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Generative Adversarial Networks (GANs) have become influential tools in unsupervised
image generation, significantly impacting fields like computer vision and the creative
arts. However, challenges such as training instability and mode collapse often hinder
their performance and the quality of generated images. This study introduces a hybrid
GAN architecture that combines techniques from AdaptiveMix, which enhances model
stability, with insights from EIGGAN, known for its innovative image generation
methods. The primary goal is to improve both training stability and the visual quality of
generated images.

The generator incorporates differentiable data augmentation (DiffAugment) and
Exponential Moving Average (EMA) updates. DiffAugment introduces dynamic
transformations to training data, enhancing diversity and robustness, while EM A updates
stabilize training by smoothing parameter changes, resulting in more consistent outputs.
The discriminator is regularized using the R1 penalty, improving its ability to distinguish
between real and generated images, and benefits from feature space shrinkage through
AdaptiveMix to maintain compact feature representations.

Trained on the CIFAR-10 dataset for 1000 epochs, the model achieved a peak Inception
Score (IS) of 6.80 + 0.22, indicating significant improvements in generative quality and
diversity, along with a best Fréchet Inception Distance (FID) score of 20.90, reflecting
high realism in generated samples. The discriminator's accuracy remained stable between
50% and 60%, suggesting a balanced adversarial relationship. These findings
demonstrate the effectiveness of the hybrid model.

They also open new directions for improving stability and image quality in GAN training.
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|. Introduction

Generative Adversarial Networks (GANs), introduced in
2014 by Goodfellow et al., represent a significant
breakthrough in the field of unsupervised machine learning,
demonstrating remarkable capabilities in generating
synthetic data, particularly realistic images [1]. The basic
GAN architecture consists of two deep neural networks: a
generator, responsible for producing new data samples (e.g.,
images) from random noise, and a discriminator, tasked with
distinguishing real samples from those generated by the
generator.

The training process of GANs can be likened to a zero-
sum game in which the two components compete with
opposing objectives. The generator aims to produce images
so realistic that the discriminator cannot differentiate them
from real ones. Conversely, the discriminator strives to
correctly classify images as either real or fake. This dynamic
competition ultimately leads to the simultaneous
improvement of both networks: the generator becomes
capable of producing highly realistic data, while the
discriminator becomes more adept at detecting subtle
differences between real and generated data. This adversarial
nature makes GANs a powerful tool for tasks such as image
generation, image-to-image translation, image super-
resolution, and many other applications [1].

However, despite their impressive potential, achieving
stable and effective GAN training remains one of the major
challenges in deep learning. Instability during training can
manifest in various forms, such as vanishing or exploding
gradients, which hinder effective learning; mode collapse,
where the generator produces only a limited subset of the
training data distribution; and oscillatory behavior, where the
model fails to converge and alternates between different
states. These issues primarily arise from a delicate imbalance
between the generator and discriminator as well as the
inherently dynamic and unstable nature of the
discriminator’s data distribution during training [1].

In recent years, extensive research has been devoted to
overcoming these challenges and enhancing GAN stability
and output quality. Efforts have included developing novel
architectures (e.g., DCGAN [1], StyleGAN [2]) introducing
more advanced loss functions (e.g., WGAN-GP [5],
LSGAN [6]) and employing new regularization [3] and data
augmentation strategies [4]. Among these approaches, two
recent advancements that are of particular interest in this
study are the methods presented in [3] and [4], namely
AdaptiveMix and EIGGAN, respectively, both of which
propose innovative solutions to improve training stability
and the quality of generated images.

The main objective of this research is to implement and
evaluate an advanced GAN model that strategically
combines the best practices and techniques inspired by
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AdaptiveMix with selected components of EIGGAN. This
combination is designed with the ultimate goal of achieving
higher Inception Scores (IS) — a key metric for assessing
the quality and diversity of generated images — while also
substantially improving training stability.

AdaptiveMix addresses GAN training stability through a
novel approach: reducing and compressing the training data
regions in the discriminator’s feature space. This is achieved
by creating hard samples via linear interpolation of pairs of
real training images using the Mixup technique [5]. By
forcing the discriminator to bring the features of these mixed
samples closer to their original samples, the decision
boundaries become more stable, preventing excessive
overlap between real and generated distributions. This, in
turn, improves quality and mitigates mode collapse. In this
project’s implementation, specific Mixup parameters (e.g.,
mixup_alpha) are used to control this process.

On the other hand, EIGGAN focuses on enhancing the
generator’s capabilities to produce higher-quality images by
introducing several innovations, including spatial attention
in the generator to extract salient information and increase
realism, parallel residual operations to capture richer
structural details from different network layers, and a
composite loss function to balance speed and accuracy in
optimization. In the provided code, learning rate adjustments
inspired by EIGGAN are applied to accelerate
convergence [4]. Additionally, R1 regularization [6] — a
gradient penalty that helps stabilize the discriminator — and
feature matching [7], which encourages the generator to
match the intermediate feature statistics of the discriminator
to those of real data, are directly inspired by EIGGAN
principles. The inclusion of self-attention further aligns with
EIGGAN’s objective of capturing long-range dependencies
in images.

In addition to integrating AdaptiveMix and EIGGAN
techniques, this study employs other advanced methods such
as Differentiable Augmentation (DiffAugment) [8] —
essential for improving stability and boosting IS— and
Exponential Moving Average (EMA) [9] for the generator,
which has been empirically shown to produce smoother and
higher-quality images, resulting in improved evaluation
metrics.

The remainder of this paper first provides a detailed
analysis of the theoretical foundations and operational
mechanisms of AdaptiveMix and EIGGAN. Next, the exact
structure of the implemented code is described, illustrating
how these two key approaches, along with other advanced
techniques, are integrated into the proposed model. Finally,
experimental results from training on the CIFAR-10 dataset
including IS progression and discriminator accuracy over
time are presented and thoroughly analyzed to assess the
effectiveness of the proposed hybrid approach.



I1. Background and Literature Review

Generative Adversarial Networks (GANs), introduced in
2014, revolutionized the field of realistic image
synthesis [1]. This innovative framework, based on a
minimax game between two competing networks —a
generator that produces synthetic images and a discriminator
that attempts to distinguish real images from fake ones— has
demonstrated unprecedented capabilities in synthesizing
novel data. However, training these networks has
consistently posed significant challenges, including
instability in convergence, issues with unstable gradients,
and mode collapse, where the generator produces only a
limited variety of samples [2].

To address these fundamental problems, numerous studies
have proposed solutions such as Wasserstein GAN
(WGAN) [2] and WGAN-GP [10], which introduce novel
loss functions such as the Wasserstein distance and gradient
penalty to improve training stability. Normalization
techniques like Batch Normalization [11] and Spectral
Normalization [12] also play a crucial role in stabilizing
training and controlling gradient behavior. Moreover, to
enhance visual quality and the fine details of generated
images, methods such as Self-Attention GAN [13], which
incorporates attention layers into the architecture, and
EMA [9] to smooth generator weights over time, have been
employed. DiffAugment [8] has also proven to be an
effective approach for stabilizing GAN training, particularly
in low-data scenarios.

Building on these advancements, two recent and
influential approaches namely AdaptiveMix [3] and
EIGGAN [4] have emerged as promising methods for
improving GAN stability and output quality.

AdaptiveMix Inspired by research in robust image
classification, introduces a simple yet highly effective
module for GANs [3]. It stabilizes training and mitigates
mode collapse by compressing the training data regions
within the discriminator’s feature space. This compression is
achieved using the Mixup technique [5], which linearly
interpolates pairs of real images to create hard samples.
AdaptiveMix then reduces the feature-space distance
between these hard samples and easy samples in the
discriminator’s latent space. This approach ensures that the
discriminator focuses on learning the real data distribution,
providing healthier gradients to the generator and ultimately
leading to higher-quality and more diverse outputs. Due to
its “plug-and-play” nature, AdaptiveMix can be seamlessly
integrated into existing GAN architectures [3].

EIGGAN designed to enhance the generator’s ability to
produce high quality images [4]. It introduces several
architectural and training innovations. It employs a spatial
attention mechanism [12] within the generator to capture
salient features and improve realism, and integrates parallel
residual operations [13] to extract richer structural
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information from multiple layers. EIGGAN also adopts a
composite loss function [14] incorporating regularization
techniques such as R1 Regularization [6] and Feature
Matching [7]. These regularizes help stabilize training and
improve the final image quality, striking a balance between
speed and accuracy in generating realistic outputs.

A summary of related studies from recent years is
provided in Table 1.

Inspired by these advancements, this study aims to
intelligently and selectively integrate techniques from
AdaptiveMix [3], optimization and regularization strategies
proposed in EIGGAN [4], and other effective methods such
as DiffAugment [8], EMA [9], R1 Regularization [6], and
Feature Matching [7] into a unified GAN architecture. This
hybrid approach is designed to produce a stable and efficient
GAN capable of achieving higher Inception Scores (IS),
reducing Fréchet Inception Distance (FID), and significantly
improving training stability.

I11. Dataset

In this study, the publicly available and widely used
CIFAR-10 dataset [14] was employed to evaluate the
performance of the proposed model. This dataset consists of
60,000 color images of size 32x32 pixels, categorized into
10 distinct classes. Each class contains 6,000 images, with
5,000 allocated for training and 1,000 reserved for testing.
The classes in CIFAR-10 include airplane, automobile, bird,
cat, deer, dog, frog, horse, ship, and truck. The selection of
CIFAR-10 was motivated by its diverse class composition
and relatively small image size, making it a standard and
suitable benchmark for assessing the generative capabilities
and training stability of GAN models. These characteristics
also enable fair comparison with results from previous GAN-
related studies.

V. Data Preprocessing

To train GAN models using the CIFAR-10 dataset,
specific preprocessing and data augmentation procedures
were applied to enhance training stability and the quality of
generated images. These steps are as follows:

A.Image Standardization and Tensor Conversion

CIFAR-10 color images, which are natively 32x32 pixels,
were resized to the same dimensions to ensure a standardized
data processing pipeline. This ensures that even if images
with different resolutions are used in the future, the model
consistently receives inputs with the expected dimensions.
The images were then converted into PyTorch tensors, the
required format for GPU-based computation.

B. Pixel Value Normalization
This step consists of two parts. First, pixel values were
normalized from the range [0, 255] to [0, 1], a standard step
in deep learning for scaling input data.



Second, to align with the tanh activation function typically
used in the generator’s output layer (which produces values
in the range [—1, 1]), the images were further normalized to
the range [—1, 1]. This alignment facilitates more stable
convergence by ensuring that the real data distribution
matches the generator’s output distribution, thus enabling
more efficient learning.

C. Differentiable Data Augmentation

This is one of the most important techniques for
improving GAN performance, particularly when working
with small datasets. Unlike traditional augmentation
methods that apply transformations once before training
(e.g., cropping or rotation), DiffAugment applies random,
differentiable transformations such as slight rotations, color
changes, and cropping at every training step. These
transformations are implemented in a way that allows
gradients to flow through them during backpropagation.

This approach prevents memorization by forcing the
discriminator to learn the actual data distribution rather than
memorizing specific training samples. It also mitigates
overfitting, encouraging the generator to produce more
diverse and higher-quality images, thereby improving
training stability.
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TABLE I: Summary of Related GAN Architectures and Their Evaluation Metrics

Dataset(s
No. YEAR Method Description ©)
. ) . . ) . MNIST, CelebA
1 2014 Generative Adversarial Introduction of the original GAN architecture consisting (implicitly)
Networks[1](GANs) of a generator and a discriminator
. Introduction of the Wasserstein distance as a loss
Wasserstein GAN Error! function to improve training stability and reduce mode
2 2017 Reference source not collapse CIFAR-10, LSUN
found.(WGAN)
Compressing training data regions in the
. . discriminator’s feature space using the Mixup LSUN-Bedroom,
3 2023 AdaptiveMix[3] technique for improved stability CelebA-HQ
Incorporates spatial attention, parallel residual
EIGGAN (Enhanced GAN) operations, and a composite loss function for higher- CIFAR-10,
4 2024 | Error! Refefrencccle source not quality image generation and faster convergence CelebA
ound.
Differentiable A i Differentiable data augmentation for efficient GAN
frerentiable Augmentation training in limited-data scenarios and improved -10. Ti
5 2020 (DiffAugment)Error! g stability P C”:Iﬁ‘g 1e(l)\ie-|t-my
Reference source not found. g
Exponential Moving Average Applies exponential moving average to generator CelebA-HQ
6 2019 (EMA) Error! Reference weights for smoother and higher-quality image outputs FFHO !

source not found.




Metrics

FAR-10)Real
Inception Score(1S) 4 o (OFAR10)
Frechet Inception
Distance(FID)

'
Differentiable Augmentation(DiffAugment)
+

Generator Discriminator

Noise vector(z) =—) seffamenion ~%-Fake Images™~ M Seff-attention LE—
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Fig. 1. Architecture of the proposed model.



Overall, these preprocessing steps prepare the input data
for effective and efficient GAN training, contributing to
improved accuracy and realism in the generated image.

V. Proposed Model Architecture

In this study, a Generative Adversarial Network (GAN)
architecture comprising a generator and a discriminator was
designed for generating CIFAR-10 images. The generator
transforms random noise into an image, while the
discriminator distinguishes between real and generated
images. This architecture incorporates principles from
AdaptiveMix Error! Reference source not found. and
selected techniques from EIGGAN Error! Reference source
not found. to achieve higher stability and quality.
Furthermore, differentiable data augmentation Error!
Reference source not found. is applied to the discriminator’s
input, and an Exponential Moving Average (EMA) Error!
Reference source not found. is used for the generator’s
weights, both of which contribute to improved stability and
enhanced image quality. Figure 1 illustrates the proposed
model architecture.

The proposed architecture is built upon the foundation of
GANSs, which consist of two cores, competing components:
the generator and the discriminator. The objective of this
structure is to generate realistic, high-quality images
specifically for the CIFAR-10 dataset, while leveraging
novel approaches in GAN training Error! Reference source
not found.. The following subsections detail the key
components and techniques that shaped the proposed
architecture.

A. General GAN Architecture (Generator and
Discriminator)

At the heart of the architecture, the generator is
responsible for transforming a random noise vector into a
synthetic image, while the discriminator differentiates
between real images and those generated by the generator.
These two networks are trained alternately in an adversarial
manner.

The generator is constructed using upsampling layers
(e.g., transposed convolutions), and the discriminator is built
using downsampling layers (e.g., convolutions). To stabilize
training, normalization layers are employed: Batch
Normalization Error! Reference source not found. in the
generator and Spectral Normalization Error! Reference
source not found. in the discriminator.

The primary goal of a GAN is to train both the generator
(G) and discriminator (D) in a zero-sum game. The Minimax
objective function for GANSs is defined as Error! Reference
source not found.]:

minmaxV (D, G)
G D
= {E}{x ~Pidataj(x))[log D(x)]

&)
B )0 (1 - pe)]

D(x): Probability that X is a real sample (discriminator output
for real data).
G (z): Sample generated by the generator from noise z.

D(G(z)): Probability that the generated sample is real
(discriminator output for fake data).

Ex~paata(x): Expectation over real samples from the data
distribution.

E,pz(z): EXpectation over noise vectors from the noise
distribution.

B. AdaptiveMix Technique

AdaptiveMix Error! Reference source not found. is a
novel approach designed to improve GAN training stability,
with a particular focus on the discriminator. This technique
compresses the discriminator’s feature space so that it does
not only focus on clear-cut distinctions between real and fake
samples, but also learns fine-grained boundaries in the
feature space. Inspired by Mixup Error! Reference source
not found., a data augmentation method that linearly
combines images and their labels, AdaptiveMix enables the
discriminator to learn more precise distinctions in feature-
space boundary regions. This helps mitigate mode collapse
and encourages the discriminator to provide more stable and
informative feedback to the generator.

The standard Mixup formulation for creating mixed
samples and labels is given by:

X = /1X,:+ (1 —A)Xj 2
= 2yi+ (1 — Dy, @

Where x; and x; are two input samples from the dataset, y;
and y; are their corresponding labels, and 4 is a mixing

coefficient typically drawn from a Beta distribution
(Beta (a, a)).

C. EIGGAN Inspired Technique

The EIGGAN framework [4] introduces several
architectural innovations and training strategies designed to
improve image quality and training stability in GANs. These
include spatial attention modules, parallel residual
operations, and composite loss functions.

In our proposed model, we did not employ the complete
EIGGAN structure. Instead, we selectively integrated
specific techniques inspired by EIGGAN to enhance
efficiency and stability while keeping the architecture
lightweight.

The components we adopted are:

Self-Attention Mechanism: Incorporated into the
generator and discriminator to allow the model to capture
long-range dependencies and focus on critical regions of the
image.



Feature Matching Loss: Added to the generator’s
objective to stabilize training and improve the perceptual
quality of generated images.

R1 Regularization: Applied to the discriminator to
encourage smoother decision boundaries and further
stabilize adversarial training.

Learning Rate Scheduling: Inspired by EIGGAN’s
training refinements, we employ step-based scheduling to
ensure stable convergence.

The components not adopted from EIGGAN include full
spatial attention blocks, parallel residual operations, and the
complete composite loss function. This selective adoption
allows our model to remain computationally efficient while
benefiting from EIGGAN’s most impactful elements.

D. Differentiable Augmentation (DiffAugment)

DiffAugment Error! Reference source not found. is a key
technique in modern GAN training, particularly in low-data
regimes. Rather than applying augmentation only to real
images, DiffAugment applies differentiable transformations
(e.g., cropping, rotation, color adjustments—operations for
which gradients can be computed) to both real and generated
(fake) images before feeding them into the discriminator.
This forces the discriminator to learn the genuine
characteristics of the data distribution rather than
memorizing training examples or augmentation-specific
artifacts. As a result, GAN training stability is significantly
improved, and the quality of generated images is enhanced.

E. Exponential Moving Average (EMA)

EMA Error! Reference source not found. is a widely used
post-training technique for improving the quality of
generator outputs in GANs. During training, instead of
directly using the generator’s weights at each iteration, a
shadow copy of the generator’s weights is maintained and
updated using an exponential moving average of the current
and past weights:

{EMA} _ {EMA}
Oy = @ Oty + (1 = @) Oy ®)

where Hf(b;%A} is the EMA weight at time step ¢ <@ is

the current generator weight at t and « is the decay rate,
typically close to 1 (e.g., 0.999).

At evaluation time and during final sample generation, the
EMA-smoothed generator weights are used, resulting in
smoother and visually higher-quality outputs due to reduced
fluctuations from early training stages.

F. Wasserstein Loss with Gradient Penalty
(WGAN-GP)
To improve training stability and address common issues
in early GANSs such as mode collapse and unstable gradients,
the proposed architecture adopts the Wasserstein GAN with
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Gradient Penalty (WGAN-GP) Error! Reference source not
found.. This method builds upon WGAN Error! Reference
source not found. by enforcing the Lipschitz constraint
through a gradient penalty applied to the norm of the
discriminator’s gradient with respect to its inputs. The
gradient penalty helps the discriminator learn better cost
functions, leading to more stable convergence and higher-
quality image generation. This approach is particularly
effective when training GANs on complex datasets such as
CIFAR-10.

G. Integrated and Synergistic Methods in the
Proposed Model

The proposed model in this study involves an intelligent
integration and synergy of a set of advanced techniques
within a single GAN framework. The objective of this
integration is to overcome the common challenges in GAN
training and to achieve higher-quality and more stable image
generation. This synergy encompasses the competitive
interaction between the generator and discriminator, as well
as the application of multiple enhancement mechanisms to
both model components and their training process.

V1. Evaluation and Comparison Method

To assess the performance of the proposed model in
generating high-quality images, particularly for the CIFAR-
10 dataset, standard and widely used evaluation metrics in
the GAN domain were employed. Unlike classification
models, which are evaluated based on prediction accuracy,
GANS are assessed based on the visual quality, diversity, and
statistical similarity of generated images to real data.

In this study, the model’s performance was evaluated
using the Inception Score (IS), Fréchet Inception Distance
(FID), and discriminator accuracy throughout the training
process (up to epoch 1000).

IS evaluates both image quality (how semantically clear
and recognizable the generated images are) and the diversity
of the generated samples (how well the generator can
produce images across different classes). A higher IS
indicates that the generated images are both semantically
meaningful (recognizable by the Inception V3 model) and
diverse across generated classes. This metric is widely used
for evaluating GAN performance, especially on datasets like
CIFAR-10.

FID is a more comprehensive and precise metric for
evaluating GAN-generated image quality. FID measures the
distance between the feature distribution of real images and
that of generated images. Lower FID values indicate higher
quality and greater similarity to real images. Due to its
sensitivity to both quality and diversity, FID is considered
one of the most reliable metrics for GAN evaluation.

Discriminator Accuracy indicates the ability of the
discriminator to distinguish real images from fake images
generated by the generator. In a stable GAN, the
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discriminator accuracy typically oscillates around 50%—
70%, reflecting a healthy balance between the generators and
discriminator’s competitive abilities. If the discriminator’s
accuracy approaches 100%, it means it has become too
strong and is no longer providing useful gradients to the
generator; if it approaches 0%, it indicates a weak
discriminator.

VII. Evaluation Results

The proposed model was evaluated using a set of test
images that were not seen during training. This evaluation
focused on the IS, FID, and discriminator accuracy metrics.
The proposed hybrid model, which incorporates
AdaptiveMix, DiffAugment, and selectively applied
EIGGAN principles, was trained on the CIFAR-10 dataset
for 1000 epochs.

Table II presents the specifications of the software and
hardware used in this study. Additionally, Table III shows the
approximate time required to fully train selected models with
an IS lower than 6.80. The experimental results, including IS
progression across epochs and the discriminator accuracy
chart, are reported in Tables IV and V, demonstrating the
gradual improvement in generation quality and training
stability of the model.

To rigorously evaluate the performance of GAN-based
generative models, three commonly used metrics such as IS,
FID, and discriminator accuracy, were employed. The results
of the proposed model on the CIFAR-10 dataset were
examined over the range of 0 to 1000 epochs, and the trends
of these three indicators were analyzed separately.

In Figure 2 discriminator accuracy curve illustrates the
discriminator’s accuracy during training epochs. As shown
in the figure, the discriminator’s accuracy fluctuates on
average between 50% and 60%. This behavior is expected
and indicates relative training stability, as in GAN
architectures, a balance must be maintained between the
generator and discriminator so that neither dominates the
other.

TABLE I1: Specifications of the Hardware and Software Used

Category Specification Details
NVIDIA Tesla T4 with 16 GB
GPU VRAM (Google Colab
Hardware environment)

SSD — temporary storage space

Storage allocated by Colab
iy Sy Ubuntu — cloud environment
(Google Colab)
Development Google Colab, including
Environment Jupyter Notebook/Lab
Software ik Python 3.x — default version
provided by Colab

PyTorch — default Colab
version, CUDA-compatible
torchvision — default in Colab

Main Libraries
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scipy — default in Colab

TABLE III: Training and Inference Time

Model Name Training & Inference Time
VanillaGAN 5-6 hours
DCGAN 6-7 hours
DRAGAN 7-8 hours
WGAN 8-9 hours
MIX + WGAN 9-10 hours
Improved GANs 9-10 hours
DCGAN (with labels) 10-11 hours
ALI 11-12 hours
BEGAN 11-13 hours
WGAN-GP 13-15 hours
WGAN-GP (general) 13-15 hours
SteinGAN 16-18 hours
Proposed Model 22-24 hours

TABLE IV Inception Score (I1S) Comparison of the Proposed
Model with Baseline GANs on CIFAR-10
Model Name IS
WGAN Error! Reference source not

3.25
found.
MIX + WGAN Error! Reference
4.04
source not found.
Improved GANSs [18] 4.36
ALI[17] 5.34
BEGANET ror! Reference source not
5.62
found.
WGAN-GP[15] 5.99
DRAGAN Error! Reference source 6.11
not found. ’
Vanilla GANError! Reference
6.30
source not found.
SteinGANError! Reference source
6.35
not found.

DCGAN [4] 6.37
WGAN-GP (common) [10] 6.40
DCGAN (with labels) [10] 6.58

Proposed Model 6.80

Specifically, in the mid-training stages, drops in
discriminator accuracy were observed, which can be
attributed to the generator’s improved performance in
producing more realistic-looking samples. In the final
epochs, the discriminator’s accuracy, while maintaining
minor fluctuations, becomes more stable.

In addition, the IS and FID scores were recorded. The
highest IS achieved was 6.80 at epoch 875, which is
comparable to some of the most advanced models reported
in prior works. The best FID obtained was 20.90 at epoch
920, indicating high quality and realism of the generated
images. These IS and FID results demonstrate that the
proposed model maintained a stable and upward
performance trend, confirming the improvement in both
quality and diversity of generated images during the training
process.
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Table IV Comparison of the IS Score of the Proposed
model with selected notable models also presents results
such as WGAN (IS = 3.25), BEGAN (IS = 5.62), WGAN-
GP (~6.4), and DCGAN (IS = 6.16). As can be seen, the
proposed model, with an IS close to 6.80, demonstrates
competitive and in some cases superior performance
compared to baseline models.

TABLE V: Fréchet Inception Distance (FID) Comparison of the
Proposed Model with Baseline GANs on CIFAR-10

Model Name FID
|
WGAN Error! Reference source not 55.96
found.
HingeGAN [19] 42.40
|
LSGAN Error! Reference source not 42.02
found.
!
DCGAN Error! Reference source 38.56
not found.
WGAN-GP Error! Reference source
41.86
not found.
Re-implemented WGAN-GPError!
38.63
Reference source not found.
Realness GAN-Ob;.1 Error!
36.73
Reference source not found.
Realness GAN-Ob;j.2[22] 34.59
Realness GAN-Ob;j.3 [22] 36.21
AdaptiveMix[3] 30.85
Proposed Model 20.90
Diseriminatar Accuraty over Epachs
[} == iscriminator ALcuracy

t“ JEU r)l:!ti 060 HL‘HJ ]ﬂbﬂ
Fig. 2. Discriminator Accuracy Curve

Similarly, Table V Comparison of the FID Score of the
proposed model with selected state-of-the-art models shows
the results on the CIFAR-10 dataset. As evident, proposed
model, with an FID of 20.90, significantly outperforms the
methods listed in the table.

This confirms the high realism and diversity of the images
generated by the proposed model. These results indicate that
the integration of advanced techniques employed in the
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proposed approach—such as Exponential Moving Average,
along with enhancements like DiffAugment and
AdaptiveMix—has had a substantial positive impact on the
quality of the final outputs.

VI11. Conclusion and Discussion

GANs are among the most advanced frameworks for
generating high-quality synthetic data and have been applied in
various computer vision domains. In this study, a GAN-based
model was designed that, while leveraging the fundamental
principles of existing architectures, purposefully incorporated
certain optimization and regularization strategies from more
advanced models—most notably AdaptiveMix—as well as
selected techniques proposed in EIGGAN. It is worth noting that
the full EIGGAN architecture was not employed; rather, only
specific components—particularly its training enhancement
strategies—were selectively and adaptively integrated. This
deliberate selection aimed to improve training stability and
enhance the quality of the generated outputs.

To evaluate the quality of the generated samples, three key
metrics were used: Inception Score (IS) as an indicator of image
realism and diversity, Fréchet Inception Distance (FID) as a
measure of distributional similarity, and discriminator accuracy
as an implicit indicator of balance between the generator and the
discriminator. According to the results, the model achieved an
IS of 6.80 + 0.22 at epoch 875, which is competitive and, in
many cases, superior to classical models such as WGAN,
DCGAN, and BEGAN as reported in previous studies.
Furthermore, the best recorded FID was 20.90 at epoch 920,
demonstrating strong convergence of the model toward
generating realistic images.

The analysis of discriminator accuracy trends throughout
training (Figure 2) revealed that this value remained in the 50—
60% range during most epochs, indicating the preservation of a
dynamic balance between the two GAN components.
Maintaining the discriminator’s performance within this range
prevented dominance by either network and enabled more
effective generator training.

In addition, the use of techniques such as Exponential Moving
Average (EMA) for stabilizing generator outputs, R1-based
regularization, and spectral normalization in the discriminator
played a key role in enhancing both the stability and the quality
of the final results.

Ultimately, the findings of this research demonstrate that
designing hybrid architectures and selectively applying targeted
stabilization and augmentation methods can significantly
improve the quality and stability of generated samples. These
results pave the way for future research into optimizing GAN
structures and their practical applications, particularly in areas
such as image reconstruction, super-resolution, and synthetic
data generation.
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