طراحی مدل هوشمند بهینه سازی نگهداری و تعمیرات پیشگیرانه در تعامل با تولید در صنعت نساجی و پوشاک با بهره برداری از متدولوژی شبکه عصبی مصنوعی و منطق فازی
محورهای موضوعی :
مدیریت صنعتی
Sayyed Shahram fatemi
1
,
Mehrdad Javadi
2
,
Amir Azizi
3
,
Sayyed Esmail Najafi
4
1 - Department of Industrial Engineering, Technical and Engineering College, Azad University of Science and Research, Tehran, Iran
2 - Department of Mechanical Engineering, Technical and Engineering College, Islamic Azad University, South Branch, Tehran, Iran
3 - Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Department of Industrial Engineering, Technical and Engineering College, Azad University of Science and Research, Tehran, Iran
تاریخ دریافت : 1402/04/21
تاریخ پذیرش : 1402/07/24
تاریخ انتشار : 1402/07/01
کلید واژه:
شبکه عصبی مصنوعی و منطق فازی,
نگهداری و تعمیرات پیش گیرانه,
هوش مصنوعی,
چکیده مقاله :
در این تحقیق مدل هوشمند نگهداری و تعمیرات پیش گیرانه بر اساس متدولوژی شبکه عصبی مصنوعی - منطق فازی به کمک محیط هوش مصنوعی نرم افزار متلب بر اساس ساختار مدل پنج لایه شبکههای عصبی مصنوعی فالکن ارائه شده ، روش تحقیق بر مبنای تفکر سیستمی است. پس از تعیین مهمترین عوامل تاثیر گذار بر نگهداری و تعمیرات پیش گیرانه به کمک پرسش نامه و بر اساس دیتاست یک نمونه ۲۰۰۰ تایی از داده و گزارشات مدیر کل صنایع نساجی و پوشاک وزارت صمت طی سالهای ۱۳۹۶ تا ۱۴۰۱ (بصورت شش نیم سال) و اعتبار سنجی داده توسط متخصصان نگهداری و تعمیرات ۲۴۰ واحد صنعتی، مدل هوشمند طراحی گردید، که پس از اجرای مدل در کارخانجات نساجی بروجرد به عنوان محل اجرای طرح میتوان ادعا نمود اگر (If ) ؛ پنج عامل "فنآوری" دارای مقادیر 9129/0 وضعیت خوب (کران بالای تابع عضویت خوب)، "کارکنان" دارای مقادیری 9239/0؛ وضعیت خوب (کران بالای تابع عضویت خوب)، "محیط کار" دارای مقادیر 8859/0؛ نسبتاً خوب (کران پایین تابع عضویت)،"کیفیت" دارای مقادیر 9999/0؛ وضعیت کاملاً خوب (بالاترین تابع )، " استراتژی" دارای مقادیر 9999/0؛ وضعیت خوب (کران بالا) در نگهداری و تعمیرات پیش گیرانه باشند، آنگاه (Then) : وضعیت متغیر خروجی تحقیق یعنی "بهینه سازی عملکرد نگهداری و تعمیرات پیشگیرانه (Y) در پنجمین سطح خود یعنی خیلی خوب برابر با 882/0 قرار خواهد داشت.
چکیده انگلیسی:
In this research, the intelligent model of preventive maintenance and repairs based on artificial neural network methodology - fuzzy logic with the help of artificial intelligence environment of MATLAB software based on the structure of Falcon's five-layer model of artificial neural networks is presented, the research method is based on systems thinking. After determining the most important factors affecting preventive maintenance and repairs with the help of a questionnaire and based on a dataset of 2,000 samples of data and reports of the Director General of Textile and Clothing Industries of the Ministry of Safety during the years 1396 to 1401 (in the form of six and a half years) and validity Data evaluation by the maintenance and repair experts of 240 industrial units, a smart model was designed, which after the implementation of the model in Borujerd textile factories as the place of implementation of the plan can be claimed if (If); Five "technology" factors have values of 0.9129; Good condition (upper bound of good membership function), "Employees" has values of 0.9239; good condition (upper bound of good membership function), "working environment" has values of 0.8859; relatively good (lower limit of the membership function), "quality" has values of 0.9999; Perfect condition (highest function), "strategy" has values of 0.9999; good status (upper limit) in preventive maintenance and repairs, then: the status of the output variable of the research, i.e."Optimization of preventive maintenance and repairs performance (Y)" will be at its fifth level, i.e. very good, equal to 0.882.
منابع و مأخذ:
Albrecht, F., Kleine, O., & Abele, E. (2014). Planning and optimization of changeable production systems by applying an integrated system dynamic and discrete event simulation approach. Procedia CIRP, 17, 386-391.
Alrabghi, A., & Tiwari, A. (2015). State of the art in simulation-based optimisation for maintenance systems. Computers & Industrial Engineering, 82, 167-182.
Alrabghi, A., Tiwari, A., & Savill, M. (2017). Simulation-based optimisation of maintenance systems: Industrial case studies. Journal of Manufacturing Systems, 44, 191-206.
Alrabghi, A., Tiwari, A., & Savill, M. (2017). Simulation-based optimisation of maintenance systems: Industrial case studies. Journal of Manufacturing Systems, 44, 191-206.
Alsyouf, I. (2009). Maintenance practices in Swedish industries: Survey results. International Journal of Production Economics, 121(1), 212-223.
Amiri, S., & Honarvar, M. (2018). Providing an integrated Model for Planning and Scheduling Energy Hubs and preventive maintenance. Energy, 163, 1093-1114.
An, Y., Chen, X., Gao, K., Zhang, L., Li, Y., & Zhao, Z. (2023). A hybrid multi-objective evolutionary algorithm for solving an adaptive flexible job-shop rescheduling problem with real-time order acceptance and condition-based preventive maintenance. Expert Systems with Applications, 212, 118711.
Aslam, T. (2013). Analysis of manufacturing supply chains using system dynamics and multi-objective optimization (Doctoral dissertation, University of Skövde).
Azimian, M., Karbasian, M., & Atashgar, K. (2021). Selecting optimal preventive maintenance periods for one-shot devices: a new fuzzy decision approach. Production and Operations Management, 12(4), 21-39.
Bangalore, P., & Tjernberg, L. B. (2015). An artificial neural network approach for early fault detection of gearbox bearings. IEEE Transactions on Smart Grid, 6(2), 980-987.
Talbi—Antonio, M. B. E. G., & Alba, N. E. (2006). Metaheuristics for Multiobjective Combinatorial Optimization Problems: Review and recent issues.
Garcia, M. C., Sanz-Bobi, M. A., & Del Pico, J. (2006). SIMAP: Intelligent System for Predictive Maintenance: Application to the health condition monitoring of a windturbine gearbox. Computers in industry, 57(6), 552-568.
Chien, Y. H. (2019). The optimal preventive-maintenance policy for a NHPBP repairable system under free-repair warranty. Reliability Engineering & System Safety, 188, 444-453.
Droguett, E. L., Jacinto, C. M. C., Garcia, P. A. D. A., & Moura, M. (2006). Availability assessment of onshore oil fields. In Proceedings of the European Safety and Reliability Conference.
Dui, H., Zhang, C., Tian, T., & Wu, S. (2022). Different costs-informed component preventive maintenance with system lifetime changes. Reliability Engineering & System Safety, 228, 108755.
Eshaghi, Mohammad. (2023). Development of optimal maintenance management in SMEs using the combined approach of Electra Fazi and Vicor. 2nd International Congress of Management, Economics, Humanities and Business Development, July 2023, Tabriz Islamic Arts University.
Farooqi, Hiva; Dadashzadeh, Bahare; Taji, Jalal; Amini, Rojin. (2018). Two-dimensional renewable warranty considering the reliability of the maintenance system and preventive maintenance, 15th International Conference on Industrial Engineering, Yazd, Yazd University
Park, K., Nguyen, M. C., & Won, H. (2015, July). Web-based collaborative big data analytics on big data as a service platform. In 2015 17th international conference on advanced communication technology (icact)(pp. 564-567). IEEE.
Park, K., Nguyen, M. C., & Won, H. (2015, July). Web-based collaborative big data analytics on big data as a service platform. In 2015 17th international conference on advanced communication technology (icact)(pp. 564-567). IEEE.
Kang, K., & Subramaniam, V. (2018). Integrated control policy of production and preventive maintenance for a deteriorating manufacturing system. Computers & Industrial Engineering, 118, 266-277.
Khonddar, Tarsi et al. (2022). The optimal pattern of maintenance and repair of the distribution network of incentive regulations. Smart Methods in the Electricity Industry, 13(52), Winter 2022, 1-18.
Kuboki, N., & Takata, S. (2019). Selecting the optimum inspection method for preventive maintenance. Procedia CIRP, 80, 512-517.
Laks, P., & Verhagen, W. J. (2018). Identification of optimal preventive maintenance decisions for composite components. Transportation Research Procedia, 29, 202-212.
Linnéusson, G., Ng, A. H., & Aslam, T. (2017). Justifying Maintenance Studying System Behavior: A Multipurpose Approach Using Multi-objective Optimization. In 35th International Conference of the System Dynamics Society, Cambridge, Massachusetts, USA, July 16-20, 2017(Vol. 2, pp. 1061-1081). Curran Associates, Inc..
Linnéusson, G., Ng, A. H., & Aslam, T. (2018). Relating strategic time horizons and proactiveness in equipment maintenance: a simulation-based optimization study. Procedia CIRP, 72, 1293-1298.
Mishra, R. N., & Mohanty, K. B. (2016). Real time implementation of an ANFIS-based induction motor drive via feedback linearization for performance enhancement. Engineering Science and Technology, an International Journal, 19(4), 1714-1730.
Miyata, H. H., Nagano, M. S., & Gupta, J. N. (2019). Integrating preventive maintenance activities to the no-wait flow shop scheduling problem with dependent-sequence setup times and makespan minimization. Computers & Industrial Engineering, 135, 79-104.
Ozcan, S., & Simsir, F. (2019). A new model based on Artificial Bee Colony algorithm for preventive maintenance with replacement scheduling in continuous production lines. Engineering Science and Technology, an International Journal, 22(6), 1175-1186.
Rahimi, Mokhtar; Nikbakht, Mehrdad. (2018). Identifying the key factors influencing the efficiency and reducing the cost of mechanized maintenance and preventive maintenance management system in Isfahan Region 2 gas transmission company, 6th National Conference on New Findings in Industrial Management and Engineering with Emphasis on Entrepreneurship in Industries, Tehran, Payam Noor University. February 2018
Seiti, H., Hafezalkotob, A., Najafi, S. E., & Khalaj, M. (2019). Developing a novel risk-based MCDM approach based on D numbers and fuzzy information axiom and its applications in preventive maintenance planning. Applied Soft Computing, 82, 105559.
Shaygan Nik, P., Zeinalnezhad, M., & Aliheydari Bioki, T. (2021). System dynamics modeling and simulation of power plant maintenance process considering safety improvement. Journal of Modeling in Engineering, 19(67), 85-108. doi: 10.22075/jme.2021.21810.1992
Shaksi Zare, Seyyed Nader Reza. (2017). Maintenance and repairs in facilities (sampling of the best practical experiences). Publisher: Jaliz Publications.
Talbi—Antonio, M. B. E. G., & Alba, N. E. (2006). Metaheuristics for Multiobjective Combinatorial Optimization Problems: Review and recent issues.
Wang, N., Ren, S., Liu, Y., Yang, M., Wang, J., & Huisingh, D. (2020). An active preventive maintenance approach of complex equipment based on a novel product-service system operation mode. Journal of Cleaner Production, 277, 123365.
Wei, S., Nourelfath, M., & Nahas, N. (2023). Analysis of a production line subject to degradation and preventive maintenance. Reliability Engineering & System Safety, 230, 108906.
Zarezadeh, S., & Ashrafi, S. (2019). On preventive maintenance of networks with components subject to external shocks. Reliability Engineering & System Safety, 191, 106559.
_||_