so that it does 

not only focus on clear-cut distinctions between real and fake 

samples, but also learns fine-grained boundaries in the 

feature space. Inspired by Mixup Error! Reference source 

not found., a data augmentation method that linearly 

combines images and their labels, AdaptiveMix enables the 

discriminator to learn more precise distinctions in feature-

space boundary regions. This helps mitigate mode collapse 

and encourages the discriminator to provide more stable and 

informative feedback to the generator. 

The standard Mixup formulation for creating mixed 

samples and labels is given by: 

 

𝑥̃ =  𝜆𝑥𝑖 + (1 −  𝜆)𝑥𝑗 

𝑦̃ =  𝜆𝑦𝑖 + (1 −  𝜆)𝑦𝑗 
(2) 

 

Where 𝑥𝑖 and 𝑥𝑗 are two input samples from the dataset, 𝑦𝑖 

and  𝑦𝑗 are their corresponding labels, and  𝜆  is a mixing 

coefficient typically drawn from a Beta distribution 

(𝐵𝑒𝑡𝑎 (𝛼, 𝛼)). 

 

C. EIGGAN Inspired Technique 

The EIGGAN framework [4] introduces several 

architectural innovations and training strategies designed to 

improve image quality and training stability in GANs. These 

include spatial attention modules, parallel residual 

operations, and composite loss functions. 

In our proposed model, we did not employ the complete 

EIGGAN structure. Instead, we selectively integrated 

specific techniques inspired by EIGGAN to enhance 

efficiency and stability while keeping the architecture 

lightweight. 

The components we adopted are: 

Self-Attention Mechanism: Incorporated into the 

generator and discriminator to allow the model to capture 

long-range dependencies and focus on critical regions of the 

image. 
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Feature Matching Loss: Added to the generator’s 

objective to stabilize training and improve the perceptual 

quality of generated images. 

R1 Regularization: Applied to the discriminator to 

encourage smoother decision boundaries and further 

stabilize adversarial training. 

Learning Rate Scheduling: Inspired by EIGGAN’s 

training refinements, we employ step-based scheduling to 

ensure stable convergence. 

The components not adopted from EIGGAN include full 

spatial attention blocks, parallel residual operations, and the 

complete composite loss function. This selective adoption 

allows our model to remain computationally efficient while 

benefiting from EIGGAN’s most impactful elements. 

 

D. Differentiable Augmentation (DiffAugment) 

DiffAugment Error! Reference source not found. is a key 

technique in modern GAN training, particularly in low-data 

regimes. Rather than applying augmentation only to real 

images, DiffAugment applies differentiable transformations 

(e.g., cropping, rotation, color adjustments—operations for 

which gradients can be computed) to both real and generated 

(fake) images before feeding them into the discriminator. 

This forces the discriminator to learn the genuine 

characteristics of the data distribution rather than 

memorizing training examples or augmentation-specific 

artifacts. As a result, GAN training stability is significantly 

improved, and the quality of generated images is enhanced. 

 

E. Exponential Moving Average (EMA) 

EMA Error! Reference source not found. is a widely used 

post-training technique for improving the quality of 

generator outputs in GANs. During training, instead of 

directly using the generator’s weights at each iteration, a 

shadow copy of the generator’s weights is maintained and 

updated using an exponential moving average of the current 

and past weights: 

 

𝜃{(𝑡)}
{𝐸𝑀𝐴}

=  𝛼 ⋅ 𝜃{(𝑡−1)}
{𝐸𝑀𝐴}

+  (1 −  𝛼) ⋅ 𝜃{(𝑡)} (3) 

 

where  𝜃{(𝑡)}
{𝐸𝑀𝐴}

 is the EMA weight at time step  𝑡 ،𝜃{(𝑡)} is 

the current generator weight at 𝑡 and  𝛼 is the decay rate, 

typically close to 1 (e.g., 0.999).  

At evaluation time and during final sample generation, the 

EMA-smoothed generator weights are used, resulting in 

smoother and visually higher-quality outputs due to reduced 

fluctuations from early training stages. 

 

F.  Wasserstein Loss with Gradient Penalty 

(WGAN-GP) 

To improve training stability and address common issues 

in early GANs such as mode collapse and unstable gradients, 

the proposed architecture adopts the Wasserstein GAN with 

Gradient Penalty (WGAN-GP) Error! Reference source not 

found.. This method builds upon WGAN Error! Reference 

source not found. by enforcing the Lipschitz constraint 

through a gradient penalty applied to the norm of the 

discriminator’s gradient with respect to its inputs. The 

gradient penalty helps the discriminator learn better cost 

functions, leading to more stable convergence and higher-

quality image generation. This approach is particularly 

effective when training GANs on complex datasets such as 

CIFAR-10. 

 

G. Integrated and Synergistic Methods in the 

Proposed Model 

The proposed model in this study involves an intelligent 

integration and synergy of a set of advanced techniques 

within a single GAN framework. The objective of this 

integration is to overcome the common challenges in GAN 

training and to achieve higher-quality and more stable image 

generation. This synergy encompasses the competitive 

interaction between the generator and discriminator, as well 

as the application of multiple enhancement mechanisms to 

both model components and their training process. 

 

VI. Evaluation and Comparison Method 

To assess the performance of the proposed model in 

generating high-quality images, particularly for the CIFAR-

10 dataset, standard and widely used evaluation metrics in 

the GAN domain were employed. Unlike classification 

models, which are evaluated based on prediction accuracy, 

GANs are assessed based on the visual quality, diversity, and 

statistical similarity of generated images to real data. 

In this study, the model’s performance was evaluated 

using the Inception Score (IS), Fréchet Inception Distance 

(FID), and discriminator accuracy throughout the training 

process (up to epoch 1000). 

IS evaluates both image quality (how semantically clear 

and recognizable the generated images are) and the diversity 

of the generated samples (how well the generator can 

produce images across different classes). A higher IS 

indicates that the generated images are both semantically 

meaningful (recognizable by the Inception V3 model) and 

diverse across generated classes. This metric is widely used 

for evaluating GAN performance, especially on datasets like 

CIFAR-10. 

FID is a more comprehensive and precise metric for 

evaluating GAN-generated image quality. FID measures the 

distance between the feature distribution of real images and 

that of generated images. Lower FID values indicate higher 

quality and greater similarity to real images. Due to its 

sensitivity to both quality and diversity, FID is considered 

one of the most reliable metrics for GAN evaluation. 

Discriminator Accuracy indicates the ability of the 

discriminator to distinguish real images from fake images 

generated by the generator. In a stable GAN, the 
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discriminator accuracy typically oscillates around 50%–

70%, reflecting a healthy balance between the generators and 

discriminator’s competitive abilities. If the discriminator’s 

accuracy approaches 100%, it means it has become too 

strong and is no longer providing useful gradients to the 

generator; if it approaches 0%, it indicates a weak 

discriminator. 

 

VII. Evaluation Results 
The proposed model was evaluated using a set of test 

images that were not seen during training. This evaluation 

focused on the IS, FID, and discriminator accuracy metrics. 

The proposed hybrid model, which incorporates 

AdaptiveMix, DiffAugment, and selectively applied 

EIGGAN principles, was trained on the CIFAR-10 dataset 

for 1000 epochs. 

Table II presents the specifications of the software and 

hardware used in this study. Additionally, Table III shows the 

approximate time required to fully train selected models with 

an IS lower than 6.80. The experimental results, including IS 

progression across epochs and the discriminator accuracy 

chart, are reported in Tables IV and V, demonstrating the 

gradual improvement in generation quality and training 

stability of the model. 

To rigorously evaluate the performance of GAN-based 

generative models, three commonly used metrics such as IS, 

FID, and discriminator accuracy, were employed. The results 

of the proposed model on the CIFAR-10 dataset were 

examined over the range of 0 to 1000 epochs, and the trends 

of these three indicators were analyzed separately. 

In Figure 2 discriminator accuracy curve illustrates the 

discriminator’s accuracy during training epochs. As shown 

in the figure, the discriminator’s accuracy fluctuates on 

average between 50% and 60%. This behavior is expected 

and indicates relative training stability, as in GAN 

architectures, a balance must be maintained between the 

generator and discriminator so that neither dominates the 

other.  

 

 

TABLE II: Specifications of the Hardware and Software Used 

Category Specification Details 

Hardware 

GPU 

NVIDIA Tesla T4 with 16 GB 

VRAM (Google Colab 

environment) 

Storage 
SSD – temporary storage space 

allocated by Colab 

Software 

Operating System 
Ubuntu – cloud environment 

(Google Colab) 

Development 

Environment 

Google Colab, including 

Jupyter Notebook/Lab 

Python 
Python 3.x – default version 

provided by Colab 

Main Libraries 

PyTorch – default Colab 

version, CUDA-compatible 

torchvision – default in Colab 

scipy – default in Colab 

 

 

 

 

 

 

 

TABLE III: Training and Inference Time 

Model Name Training & Inference Time 
VanillaGAN 5-6 hours 

DCGAN 6–7 hours 
DRAGAN 7–8 hours 

WGAN 8–9 hours 
MIX + WGAN 9–10 hours 

Improved GANs 9–10 hours 

DCGAN (with labels) 10–11 hours 

ALI 11–12 hours 

BEGAN 11–13 hours 

WGAN-GP 13–15 hours 

WGAN-GP (general) 13–15 hours 

SteinGAN 16–18 hours 

Proposed Model 22–24 hours 

 

TABLE IV Inception Score (IS) Comparison of the Proposed 

Model with Baseline GANs on CIFAR-10 

Model Name IS 
WGAN Error! Reference source not 

found. 
3.25 

MIX + WGAN Error! Reference 

source not found. 
4.04 

Improved GANs [18]  4.36 
ALI [17] 5.34 

BEGANError! Reference source not 

found. 
5.62 

WGAN-GP[15] 5.99 
DRAGAN Error! Reference source 

not found. 
6.11 

Vanilla GANError! Reference 

source not found. 
6.30 

SteinGANError! Reference source 

not found. 
6.35 

DCGAN [4] 6.37 
WGAN-GP (common) [10] 6.40 
DCGAN (with labels) [10] 6.58 

Proposed Model 6.80 

 

 

Specifically, in the mid-training stages, drops in 

discriminator accuracy were observed, which can be 

attributed to the generator’s improved performance in 

producing more realistic-looking samples. In the final 

epochs, the discriminator’s accuracy, while maintaining 

minor fluctuations, becomes more stable. 

In addition, the IS and FID scores were recorded. The 

highest IS achieved was 6.80 at epoch 875, which is 

comparable to some of the most advanced models reported 

in prior works. The best FID obtained was 20.90 at epoch 

920, indicating high quality and realism of the generated 

images. These IS and FID results demonstrate that the 

proposed model maintained a stable and upward 

performance trend, confirming the improvement in both 

quality and diversity of generated images during the training 

process. 
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Table IV Comparison of the IS Score of the Proposed 

model with selected notable models also presents results 

such as WGAN (IS = 3.25), BEGAN (IS = 5.62), WGAN-

GP (~6.4), and DCGAN (IS = 6.16). As can be seen, the 

proposed model, with an IS close to 6.80, demonstrates 

competitive and in some cases superior performance 

compared to baseline models. 

 

 

 

TABLE V: Fréchet Inception Distance (FID) Comparison of the 

Proposed Model with Baseline GANs on CIFAR-10 

Model Name FID 
WGAN Error! Reference source not 

found. 
55.96 

HingeGAN [19] 42.40 
LSGAN Error! Reference source not 

found. 
42.02 

DCGAN Error! Reference source 

not found. 
38.56 

WGAN-GP Error! Reference source 

not found. 
41.86 

Re-implemented WGAN-GPError! 

Reference source not found. 
38.63 

Realness GAN-Obj.1 Error! 

Reference source not found. 
36.73 

Realness GAN-Obj.2[22] 34.59 
Realness GAN-Obj.3 [22] 36.21 

AdaptiveMix[3] 30.85 
Proposed Model 20.90 

 

 
Fig. 2. Discriminator Accuracy Curve 

 
Similarly, Table V Comparison of the FID Score of the 

proposed model with selected state-of-the-art models shows 

the results on the CIFAR-10 dataset. As evident, proposed 

model, with an FID of 20.90, significantly outperforms the 

methods listed in the table. 

This confirms the high realism and diversity of the images 

generated by the proposed model. These results indicate that 

the integration of advanced techniques employed in the 

proposed approach—such as Exponential Moving Average, 

along with enhancements like DiffAugment and 

AdaptiveMix—has had a substantial positive impact on the 

quality of the final outputs. 

 

VIII. Conclusion and Discussion 
GANs are among the most advanced frameworks for 

generating high-quality synthetic data and have been applied in 

various computer vision domains. In this study, a GAN-based 

model was designed that, while leveraging the fundamental 

principles of existing architectures, purposefully incorporated 

certain optimization and regularization strategies from more 

advanced models—most notably AdaptiveMix—as well as 

selected techniques proposed in EIGGAN. It is worth noting that 

the full EIGGAN architecture was not employed; rather, only 

specific components—particularly its training enhancement 

strategies—were selectively and adaptively integrated. This 

deliberate selection aimed to improve training stability and 

enhance the quality of the generated outputs. 

To evaluate the quality of the generated samples, three key 

metrics were used: Inception Score (IS) as an indicator of image 

realism and diversity, Fréchet Inception Distance (FID) as a 

measure of distributional similarity, and discriminator accuracy 

as an implicit indicator of balance between the generator and the 

discriminator. According to the results, the model achieved an 

IS of 6.80 ± 0.22 at epoch 875, which is competitive and, in 

many cases, superior to classical models such as WGAN, 

DCGAN, and BEGAN as reported in previous studies. 

Furthermore, the best recorded FID was 20.90 at epoch 920, 

demonstrating strong convergence of the model toward 

generating realistic images. 

The analysis of discriminator accuracy trends throughout 

training (Figure 2) revealed that this value remained in the 50–

60% range during most epochs, indicating the preservation of a 

dynamic balance between the two GAN components. 

Maintaining the discriminator’s performance within this range 

prevented dominance by either network and enabled more 

effective generator training. 

In addition, the use of techniques such as Exponential Moving 

Average (EMA) for stabilizing generator outputs, R1-based 

regularization, and spectral normalization in the discriminator 

played a key role in enhancing both the stability and the quality 

of the final results. 

Ultimately, the findings of this research demonstrate that 

designing hybrid architectures and selectively applying targeted 

stabilization and augmentation methods can significantly 

improve the quality and stability of generated samples. These 

results pave the way for future research into optimizing GAN 

structures and their practical applications, particularly in areas 

such as image reconstruction, super-resolution, and synthetic 

data generation. 
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