استفاده از روش تحلیل تاکسونومی برای انتخاب سیستم بارگیری معدن سنگ آهن سنگان
محورهای موضوعی : مدیریت صنعتیMohammad Hayati 1 * , Mohammad Ataie 2 , Amir Fardin 3
1 - PhD Student in Mine Excavating Industries, Faculty of Mine, Oil and Geophysics, Shahrood University
2 - Professor in Mining Industries, Faculty of Mine, Oil and Geophysics, Shahrood University
3 - M. A Student in Mine Excavating Industries, Islamic Azad University, Tehran Science and Research South Branch, Tehran, Iran
کلید واژه: Supply Chain, Taxonomy, تصمیم گیری چند شاخصه, تاکسونومی, Risk Assessment, سیستم بارگیری, معدن سنگ آهن سنگان, Esfahan Steel Company,
چکیده مقاله :
انتخاب ماشین آلات یکی از تصمیمات مهم و پارامترهای اصلی طراحی معادن روباز می باشد که بر روی اقتصادی بودن عملیات معدن کاری تاثیر قابل ملاحظه ای دارد. در بیشتر فعالیت های معدن کاری، هزینه های بارگیری مواد یکی از اجزای اصلی هزینه های عملیاتی است و از این رو مسئله انتخاب ماشین آلات یکی از چالش های اساسی مدیران معدن می باشد که پارامترها و معیارهای زیادی در آن نقش دارند. لذا در این تحقیق معیارهای میزان تولید روزانه، تعمیر و نگهداری، هزینه سرمایه ای ماشین، بهرهبرداری، مجموع هزینه های عملیاتی ماشین، مجموع پارامترهای عملیاتی، انعطافپذیری، عمر مفید دستگاه، فضای کار مورد نیاز ماشین، عمر معدن، سیکل کاری ماشین به عنوان معیارهای مهم و اصلی در انتخاب ماشین بارگیری، در نظر گرفته شده اند. از این رو با مسئله انتخاب یک گزینه مناسب از بین گزینه های موجود (5 سیستم بارگیری)، بر اساس معیارهای موثر (12 معیار مذکور) مواجه هستیم که با استفاده از روش های تصمیم گیری چند شاخصه، ارزیابی ها و در نهایت انتخاب سیستم بارگیری مناسب را می توان به صورت علمی تر و قابل استناد و معتبر انجام داد. در این تحقیق از روش تحلیل تاکسونومی به عنوان یکی از مهم ترین روش های تصمیم گیری چند شاخصه برای انتخاب سیستم بارگیری مناسب در معدن سنگ آهن سنگان استفاده شده است. بر این اساس سیستم شاول هیدرولیکی و تراک به عنوان سیستم بارگیری مناسب معدن سنگان پیشنهاد و انتخاب شده است.
Nowadays attend to opportunities and threats in the industry and commerce and evaluation ability of industries and corporations envisage to existed risks and uncertainty is necessary and management of supply chain risks is very important. Management of risk is the process of identifying risks, assessment and scheduled for reduction of adverse effects. Risk assessment is one of the most important parts in risk management and according to the many risks and the need to expend optimize resource in the supply chain is very important. Risk assessment and ranking determined the superiority of risk based on relevant criteria and offered the opportunity to provide the appropriate response for each risk. In this paper whit present a comprehensive hierarchical model for risk assessment, identification of the main risks of supply chain based on the risk breakdown structure method and determination of measurements criteria, a comprehensive questionnaire was developed based on the relative importance of each risk in the steel supply chain and discuss the Esfahan Steel Company as a case study using taxonomy method as a multi-criteria decision making, is defined. Therefore, the risk associated with procurement and suppliers as the most critical risks identified in the company.
1- Acaroglu, O., Ergin, H., & Eskikaya, S. (2006). Analytical hierarchy process for selection of road headers. The Journal of the Southern African Institute of Mining and Metallurgy, 106, 569–575.
2- Acaroglu, O., Feridunoglu, C., & Tumac, D. (2006). Selection of road headers by fuzzy multiple attribute decision making method. Trans. Inst. Min. Metall, 115, 91–98.
3- Aghajani Bazzazi, A., Osanloo, M., & Soltanmohamadi, H. (2008). Loading- haulage equipment selection in open pit mines based of fuzzy- Topsis method, international symposium on mine planning & equipment, 3, 246-254.
4- Aghajani, A., & Osanloo, M. (2007). Application of AHP-TOPSIS Method for Loading-Haulage Equipment Selection in Open pit Mines. XXVII international Mining Convention, Mexico.
5- Alpay, S., & Yavuz, M. (2009). Underground mining method selection by decision making tools. Tunneling and Underground Space Technology, 24(1), 173–184.
6- Asgarpour, M. J. (2008). Multiple criteria decision making. (8rd ed.). University of Tehran press.
7- Ataei, M. (2005). Multicriteria selection for an alumina-cement plant location in East Azerbaijan province of Iran. The Journal of the South African Institute of Mining and Metallurgy, 105(8), 507–513.
8- Ataei, M., Sereshki, F., Jamshidi, M., & Jalali S. M. E. (2008). Mining method selection by AHP approach. Journal of the south African institute of mining and metallurgy (SAIMM), 108, 741-749.
9- Ataei, M., Sereshki, F., Jamshidi, M., & Jalali, S. M. E. (2008). Suitable mining method for the Golbini No.8 deposit in Jajarm (Iran) by using TOPSIS method, Mining Technology. Transactions of the Institute of Mining & Metallurgy, 117(1), 1-5.
10- Azadeh, A., Osanloo, M., & Ataei, M. (2009). A new approach to mining method selection based on modifying the Nicholas technique. Applied Soft Computing, 110(8), 481-490.
11- Azar, A., & Rajabzadeh, A. (Eds.). (2002). Applied decision making, Negahe Danesh Publisher: Tehran.
12- Bascetin, A. (2004). An application of the analytic hierarchy process in equipment selection at Orhaneli open pit coal mine. Mining Technology (Trans. Inst. Min. Metall. A), 113, 192-199.
13- Bascetin, A., & Kesimal, B. (1999). The study of a fuzzy set theory for the selection of an optimum coal transportation system from pit to the power plant. International journal of surface mining reclamation and environmental, 13, 97-101.
14- Bascetin, A., Oztas, O., & Kanli A. I. (2006). EQS: a computer software using fuzzy logic for equipment selection in mining engineering. The Journal of the Southern African Institute of Mining and Metallurgy, 106, 63–70.
15- Bitarafan, M. R. & Ataei, M. (2004). Mining method selection by multiple criteria decision making tools. The Journal of the South African Institute of Mining and Metallurgy, 104(9), 493–498.
16- Bottero, M., & Peila, D. (2005). The use of the Analytic Hierarchy Process for the comparison between micro tunneling and trench excavation. Tunnelling and Underground Space Technology, 20(6), 501–513.
17- De Almeida, A. T., Alencar, L. H. & De Miranda, C. M. G. (2005). Mining methods selection based on multi criteria models. Proceedings of the Application of Computers and Operations Research in the Mineral Industry, Dessureault, Ganguli, Kecojevic and Dwyer (eds), Taylor and Francis Group, London, 19–24.
18- Dessureault, S., & Scoble, M. J. (2000). Capital investment appraisal for the integration of new technology into mining systems. Transactions of the Institution of Mining and Metallurgy (Section A: Mining Technology), 109, 30-40.
19- Elevli, B., & Demirci, A. (2004). Multi criteria choice of ore transport system for an underground mine: application of PROMETHEE methods. The Journal of the South African Institute of Mining and Metallurgy, 3, 251–256.
20- Elevli, B., Demirci, A., & Dayi, O. (2002). Underground haulage selection: shaft or ramp for a small-scale underground mine. The Journal of the South African Institute of Mining and Metallurgy, 102, 255– 260.
21- Karadogan, A., Bascetin, A., Kahriman, A., & Gorgun, S. (2001). A new approach in selection of underground mining method. Proceedings of the International Conference Modern Management of Mine Producing, Geology and Environment Protection, 171– 183.
22- Karadogan, A., Kahriman, A., & Ozer, U. (2008). Application of fuzzy set theory in the selection of underground mining method. The Journal of the Southern African Institute of Mining and Metallurgy, 108(2), 73–79.
23- Kazakidis, V. N., Mayer, Z., & Scoble, M. J. (2004). Decision making using the analytic hierarchy process in mining engineering. Transactions of the Institution of Mining and Metallurgy: Mining Technology, 113, 30–42.
24- Kesimal, A. & Bascetin, A. (2002). Application of fuzzy multiple attribute decision making in mining operations. Mineral Resource Engineering, 11, 59–72.
25- Liqun, Z., Shihui, L., Lianfu, Z., & Lianming, J. (1995). The analysis and practice of multi objective decision making technique for selecting a mining plan. Proceedings APCOM XXV Conference, Brisbane, 9–14 July 1995, 255–259.
26- Musingwini, C., & Minnitt, R. C. A. (2008). Ranking the efficieny of selected platinum mining methods using the analytic hierarchy process (AHP). Third International Platinum Conference ‘Platinum in Transformation’, The Southern African Institute of Mining and Metallurgy, 319-326.
27- National Company of Iran Steel. 2008., The progress report in iron ore mine of SANGAN.
28- Oraee, K., Hosseini, N., & Gholinejad, M. (2009). A New Approach for Determination of Tunnel Supporting System Using Analytical Hierarchy Process (AHP). Proceeding of 2009 Coal Operators’ Conference, The AusIMM Illawarra Branch. University of Wollongong, 78- 89.
29- Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process: economic, political, social and technological applications with benefits, opportunities, costs and risks. New York: Springer.
30- Safari, M., Ataei, M., Khalokakaei, R., & Karamozian, M. (2010). Mineral processing plant location using the analytic hierarchy process- a case study: The Sangan iron ore mine (Phase 1). Mining Science and Technology (China), 20(5), 691-695.
31- Samanta, B., Sarkar, B., & Murherjee, S. K. (2002). Selection of opencast mining equipment by a multi criteria decision-making process. Mining Technology (Trans. Inst. Min. Metall. A), 111, 136–142.
32- Tzeng, G. H., & Huang, J. J. (Eds.). (2011). Multiple Attribute Decision Making: Methods and Applications, Chapman and Hall/CRC.
33- Uysal, Ö., & Demirci, A. (2006). Shortwall stoping versus sub-level longwall caving-retreat in Eli coal Fields. The Journal of the Southern African Institute of Mining and Metallurgy, 106(6), 425–432.
34- Vieira, F. M. (2003). Utility-based framework for optimal mine layout selection, subject to multiple attribute decision criteria. Proceedings of the 31st International Symposium on Application of Computers and Operations Research in the Minerals Industries, Cape Town, 133–149.
35- Vieira, F. M. (2004). Rock engineering-based evaluation of mining layouts applicable to ultra-deep, gold bearing; tabular deposits. (Doctoral dissertation). Witwatersrand University, Johannesburg.
36- Vieira, F. M. (2005). An integrated, multi-disciplinary evaluation of ultra-deep layouts. Proceedings Application of Computers and Operations Research in the Mineral Industry (APCOM), Tucson, USA, 655–665.
37- Wu, H., Yuan, J., Zhang, Y., & Song, S. (2007). The evaluation of the core competition of the Wugang Mining Cooperation using the Analytic Hierarchy Process. The International Journal of Mineral Resources Engineering, 12(2), 119–126.
38- Yavuz, M., Iphar, M., & Once, G. (2008). The optimum support design selection by using AHP method for the main haulage road in WLC Tuncbilek colliery. Tunneling and Underground Space Technology, 23(1), 111–119.
39- Zare Naghadehi, M., Mikaeil, R., & Ataei, M. (2008). The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran. Expert Systems with Applications.
_||_