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. 

Intrusion detection systems face significant challenges in handling high-dimensional network data while 

maintaining detection accuracy. This paper proposes a novel hybrid framework integrating XGBoost, a deep 
autoencoder, and LSTM to address these limitations. Traditional methods often overlook the synergistic 

potential of feature selection, dimensionality reduction, and temporal pattern analysis, leading to suboptimal 

performance. Our approach begins with preprocessing raw network traffic data, including normalization and 
categorical encoding. XGBoost is employed for feature selection, identifying the top-k discriminative features 

to reduce computational overhead. A deep autoencoder then extracts compressed latent representations from 

the selected features, enhancing the model’s ability to capture nonlinear relationships. Finally, an LSTM 
network classifies sequences of these latent features, leveraging temporal dependencies for precise attack 

detection. Evaluated on the UNSW-NB15 and WBAN RSSI datasets, the proposed method achieves state-of-

the-art accuracy of 89.25% and 84.00%, respectively, outperforming existing techniques such as standalone 
XGBoost (85.08–88.42%) and GRU-based models (80.52–88.13%). These results highlight the framework’s 

robustness in addressing high dimensionality and temporal dynamics, bridging critical gaps in IDS research. 

The method’s modular design ensures adaptability to diverse network environments, offering a scalable 
solution for real-time intrusion detection. 

 

 

NOMENCLATURE   
𝑋 Raw network traffic data input 𝑆 Sequential data input reshaped for LSTM 

𝑋𝑝𝑟𝑒 Preprocessed network data after cleaning and 

normalization 
𝑦 True class labels (Normal = 0, Attack = 1) 

𝑋𝑠𝑒𝑙  Selected features dataset after XGBoost feature selection 𝑦̂ Predicted class labels by LSTM classifier 

𝑘 Number of top features selected by XGBoost 𝑇𝑃 True Positives: number of correctly detected attack 

instances 

𝑍 Latent feature representation extracted by deep 
autoencoder 

𝑇𝑁 True Negatives: number of correctly detected normal 
instances 

𝜃𝑑𝑒𝑐  Parameters of the autoencoder decoder network 𝐹𝑃 False Positives: number of normal instances incorrectly 

labeled as attacks 

𝜃𝑒𝑛𝑐  Parameters of the autoencoder encoder network 𝐹𝑁 False Negatives: number of attack instances incorrectly 

labeled as normal 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 Ratio of correctly predicted attacks to all predicted attacks 𝐹1
− 𝑠𝑐𝑜𝑟𝑒 

Harmonic mean of Precision and Recall 

𝑅𝑒𝑐𝑎𝑙𝑙 Ratio of correctly predicted attacks to all actual attacks 𝐴𝑐𝑐 Overall classification accuracy 
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I. Introduction 

Now Cybersecurity relies heavily on deep learning, an 

emerging technology that imbues artificial intelligence  (AI) 

[1] with new capabilities [2]. Complex cyberattacks require 

a higher level of intelligence from intrusion detection 

systems. Datasets like UNSW-NB15 and NSL-KDD are now 

instrumental in benchmarking the capabilities of various 

machine learning and deep learning algorithms. Provided 

simulations of network traffic and cyberattacks [3], these 

datasets are capable of training advanced AI [4] algorithms. 

The development of deep learning models—LSTM, GRU, 

and autoencoders, among others—made advances, but 

challenges regarding the detection of sophisticated and non-

conventional attacks [5] still exist. Recently, some studies 

looked into the use of deep learning techniques for intrusion 

detection in both wireless body area networks (WBANs)  [6] 

and conventional computer networks (CNNs) [7]. It has been 

shown that the performance of models improves 

significantly when different deep learning techniques are 

combined with feature selection methods. 

Numerous fields have adopted deep learning, including 

autonomous driving vehicles [8]. A car's camera, along with 

other sensors, uses deep learning to identify roads[9], 

pedestrians, and rigid obstacles to guide the vehicle safely. 

In image segmentation, convolutional neural networks and 

attention-based models have dramatically improved both 

accuracy and processing speed. These capabilities are also 

applicable to intrusion detection, where deep learning 

models can extract complex features to identify unknown 

and sophisticated attacks. 

A key research gap in this field is the lack of hybrid 

approaches that simultaneously leverage feature selection, 

latent feature extraction, and sequential data modeling. Most 

existing models either focus solely on feature selection or 

rely exclusively on deep learning for intrusion detection. 

However, integrating these methods can yield models with 

higher accuracy and better generalization capabilities. The 

main innovation of this paper is the introduction of a 

comprehensive framework that combines feature selection 

using XGBoost [10], latent feature extraction via deep 

autoencoders, and sequence modeling with LSTM. This 

integration not only improves intrusion detection accuracy 

but also enhances the model’s ability to detect unknown and 

complex attacks. 

Deep learning’s versatility is evident in its application to 

autonomous driving, where it enables real-time road and 

obstacle detection, and in medical imaging, where it supports 

accurate diagnosis through image segmentation. In the 

context of network security, the proposed framework 

addresses the limitations of previous approaches by 

providing a robust, multi-stage solution for intrusion 

detection. 

This paper is organized into five main sections. The first 

section reviews related work and the state of the art in 

intrusion [11] detection using deep learning. The second 

section details the proposed methodology, including feature 

selection, autoencoder-based feature extraction, and LSTM-

based sequence modeling. The Section III presents the 

results of simulations and model evaluations. Section IV 

discusses the findings and analyzes the implications of the 

results. Finally, Section V concludes the paper and provides 

recommendations for future research. 

 

II. Related Work 

In recent years, deep learning methods have been widely 

adopted for intrusion detection [12] in computer networks, 

especially in Wireless Body Area Networks (WBANs). 

Several studies, such as Dong et al. [13] utilizing LSTM 

networks with multivariate correlation analysis, and Yin et 

al. [14] employing recurrent neural networks (RNNs), have 

demonstrated the effectiveness of deep learning-based 

models in attack detection. Furthermore, Kasongo and Sun 

[15] achieved promising results in wireless intrusion 

detection systems by integrating wrapper-based feature 

extraction with deep learning. Additionally, Hsu et al. [16] 

combined LSTM and CNN architectures, while Kasongo [2] 

leveraged an RNN-based framework, both reporting 

significant improvements in intrusion detection 

performance. Hajian and Asadi [6] also introduced 

innovative deep learning solutions for intrusion detection in 

WBANs. Despite these advancements, challenges remain in 

optimal feature selection, effective latent feature extraction, 

and sequential data modeling for attack detection. In this 

context, the current paper proposes a comprehensive 

approach by integrating feature selection using XGBoost, 

latent feature extraction via a deep autoencoder, and 

sequence modeling with LSTM networks for intrusion 

detection. The main innovation of this article lies in the 

unified integration of these three methods, optimizing 

intrusion detection performance in WBANs. The identified 

research gap is the lack of hybrid methods for effective 

feature selection, latent feature extraction, and sequential 

data modeling within a cohesive and accurate intrusion 

detection system, which this paper aims to address. By 

addressing the limitations of existing methods and 

leveraging the strengths of each technique, this research 

contributes to the ongoing development of robust IDS 

solutions. 

 

III. Methodology 

A. Architecture 

Figure 1 depicts the framework that is proposed in this 

study. In the suggested method for intrusion detection, the 

first step is to gather and undergo preliminary processing of 
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raw network data, which consists of text preprocessing, 

cleaning, feature normalization, and transforming non-

numeric variables [17] to numeric ones in order to prepare 

the data for deep learning models. For the XGBoost feature 

selection algorithm, the remaining dataset features after 

preprocessing are subjected to selection processes in which 

only the most impactful features are retained, thus achieving 

data dimensionality reduction, which in turn avoids 

excessive complexity of the model. 

 

Fig. 1.  Flowchart of the presented method based on 

Intrusion Detection Using XGBoost, Deep Autoencoder, 

and LSTM 

 

Then, these selected features are input into a deep 

autoencoder. This particular deep neural network [18, 19] 

captures intricate, non-linear relationships within the 

network data through a process of extraction and 

representation into compact low-dimensional forms --- a 

process termed denoising wherein redundant information is 

effectively stripped away.   

The autoencoder model is trained in an unsupervised way, 

where the goal is to reconstruct normal data accurately and 

to extract useful latent features that ensure normal data is 

meaningfully separated from anomalous data. The output at 

the middle layer, representing the compressed data, is sent to 

a recurrent neural network, for example LSTM. LSTM is 

capable of detecting time-dependent relationships and 

sequential patterns within network traffic data, allowing it to 

classify the data stream as either normal or malicious. 

Lastly, the model gets trained on identified datasets for 

automated detection of attacks and abnormal activities. To 

reduce overfitting and enhance the model’s generalization 

capabilities, strategies like Dropout, along with 

hyperparameter optimization, are applied. Post-training, the 

model is assessed against test data using evaluation 

benchmarks like accuracy, F1-score, and detection rate. This 

framework, by leveraging the autoencoder’s prowess in 

extracting nonlinear features and the recurrent networks’ 

strengths in sequence processing, enhances the accuracy and 

performance of intrusion detection systems [20] far beyond 

what is achieved with standard RNN-based or traditional 

feature selection methods. Figure 4 illustrates the training and 

validation accuracy (a) and loss (b) curves for the proposed deep 

learning model over 80 epochs. As seen in part (a), both the 

training and validation accuracy curves exhibit a steady upward 

trend, with the training accuracy reaching approximately 0.89 

and the validation accuracy closely following at around 0.88 by 

the end of the training process. 

Pseudocode for Intrusion Detection Using XGBoost, 

Deep Autoencoder, and LSTM 

Input: Raw network traffic data [21] 

Output: Intrusion detection model (Normal/Attack 

classification) 

1. Data Preprocessing: 

    a. Load raw network traffic data. 

    b. Clean data (handle missing values, remove 

duplicates, etc.). 

    c. Normalize features (e.g., Min-Max scaling). 

    d. Encode categorical features into numeric values. 

2. Feature Selection: 

    a. Apply XGBoost feature selection on preprocessed 

data. 

    b. Select top-k most important features based on feature 

importance scores. 

    c. Create reduced dataset with selected features. 

3. Feature Extraction via Deep Autoencoder: 

    a. Define deep autoencoder architecture with multiple 

encoding and decoding layers. 

    b. Train autoencoder in unsupervised mode using the 

reduced dataset. 

    c. Pass data through the trained encoder to obtain 

compressed (latent) feature representations. 

4. Sequence Modeling and Classification: 

    a. Reshape compressed features into sequences suitable 

for LSTM input (if necessary). 

    b. Define LSTM network architecture for 

classification. 

    c. Train LSTM using labeled (compressed) data 

(supervised learning). 

5. Model Evaluation: 

    a. Evaluate the trained model on test data. 

    b. Calculate performance metrics (Accuracy, F1-Score, 

Detection Rate, etc.). 

6. Intrusion Detection: 

    a. For new incoming network data: 

        i. Preprocess and select features as above. 

        ii. Pass through trained autoencoder encoder to get 

compressed features. 

        iii. Input compressed features to trained LSTM 

model. 

        iv. Output: Predict class (Normal or Attack). 

End. 
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This consistent increase and the small gap between the 

two curves indicate that the model is learning effectively 

from the data and generalizing well to unseen samples, with 

minimal overfitting. 

In part (b), the loss curves for both the training and 

validation sets show a rapid decline in the initial epochs, 

stabilizing at lower values as training progresses. The close 

alignment of the loss curves further confirms the model’s 

robustness and its ability to avoid significant overfitting. The 

sharp decrease in loss and the convergence of both metrics 

suggest that the model architecture, regularization 

techniques, and feature selection strategies employed are 

effective. 

 
(a) (b) 

Fig. 2. Training and Validation Accuracy and Loss Curves of the Proposed Deep Learning Model 

The main strengths of these results are the high and stable 

accuracy on both training and validation sets, the minimal 

gap between the two curves, and the smooth convergence of 

the loss. These factors collectively demonstrate that the 

model is both accurate and reliable, making it suitable for 

real-world intrusion detection tasks. 

 

B. Evaluate metrics 

Evaluation metrics in intrusion detection and 

classification tasks are typically derived from the confusion 

matrix, which summarizes the performance of a binary 

classifier. The confusion matrix consists of four fundamental 

components: True Positives (TP), True Negatives (TN), 

False Positives (FP), and False Negatives (FN)[22]. Here, TP 

refers to the number of attack instances correctly identified 

as attacks, TN is the number of normal instances correctly 

classified as normal, FP represents normal instances 

incorrectly labeled as attacks, and FN [23] denotes attack 

instances mistakenly classified as normal. 

One of the most important metrics is the F1-score, which 

balances the trade-off between precision and recall. 

Precision measures the accuracy of positive predictions and 

is defined as the ratio of true positives to all predicted 

positives [24]: 

(1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall (also called sensitivity or detection rate) measures 

the ability to identify all actual positive cases and is 

calculated as [25]: 

(2) R𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The F1-score is the harmonic mean of precision and recall, 

providing a single metric that equally weights both [26]: 

(3) 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

This harmonic mean penalizes extreme imbalances 

between precision and recall, ensuring that a high F1-score 

is only achieved when both precision and recall are high. The 

F1-score ranges from 0 to 1 (or 0% to 100%), where 1 

indicates perfect classification performance and 0 indicates 

failure to correctly identify any positive instances. 

(4) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy is a fundamental metric in classification tasks 

that measures the overall correctness of a model. It is defined 

as the ratio of all correctly predicted instances (both positive 

and negative) to the total number of instances evaluated. This 

metric reflects the proportion of predictions the model got 

right out of all predictions made. A higher accuracy indicates 

better overall performance, but it can be misleading in 

imbalanced datasets where one class dominates. Therefore, 

accuracy should be interpreted alongside other metrics like 

precision, recall, and F1-score for a comprehensive 

evaluation. 
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IV.  Test Results 

A. UNSW-NB15 Dataset  

In the realm of network security, the most benchmarked 

datasets for assessing the performance of Intrusion Detection 

Systems (IDS) are the UNSW-NB15 dataset [27] [28]. This 

dataset was developed in 2015 by the Australian Centre for 

Cyber Security (ACCS) with the purpose of developing 

realistic models for modern networks, their traffic, along 

simulating cyber-attacks. Moreover, UNSW-NB15 features 

network traffic data with 49 distinct attributes as well as 

multi-labeled data with various attack types ranging from 

general to sophisticated. Unlike previous datasets, including 

KDD99 and NSL-KDD, UNSW-NB15 has portrayed 

advancements in the benchmark scenarios along with 

realistic contemporary networks. 

The dataset has a record count of over 2.5 million, along 

conducting nine attacks, comprising Fuzzers, Analysis, 

Backdoor, DoS, Exploits, Generic, Recon, Shellcode, 

Worms, and normal traffic. Further, each record is enriched 

with statistical details ranging from protocols to IP 

addresses. Currently, UNSW-NB15 is used as a benchmark 

in academic research outside of Australia, particularly for 

training and testing the efficiency of machine learning and 

deep learning algorithms aimed at network intrusion 

detection. 

Figure 3 displays the confusion matrix results of a multi-

class classification model for the intruder detection system. 

Figure 3 illustrates the confusion matrix for the proposed 

model's performance in classifying network attacks. The 

horizontal axis represents the predicted labels, and the 

vertical axis represents the true labels. The numbers on the 

main diagonal of the matrix indicate the number of correctly 

classified instances. Large values along this diagonal suggest 

high accuracy in correctly identifying the classes. For 

example, class 6 (row 6, column 6) has a value of 7406, 

indicating the highest accuracy in identifying this type of 

attack. Class 5 (row 5, column 5) also demonstrates good 

performance with a value of 3623. However, numbers off the 

main diagonal represent classification errors. For instance, 

class 3 (attack type 3) performs reasonably well with a value 

of 1591 on the main diagonal, but there are also 

misclassifications into other classes. Class 2 (attack type 2) 

with a value of 427 on the main diagonal is also acceptable. 

The strengths of this confusion matrix lie in the high values 

along the main diagonal for most classes, which indicates 

good overall accuracy of the model.  

 

Fig. 3.  confusion matrix results 

 

This matrix is one of the many essential tools used to 

analyze the efficiency exhibited by machine learning models 

[29] on multi-class classification problems. 

 
Fig. 4.  F1-score for each class 



 

 

Figure 4 illustrates the F1-score for each class in a multi-

class classification problem. This bar chart illustrates the F-

scores achieved by the classification model for each attack 

category in the UNSW-NB15 dataset. The F1-score, which 

balances precision and recall, is a key metric for evaluating 

model performance, especially in imbalanced datasets. The 

chart reveals that the model performs exceptionally well in 

detecting the Generic and Normal categories, with F1-score 

of 0.99 and 1.00, respectively. These high scores indicate 

both high precision and recall, showcasing the model's 

reliability in correctly identifying the majority of traffic as 

either generic attacks or normal behavior. 

Furthermore, the model demonstrates strong performance 

in the Exploits, Fuzzers, and Reconnaissance categories, 

each achieving F1-scores around 0.74 to 0.75. This suggests 

that the model can effectively distinguish these types of 

attacks from others, which is crucial for practical intrusion 

detection systems. The DoS and Shellcode categories show 

moderate performance, with F1-scores of 0.49 and 0.43, 

respectively, indicating room for improvement, possibly due 

to class imbalance or feature similarity with other categories. 

However, the model struggles with the Analysis, 

Backdoor, and Worms categories, each receiving very low 

F1-scores (0.14, 0.00, and 0.00, respectively). This likely 

results from a lack of sufficient training samples or 

overlapping features with other categories. Overall, the 

model's strengths lie in its high accuracy for the most 

prevalent and critical categories, making it a robust 

foundation for network intrusion detection, while 

highlighting the need for targeted improvements in 

underrepresented classes. 

B.  RSSI dataset 

The Wireless Body Area Network (WBAN) dataset 

contains the Received Signal Strength Indicator (RSSI)[30, 

31] values associated with eleven sensor [32-35] nodes 

positioned at the head, chest, waist, arms, and hands. This 

data is commonly employed for various purposes, including 

intrusion detection and attack identification in body sensor 

networks. RSSI is set to measure the strength of a received 

signal, usually as low as 0 and as high as 255, although this 

range usually depends on the hardware manufacturer. The 

WBAN RSSI dataset serves to assist researchers in devising 

body area network-specific protective measures, thus 

making it beneficial to academia and practitioners in the 

realm of wireless sensor network security. 

The confusion matrix in Figure 5, displayed here, captures 

the performance of an autoencoder-based intrusion detection 

model on the WBAN dataset that has three classes: Class 0 

(Normal), Class 1 (Attack Type 1), and Class 2 (Attack Type 

2). In this matrix, rows denote the actual classes while 

columns denote the predicted classes. The presented 

confusion matrix demonstrates the performance of the 

machine learning model in classifying RSSI data from the 

WBAN dataset. As evident, the model exhibits exceptional  

 

strength in identifying class 2, correctly classifying 183 

samples with minimal errors (only 1 misclassified as class 0 

and 7 as class 1). This high accuracy in detecting class 2 

highlights the model’s ability to discern distinct and 

separable patterns in RSSI data for this category. 

Additionally, the model performs well for class 1, correctly 

identifying 42 samples. While there are some weaknesses in 

classifying class 0, with a notable number of 

misclassifications, the main strength of the model lies in its 

high precision and low error rate for the dominant class 

(class 2). 

This suggests that the model does quite well at 

distinguishing between normal behavior and attacks, but 

there is still some confusion between the types of attacks due 

to the similarities of features in the RSSI signals for the 

different attacks. 

 
Fig. 5.  confusion matrix results 

The bar chart in Figure 6 displays the F1-score of each 

class attained by the autoencoder-based attack detection 

model on the WBAN RSSI dataset.  

 

Fig. 6.  F1-score for each class 

The presented chart illustrates the F1-score values for each 

class in the RSSI data classification model for the WBAN 

network. As shown, the model achieves an outstanding F1-
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score of 0.94 for class 2, indicating extremely high precision 

and reliability in identifying this class.  

For class 1, the F1-score is 0.74, reflecting a solid 

performance in this category as well. Although the F1-score 

for class 0 is relatively lower at 0.44, the main strength of the 

model lies in its excellent ability to distinguish the dominant 

class (class 2) and its acceptable performance for class 1. 

These results demonstrate that the model is highly 

effective at separating classes of higher importance or 

prevalence, making it particularly valuable in practical 

applications where accurate identification of these classes is 

critical. 

 TABLE I Comparative Performance 

Analysis of Machine Learning and Deep 

Learning Methods on UNSW-NB15, NSL-

KDD, and WBAN RSSI Datasets 

R
ef. 

Y
ear 

D
ataset 

F
S

T
 

A
ccu

racy
 

[13] 2020 UNSW-NB15 IG 88.11%  
[14] 2017 UNSW-NB15 – 83.28% 

[15] 2020 UNSW-NB15 ExtraTrees 87.10% 

[16] 2019 UNSW-NB15 XGBoost 87.07% 
Simple 

RNN 
[2]  

2023 
UNSW-NB15 XGBoost 85.08% 

LSTM 
[2]  

2023 
UNSW-NB15 XGBoost 88.42% 

GRU 

[2]  
2023 

UNSW-NB15 IG 80.52% 

Simple 

RNN 
[2]  

2023 NSL-KDD 
– 74.77% 

LSTM 

[2]  
2023 NSL-KDD 

XGBoost 83.70% 

GRU 
[2]  

2023 NSL-KDD 
XGBoost 88.13% 

[6] 2024 WBAN rssi - 72% 

Proposed 
method 

WBAN rssi 
XGBoost 84.00% 

Proposed 

method 
UNSW-NB15 

XGBoost 
89.25%  

Table Ⅰ presents a comprehensive comparison of various 

machine learning and deep learning techniques [36, 37] 

applied to the UNSW-NB15, NSL-KDD, and WBAN RSSI 

datasets, focusing on the F1-score [38] as the primary 

performance metric. The results indicate that traditional 

machine learning methods, such as Information Gain (IG), 

ExtraTrees, and XGBoost, have achieved competitive 

accuracy on the UNSW-NB15 dataset, with values ranging 

from 83.28% to 88.11%. Notably, the LSTM-based approach 

from 2023, combined with XGBoost, surpassed previous 

methods by achieving an F1-score of 88.42%, highlighting 

the effectiveness of deep learning models, particularly when 

integrated with ensemble techniques. 

For the NSL-KDD dataset, deep learning models such as 

GRU and LSTM, especially when paired with XGBoost, 

demonstrated substantial improvements over simpler 

architectures [39], reaching an accuracy of up to 88.13%. 

The proposed method, when evaluated on both the WBAN 

RSSI and UNSW-NB15 datasets using XGBoost, 

significantly outperformed prior works, achieving of 84.00% 

and 89.25%, respectively. This demonstrates the robustness 

and generalizability of the proposed approach across 

heterogeneous datasets. Overall, the analysis underscores the 

trend that hybrid and ensemble models, particularly those 

leveraging deep learning architectures, consistently deliver 

superior performance in intrusion detection and 

classification tasks. 

V.  Conclusions 

In this paper, a hybrid intrusion detection framework is 

proposed that effectively integrates XGBoost-based feature 

selection, a deep autoencoder for feature extraction, and an 

LSTM network for sequence classification. The proposed 

method addresses critical challenges in intrusion detection, 

including high-dimensional data and temporal dependencies 

inherent in network traffic. Experimental results on 

benchmark datasets such as UNSW-NB15 and WBAN RSSI 

demonstrate that our approach significantly outperforms 

existing state-of-the-art models, achieving accuracy 84.00% 

and 89.25%, respectively. This confirms the efficacy of 

combining feature selection, nonlinear dimensionality 

reduction, and temporal modeling for robust and accurate 

intrusion detection. 

For future work, several directions can be explored to 

further enhance the system’s performance and applicability. 

First, incorporating attention mechanisms within the LSTM 

architecture could improve the model’s ability to focus on 

critical temporal features. Second, extending the framework 

to support multi-class classification would allow detection of 

specific attack types rather than a binary normal/attack 

classification. Third, real-time deployment and evaluation in 

live network environments will provide insights into 

scalability and robustness under dynamic conditions. Finally, 

exploring federated learning approaches could enable 

collaborative intrusion detection while preserving data 

privacy across distributed network nodes. 
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