Intelligent Multimedia Processing & Communication Systems Journal

IMPCSJ

J IMPCS (2025) 21: 25-33

DOI 10.71856/IMPCS.2025.1209394

Research Paper

Enhancing Intrusion Detection Accuracy Using XGBoost, Deep

Autoencoders, and LSTM

Behnam Dorostkar!, Zohreh Dorrani?*, Hasan Afshar Afshien?

1. Department of Information and Communication Technology, Amin Police University, Tehran, Iran.
2. Department of Electrical Engineering, Payame- Noor University, Tehran, Iran. *Corresponding Author

dorrani.z@pnu.ac.ir

3. Department of Information and Communication Technology, Amin Police University, Tehran, Iran.

Article Info

ABSTRACT

Article history:
Received: 21 July 2025
Accepted: 31 Aug 2025

Keywords:

Anomaly Detection

Deep Autoencoder,

Feature Selection,

Intrusion Detection System,
LSTM,

Network Security.

Intrusion detection systems face significant challenges in handling high-dimensional network data while
maintaining detection accuracy. This paper proposes a novel hybrid framework integrating XGBoost, a deep
autoencoder, and LSTM to address these limitations. Traditional methods often overlook the synergistic
potential of feature selection, dimensionality reduction, and temporal pattern analysis, leading to suboptimal
performance. Our approach begins with preprocessing raw network traffic data, including normalization and
categorical encoding. XGBoost is employed for feature selection, identifying the top-k discriminative features
to reduce computational overhead. A deep autoencoder then extracts compressed latent representations from
the selected features, enhancing the model’s ability to capture nonlinear relationships. Finally, an LSTM
network classifies sequences of these latent features, leveraging temporal dependencies for precise attack
detection. Evaluated on the UNSW-NB15 and WBAN RSSI datasets, the proposed method achieves state-of-
the-art accuracy of 89.25% and 84.00%, respectively, outperforming existing techniques such as standalone
XGBoost (85.08-88.42%) and GRU-based models (80.52-88.13%). These results highlight the framework’s
robustness in addressing high dimensionality and temporal dynamics, bridging critical gaps in IDS research.
The method’s modular design ensures adaptability to diverse network environments, offering a scalable
solution for real-time intrusion detection.

NOMENCLATURE
X Raw network traffic data input S Sequential data input reshaped for LSTM
Xpr e Preprocessed network data after cleaning and y True class labels (Normal = 0, Attack = 1)
normalization
Xser Selected features dataset after XGBoost feature selection v Predicted class labels by LSTM classifier
k Number of top features selected by XGBoost TP True Positives: number of correctly detected attack
instances
VA Latent feature representation extracted by deep TN True Negatives: number of correctly detected normal
autoencoder instances
O4ec Parameters of the autoencoder decoder network FP False Positives: number of normal instances incorrectly
labeled as attacks
Oonc Parameters of the autoencoder encoder network FN False Negatives: number of attack instances incorrectly
labeled as normal
Precision Ratio of correctly predicted attacks to all predicted attacks F1 Harmonic mean of Precision and Recall
— score
Recall Ratio of correctly predicted attacks to all actual attacks Acc Opverall classification accuracy
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|. Introduction

Now Cybersecurity relies heavily on deep learning, an
emerging technology that imbues artificial intelligence (AI)
[1] with new capabilities [2]. Complex cyberattacks require
a higher level of intelligence from intrusion detection
systems. Datasets like UNSW-NB15 and NSL-KDD are now
instrumental in benchmarking the capabilities of various
machine learning and deep learning algorithms. Provided
simulations of network traffic and cyberattacks [3], these
datasets are capable of training advanced Al [4] algorithms.

The development of deep learning models—LSTM, GRU,
and autoencoders, among others—made advances, but
challenges regarding the detection of sophisticated and non-
conventional attacks [5] still exist. Recently, some studies
looked into the use of deep learning techniques for intrusion
detection in both wireless body area networks (WBANSs) [6]
and conventional computer networks (CNNs) [7]. It has been
shown that the performance of models improves
significantly when different deep learning techniques are
combined with feature selection methods.

Numerous fields have adopted deep learning, including
autonomous driving vehicles [8]. A car's camera, along with
other sensors, uses deep learning to identify roads[9],
pedestrians, and rigid obstacles to guide the vehicle safely.
In image segmentation, convolutional neural networks and
attention-based models have dramatically improved both
accuracy and processing speed. These capabilities are also
applicable to intrusion detection, where deep learning
models can extract complex features to identify unknown
and sophisticated attacks.

A key research gap in this field is the lack of hybrid
approaches that simultaneously leverage feature selection,
latent feature extraction, and sequential data modeling. Most
existing models either focus solely on feature selection or
rely exclusively on deep learning for intrusion detection.
However, integrating these methods can yield models with
higher accuracy and better generalization capabilities. The
main innovation of this paper is the introduction of a
comprehensive framework that combines feature selection
using XGBoost [10], latent feature extraction via deep
autoencoders, and sequence modeling with LSTM. This
integration not only improves intrusion detection accuracy
but also enhances the model’s ability to detect unknown and
complex attacks.

Deep learning’s versatility is evident in its application to
autonomous driving, where it enables real-time road and
obstacle detection, and in medical imaging, where it supports
accurate diagnosis through image segmentation. In the
context of network security, the proposed framework
addresses the limitations of previous approaches by
providing a robust, multi-stage solution for intrusion
detection.
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This paper is organized into five main sections. The first
section reviews related work and the state of the art in
intrusion [11] detection using deep learning. The second
section details the proposed methodology, including feature
selection, autoencoder-based feature extraction, and LSTM-
based sequence modeling. The Section III presents the
results of simulations and model evaluations. Section IV
discusses the findings and analyzes the implications of the
results. Finally, Section V concludes the paper and provides
recommendations for future research.

1. Related Work

In recent years, deep learning methods have been widely
adopted for intrusion detection [12] in computer networks,
especially in Wireless Body Area Networks (WBANS).
Several studies, such as Dong et al. [13] utilizing LSTM
networks with multivariate correlation analysis, and Yin et
al. [14] employing recurrent neural networks (RNNs), have
demonstrated the effectiveness of deep learning-based
models in attack detection. Furthermore, Kasongo and Sun
[15] achieved promising results in wireless intrusion
detection systems by integrating wrapper-based feature
extraction with deep learning. Additionally, Hsu et al. [16]
combined LSTM and CNN architectures, while Kasongo [2]
leveraged an RNN-based framework, both reporting
significant  improvements in  intrusion  detection
performance. Hajian and Asadi [6] also introduced
innovative deep learning solutions for intrusion detection in
WBANS. Despite these advancements, challenges remain in
optimal feature selection, effective latent feature extraction,
and sequential data modeling for attack detection. In this
context, the current paper proposes a comprehensive
approach by integrating feature selection using XGBoost,
latent feature extraction via a deep autoencoder, and
sequence modeling with LSTM networks for intrusion
detection. The main innovation of this article lies in the
unified integration of these three methods, optimizing
intrusion detection performance in WBANSs. The identified
research gap is the lack of hybrid methods for effective
feature selection, latent feature extraction, and sequential
data modeling within a cohesive and accurate intrusion
detection system, which this paper aims to address. By
addressing the limitations of existing methods and
leveraging the strengths of each technique, this research
contributes to the ongoing development of robust IDS
solutions.

I11. Methodology

A. Architecture
Figure 1 depicts the framework that is proposed in this
study. In the suggested method for intrusion detection, the
first step is to gather and undergo preliminary processing of
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raw network data, which consists of text preprocessing,
cleaning, feature normalization, and transforming non-
numeric variables [17] to numeric ones in order to prepare
the data for deep learning models. For the XGBoost feature
selection algorithm, the remaining dataset features after
preprocessing are subjected to selection processes in which
only the most impactful features are retained, thus achieving
data dimensionality reduction, which in turn avoids
excessive complexity of the model.

N
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Fig. 1. Flowchart of the presented method based on
Intrusion Detection Using XGBoost, Deep Autoencoder,
and LSTM

Then, these selected features are input into a deep
autoencoder. This particular deep neural network [18, 19]
captures intricate, non-linear relationships within the
network data through a process of extraction and
representation into compact low-dimensional forms --- a
process termed denoising wherein redundant information is
effectively stripped away.

The autoencoder model is trained in an unsupervised way,
where the goal is to reconstruct normal data accurately and
to extract useful latent features that ensure normal data is
meaningfully separated from anomalous data. The output at
the middle layer, representing the compressed data, is sent to
a recurrent neural network, for example LSTM. LSTM is
capable of detecting time-dependent relationships and
sequential patterns within network traffic data, allowing it to
classify the data stream as either normal or malicious.

Lastly, the model gets trained on identified datasets for
automated detection of attacks and abnormal activities. To
reduce overfitting and enhance the model’s generalization
capabilities, strategies like Dropout, along with
hyperparameter optimization, are applied. Post-training, the
model is assessed against test data using evaluation
benchmarks like accuracy, F1-score, and detection rate. This
framework, by leveraging the autoencoder’s prowess in
extracting nonlinear features and the recurrent networks’
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strengths in sequence processing, enhances the accuracy and
performance of intrusion detection systems [20] far beyond
what is achieved with standard RNN-based or traditional
feature selection methods. Figure 4 illustrates the training and
validation accuracy (a) and loss (b) curves for the proposed deep
learning model over 80 epochs. As seen in part (a), both the
training and validation accuracy curves exhibit a steady upward
trend, with the training accuracy reaching approximately 0.89
and the validation accuracy closely following at around 0.88 by
the end of the training process.

Pseudocode for Intrusion Detection Using XGBoost,
Deep Autoencoder, and LSTM
Input: Raw network traffic data [21]
Output: Intrusion detection model (Normal/Attack
classification)
1. Data Preprocessing:
a. Load raw network traffic data.
b. Clean data (handle missing values, remove
duplicates, etc.).
c¢. Normalize features (e.g., Min-Max scaling).
d. Encode categorical features into numeric values.
2. Feature Selection:
a. Apply XGBoost feature selection on preprocessed
data.
b. Select top-k most important features based on feature
importance scores.
c. Create reduced dataset with selected features.
3. Feature Extraction via Deep Autoencoder:
a. Define deep autoencoder architecture with multiple
encoding and decoding layers.
b. Train autoencoder in unsupervised mode using the
reduced dataset.
c. Pass data through the trained encoder to obtain
compressed (latent) feature representations.
4. Sequence Modeling and Classification:
a. Reshape compressed features into sequences suitable
for LSTM input (if necessary).
b. Define LSTM network architecture for
classification.
c. Train LSTM using labeled (compressed) data
(supervised learning).
5. Model Evaluation:
a. Evaluate the trained model on test data.
b. Calculate performance metrics (Accuracy, F1-Score,
Detection Rate, etc.).
6. Intrusion Detection:
a. For new incoming network data:
i. Preprocess and select features as above.
ii. Pass through trained autoencoder encoder to get
compressed features.
iii. Input compressed features to trained LSTM
model.
iv. Output: Predict class (Normal or Attack).
End.
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This consistent increase and the small gap between the
two curves indicate that the model is learning effectively
from the data and generalizing well to unseen samples, with
minimal overfitting.

In part (b), the loss curves for both the training and
validation sets show a rapid decline in the initial epochs,
stabilizing at lower values as training progresses. The close
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alignment of the loss curves further confirms the model’s
robustness and its ability to avoid significant overfitting. The
sharp decrease in loss and the convergence of both metrics
suggest that the model architecture, regularization
techniques, and feature selection strategies employed are
effective.
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Fig. 2. Training and Validation Accuracy and Loss Curves of the Proposed Deep Learning Model

The main strengths of these results are the high and stable
accuracy on both training and validation sets, the minimal
gap between the two curves, and the smooth convergence of
the loss. These factors collectively demonstrate that the
model is both accurate and reliable, making it suitable for
real-world intrusion detection tasks.

B. Evaluate metrics

Evaluation metrics in intrusion detection and
classification tasks are typically derived from the confusion
matrix, which summarizes the performance of a binary
classifier. The confusion matrix consists of four fundamental
components: True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN)[22]. Here, TP
refers to the number of attack instances correctly identified
as attacks, TN is the number of normal instances correctly
classified as normal, FP represents normal instances
incorrectly labeled as attacks, and FN [23] denotes attack
instances mistakenly classified as normal.

One of the most important metrics is the F1-score, which
balances the trade-off between precision and recall.
Precision measures the accuracy of positive predictions and
is defined as the ratio of true positives to all predicted
positives [24]:

TP

p .. -
recision TP + FP

@)

Recall (also called sensitivity or detection rate) measures
the ability to identify all actual positive cases and is
calculated as [25]:

TP
TP +FN @

The F1-score is the harmonic mean of precision and recall,

providing a single metric that equally weights both [26]:
Precision X Recall 3
Precision + Recall @)

This harmonic mean penalizes extreme imbalances

Recall =

F1 —score =2 X

between precision and recall, ensuring that a high F1-score
is only achieved when both precision and recall are high. The
Fl-score ranges from 0 to 1 (or 0% to 100%), where 1
indicates perfect classification performance and 0 indicates
failure to correctly identify any positive instances.

TP +TN

4
TP+TN+FP+FN @
Accuracy is a fundamental metric in classification tasks

Accuracy =

that measures the overall correctness of a model. It is defined
as the ratio of all correctly predicted instances (both positive
and negative) to the total number of instances evaluated. This
metric reflects the proportion of predictions the model got
right out of all predictions made. A higher accuracy indicates
better overall performance, but it can be misleading in
imbalanced datasets where one class dominates. Therefore,
accuracy should be interpreted alongside other metrics like
precision, recall, and Fl-score for a comprehensive
evaluation.
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1VV. Test Results

A. UNSW-NB15 Dataset

In the realm of network security, the most benchmarked
datasets for assessing the performance of Intrusion Detection
Systems (IDS) are the UNSW-NBI15 dataset [27] [28]. This
dataset was developed in 2015 by the Australian Centre for
Cyber Security (ACCS) with the purpose of developing
realistic models for modern networks, their traffic, along
simulating cyber-attacks. Moreover, UNSW-NB15 features
network traffic data with 49 distinct attributes as well as
multi-labeled data with various attack types ranging from
general to sophisticated. Unlike previous datasets, including
KDD99 and NSL-KDD, UNSW-NBI5 has portrayed
advancements in the benchmark scenarios along with
realistic contemporary networks.

The dataset has a record count of over 2.5 million, along
conducting nine attacks, comprising Fuzzers, Analysis,
Backdoor, DoS, Exploits, Generic, Recon, Shellcode,
Worms, and normal traffic. Further, each record is enriched
with statistical details ranging from protocols to IP
addresses. Currently, UNSW-NBI15 is used as a benchmark
in academic research outside of Australia, particularly for
training and testing the efficiency of machine learning and
deep learning algorithms aimed at network intrusion
detection.

Figure 3 displays the confusion matrix results of a multi-
class classification model for the intruder detection system.

Figure 3 illustrates the confusion matrix for the proposed
model's performance in classifying network attacks. The
horizontal axis represents the predicted labels, and the
vertical axis represents the true labels. The numbers on the
main diagonal of the matrix indicate the number of correctly
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classified instances. Large values along this diagonal suggest
high accuracy in correctly identifying the classes. For
example, class 6 (row 6, column 6) has a value of 7406,
indicating the highest accuracy in identifying this type of
attack. Class 5 (row 5, column 5) also demonstrates good
performance with a value of 3623. However, numbers off the
main diagonal represent classification errors. For instance,
class 3 (attack type 3) performs reasonably well with a value
of 1591 on the main diagonal, but there are also
misclassifications into other classes. Class 2 (attack type 2)
with a value of 427 on the main diagonal is also acceptable.
The strengths of this confusion matrix lie in the high values
along the main diagonal for most classes, which indicates
good overall accuracy of the model.
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Fig. 3. confusion matrix results

This matrix is one of the many essential tools used to
analyze the efficiency exhibited by machine learning models
[29] on multi-class classification problems.
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Fig. 4. Fl-score for each class



Figure 4 illustrates the F1-score for each class in a multi-
class classification problem. This bar chart illustrates the F-
scores achieved by the classification model for each attack
category in the UNSW-NBI15 dataset. The F1-score, which
balances precision and recall, is a key metric for evaluating
model performance, especially in imbalanced datasets. The
chart reveals that the model performs exceptionally well in
detecting the Generic and Normal categories, with F1-score
of 0.99 and 1.00, respectively. These high scores indicate
both high precision and recall, showcasing the model's
reliability in correctly identifying the majority of traffic as
either generic attacks or normal behavior.

Furthermore, the model demonstrates strong performance
in the Exploits, Fuzzers, and Reconnaissance categories,
each achieving F1-scores around 0.74 to 0.75. This suggests
that the model can effectively distinguish these types of
attacks from others, which is crucial for practical intrusion
detection systems. The DoS and Shellcode categories show
moderate performance, with Fl-scores of 0.49 and 0.43,
respectively, indicating room for improvement, possibly due
to class imbalance or feature similarity with other categories.

However, the model struggles with the Analysis,
Backdoor, and Worms categories, each receiving very low
Fl-scores (0.14, 0.00, and 0.00, respectively). This likely
results from a lack of sufficient training samples or
overlapping features with other categories. Overall, the
model's strengths lie in its high accuracy for the most
prevalent and critical categories, making it a robust
foundation for network intrusion detection, while
highlighting the need for targeted improvements in
underrepresented classes.

B. RSSI dataset

The Wireless Body Area Network (WBAN) dataset
contains the Received Signal Strength Indicator (RSST)[30,
31] values associated with eleven sensor [32-35] nodes
positioned at the head, chest, waist, arms, and hands. This
data is commonly employed for various purposes, including
intrusion detection and attack identification in body sensor
networks. RSSI is set to measure the strength of a received
signal, usually as low as 0 and as high as 255, although this
range usually depends on the hardware manufacturer. The
WBAN RSSI dataset serves to assist researchers in devising
body area network-specific protective measures, thus
making it beneficial to academia and practitioners in the
realm of wireless sensor network security.

The confusion matrix in Figure 5, displayed here, captures
the performance of an autoencoder-based intrusion detection
model on the WBAN dataset that has three classes: Class 0
(Normal), Class 1 (Attack Type 1), and Class 2 (Attack Type
2). In this matrix, rows denote the actual classes while
columns denote the predicted classes. The presented
confusion matrix demonstrates the performance of the
machine learning model in classifying RSSI data from the
WBAN dataset. As evident, the model exhibits exceptional

strength in identifying class 2, correctly classifying 183
samples with minimal errors (only 1 misclassified as class 0
and 7 as class 1). This high accuracy in detecting class 2
highlights the model’s ability to discern distinct and
separable patterns in RSSI data for this category.
Additionally, the model performs well for class 1, correctly
identifying 42 samples. While there are some weaknesses in
classifying class 0, with a notable number of
misclassifications, the main strength of the model lies in its
high precision and low error rate for the dominant class
(class 2).

This suggests that the model does quite well at
distinguishing between normal behavior and attacks, but
there is still some confusion between the types of attacks due
to the similarities of features in the RSSI signals for the
different attacks.
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Fig. 5. confusion matrix results

The bar chart in Figure 6 displays the Fl-score of each
class attained by the autoencoder-based attack detection
model on the WBAN RSSI dataset.
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The presented chart illustrates the F1-score values for each

class in the RSSI data classification model for the WBAN
network. As shown, the model achieves an outstanding F1-
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score of 0.94 for class 2, indicating extremely high precision
and reliability in identifying this class.

For class 1, the Fl-score is 0.74, reflecting a solid
performance in this category as well. Although the F1-score
for class 0 is relatively lower at 0.44, the main strength of the
model lies in its excellent ability to distinguish the dominant
class (class 2) and its acceptable performance for class 1.

These results demonstrate that the model is highly
effective at separating classes of higher importance or
prevalence, making it particularly valuable in practical
applications where accurate identification of these classes is

critical.
TABLE | Comparative Performance
Analysis of Machine Learning and Deep
Learning Methods on UNSW-NBI15, NSL-
KDD, and WBAN RSSI Datasets
>
= = g o3 8
¢ Q Sy |72} =1
o] B ] — S
- <
[13] 2020 UNSW-NB15 1IG 88.11%
[14] 2017 UNSW-NB15 - 83.28%
[15] 2020 UNSW-NB15 ExtraTrees 87.10%
[16] 2019 UNSW-NB15 XGBoost 87.07%
Simple UNSW-NB15 XGBoost 85.08%
RNN 2023
(2]
LSTM UNSW-NB15 XGBoost 88.42%
2] 2023
- 0,
G[121]U 2023 UNSW-NB15 1G 80.52%
Simple - 74.77%
RNN 2023 NSL-KDD
(2]
0,
LS[;F]M 2023 NSL-KDD XGBoost 83.70%
G[];]U 2023 NSL-KDD XGBoost 88.13%
[6] 2024 WBAN rssi - 72%
Proposed WBAN rsi XGBoost 84.00%
method
Proposed UNSW-NBIS XGBoost 89.25%
method

Table I presents a comprehensive comparison of various
machine learning and deep learning techniques [36, 37]
applied to the UNSW-NB15, NSL-KDD, and WBAN RSSI
datasets, focusing on the Fl-score [38] as the primary
performance metric. The results indicate that traditional
machine learning methods, such as Information Gain (IG),
ExtraTrees, and XGBoost, have achieved competitive
accuracy on the UNSW-NBIS5 dataset, with values ranging
from 83.28% to 88.11%. Notably, the LSTM-based approach
from 2023, combined with XGBoost, surpassed previous
methods by achieving an Fl-score of 88.42%, highlighting
the effectiveness of deep learning models, particularly when
integrated with ensemble techniques.

For the NSL-KDD dataset, deep learning models such as
GRU and LSTM, especially when paired with XGBoost,
demonstrated substantial improvements over simpler
architectures [39], reaching an accuracy of up to 88.13%.
The proposed method, when evaluated on both the WBAN
RSSI and UNSW-NBI15 datasets using XGBoost,
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significantly outperformed prior works, achieving of 84.00%
and 89.25%, respectively. This demonstrates the robustness
and generalizability of the proposed approach across
heterogeneous datasets. Overall, the analysis underscores the
trend that hybrid and ensemble models, particularly those
leveraging deep learning architectures, consistently deliver
superior performance in intrusion detection and
classification tasks.

V. Conclusions

In this paper, a hybrid intrusion detection framework is
proposed that effectively integrates XGBoost-based feature
selection, a deep autoencoder for feature extraction, and an
LSTM network for sequence classification. The proposed
method addresses critical challenges in intrusion detection,
including high-dimensional data and temporal dependencies
inherent in network traffic. Experimental results on
benchmark datasets such as UNSW-NB15 and WBAN RSSI
demonstrate that our approach significantly outperforms
existing state-of-the-art models, achieving accuracy 84.00%
and 89.25%, respectively. This confirms the efficacy of
combining feature selection, nonlinear dimensionality
reduction, and temporal modeling for robust and accurate
intrusion detection.

For future work, several directions can be explored to
further enhance the system’s performance and applicability.
First, incorporating attention mechanisms within the LSTM
architecture could improve the model’s ability to focus on
critical temporal features. Second, extending the framework
to support multi-class classification would allow detection of
specific attack types rather than a binary normal/attack
classification. Third, real-time deployment and evaluation in
live network environments will provide insights into
scalability and robustness under dynamic conditions. Finally,
exploring federated learning approaches could enable
collaborative intrusion detection while preserving data
privacy across distributed network nodes.
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