طراحي مدل عامل¬بنیان برای بهينه¬سازي تولید و کنترل موجودی و مسیریابی در زنجيره تامين محصولات فسادپذير
محورهای موضوعی : مدیریت صنعتیمهدی سوهانیان 1 , رضا احتشام راثی 2 , رضا رادفر 3
1 - دانشجوی دکتری مدیریت صنعتی (گرایش سیستمها)، دانشکده مدیریت و اقتصاد، وتحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران
3 - گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه ازاد اسلامی واحد علوم و تحقیقات تهران، تهران، ایران
کلید واژه: زنجیره تامین, محصولات فسادپذیر, شبیه¬سازی گسسته پیشامد, مدلسازی عامل بنیان, بهینه¬سازی,
چکیده مقاله :
هدف پژوهش ارائه مدل ترکیبی عامل¬بنیان – گسسته پیشامد به منظور بررسی یکپارچه برنامه ریزی تولید، کنترل موجودی و تعداد و نوع ناوگان در زنجیره تامین محصولات فسادپذیر است. مدل ترکیبی عامل¬بنیان به منظور پیاده¬سازی نقش هر عامل و نحوه ارتباط آنها در زنجیره تامین مورد استفاده قرار گرفته است. رویکرد شبیه¬سازی گسسته پیشامد به منظور پیاده¬سازی پیچیدگی¬های سطح خرد خطوط تولیدی استفاده شده است. زنجیره تامین فسادپذیر در سناریوهای بهینه¬سازی سطوح تولید و کنترل موجودی و بهینه¬سازی تعداد و نوع وسایل نقلیه مورد نیاز مورد ارزیابی قرار خواهد گرفت. به منظور یافتن مقادیر بهینه / نزدیک بهینه سطوح تولید و کنترل موجودی و تعداد و نوع وسایل نقلیه، از رویکرد شبیه¬سازی – بهینه¬سازی و الگوریتم¬های فراابتکاری بهره گرفته شده است. برای این منظور از نرم افزار AnyLogic برای مدلسازی عامل ها استفاده شده است. در این پژوهش سه سناریو جداگانه برای بررسی در نظر گرفته شده است. بهينه¬سازي سطح حداقل و حداکثر جهت توليد محصولات، بهينه¬سازي تعداد وسايل نقليه و نوع آنها و افزایش ظرفیت تولید با احداث خطوط تولیدی جدید. نشان میدهد، بهينه¬سازي سطوح توليد و موجودي با هدف کمينه کردن هزينه¬هاي نگهداري محصول و هزينه انتظار عامل توزيع¬کننده، تابع هدف 3 درصد بهبود و ميانگين مدت زمان دريافت سفارش تا تحويل محصول نيز 5 درصد بهبود مییابد.
The purpose of this research is to present a combined agent-based and discrete event model to investigate integrated production planning, inventory control, and the number and types of vehicles in the supply chain for perishable products. The agent-based model is employed to assess the role of various factors and their interrelationships within the supply chain. To account for the micro-level complexities of production lines, a discrete event simulation approach is utilized.To determine optimal or near-optimal production levels, inventory control, and the number and types of vehicles, a simulation-optimization approach is adopted, utilizing meta-heuristic and modeling algorithms in AnyLogic software. The simulation focuses on the production and routing of eight ice cream products distributed across three cold storage facilities. A total of 42 vehicles from four different types are used for transporting the products. To validate the model, discrepancies between actual values and those predicted by the model are assessed based on four key metrics: the quantity of products produced over one year, the number of shipments dispatched to distributors, the number of cooling system failures of machinery, and the count of products that recycle due to spoiled conditions. As all discrepancies for these four metrics are less than five, the validity of the model is confirmed.The results indicate that the objective function improves by 3%, while the average time from order receipt to product delivery is reduced by 5%. In the first scenario, product production is modeled based on the minimum and maximum available quantities as well as the minimum and maximum simulation values. In the second scenario, the number of vehicles is initially set at 42 but is reduced to 37 based on the proposed adjustments. Furthermore, the establishment of a new warehouse in Isfahan is recommended. With this new facility, the time interval from order receipt to delivery to distributors is expected to decrease to 131.6 hours. Additionally, considering the increase in production, the suggested optimal number of vehicles required for efficient operation is 44.
Ahumada, O., and Villalobos, J.R. (2011). "Operational model for planning the harvest and distribution of perishable agricultural products", International Journal of Production Economics, 133(2), 677–687.
Atai, Es. Sadeghian, Ramin Hamedi, M (2019) Presenting an integrated multi-objective model for location-routing and inventory of relief facilities considering several transportation and netting models, Transportation Research Journal, 17th year, 2nd volume, number 63. [In Persian]
Biuki, M., Kazemi, A., & Alinezhad, A. (2020). An integrated location-routing-inventory model for sustainable design of a perishable products supply chain network. Journal of Cleaner Production, 260, 120842.
Diabat, A., Jabbarzadeh, A., & Khosrojerdi, A. (2019). A perishable product supply chain network design problem with reliability and disruption considerations. International Journal of Production Economics, 212, 125-138.
Elmi, E., Azar, A., & Ghaffari, F. (2023). Application of System Dynamics in Evaluating Knowledge Management Processes on Supply Chain Efficiency. Journal of Executive Management, 14(28), 79-114. doi: 10.22080/jem.2022.22405.3635
Ferguson, M.E., Ketzenberg, M.E., 2005. Information Sharing to Improve Retail Product Freshness of Perishables. Prod. Oper. Manage. 15 (1), 57–73.
Ghare, P.M., Schrader, G.F., 1963. A model for exponentially decaying inventory. Journal Ind. Eng. 14 (5), 238–243.
Golestani, M., Moosavirad, S. H., Asadi, Y., & Biglari, S. (2021). A multi-objective green hub location problem with multi item-multi temperature joint distribution for perishable products in cold supply chain. Sustainable Production and Consumption, 27, 1183-1194.
Hajimirzajan, A., Pirayesh, M., & Dehghanian, F. (2015). Developing a Supply Chain Planning Model for Perishable Crops. Research in Production and Operations Management, 6(1), 35-60.
Hammond, D., & Beullens, P. (2007). Closed-loop supply chain network equilibrium under legislation. European journal of operational research, 183(2), 895-908.
Jouzdani, J., & Govindan, K. (2021). On the sustainable perishable food supply chain network design: A dairy products case to achieve sustainable development goals. Journal of Cleaner Production, 278, 123060.
Khani, M., Saqai, A., & Heydarzad Hanzaei, K. (2018). Modeling market penetration strategies using factor-based simulation. New Researches in Decision Making, 4(1). [In Persian]
Li, Q, Yu, P., Wu, X., 2017. Shelf Life Extending Packaging, Inventory Control and Grocery Retailing. Prod. Oper. Manage., 26 (7), 1369–1382.
Liu, Y., Zhao, R., Wu, K-J., Huang, T., S. F. Chiu, A., Cai, CH. (2018). A Hybrid of Multi-Objective Optimization and System Dynamics Simulation for Straw-to-Electricity Supply Chain Management under the Belt and Road Initiatives. Sustainability, 10, 868; doi:10.3390/su10030868.
Macal, C. M. (2010). To agent-based simulation from system dynamics. In Proceedings of the winter simulation conference, (pp. 371-382). IEEE.
Macal, C., & North, M. (2014). Introductory tutorial: Agent-based modeling and simulation. In Proceedings of the winter simulation conference, (pp. 6-20). IEEE.
Martin, R. (2015). China must improve its cool supply chain to keep pace with demand for fresh food. URL: http://theloadstar. co. uk/coolstar/china-must-improve-its-cool-supply-chain-to-keep-pace-with-demand-for-fresh-food.
Nakhai Kamalabadi, I. Qasimi, S. Qudsi, R. (2008). Development and improvement of perishable goods inventory control models in three-level supply chain with just-in-time logistics condition, Industrial Management Quarterly, 4 (7). [In Persian]
Rong, A., Akkerman, R., and Grunow, M. (2011). "An optimization approach for managing fresh food quality throughout the supply chain", International Journal of Production Economics, 131 (1), 421–429.
Shafiee, F., Kazemi, A., Jafarnejad, A., Sazvar, Z., & Amoozad Mahdiraji, H. (2020). Proposing a Robust Optimization Model for Sustainable Supply Chain of Perishable Dairy Products. Research in Production and Operations Management, 11(3), 17-46. doi: 10.22108/jpom.2021.124952.1290
Suryawanshi, P., & Dutta, P. (2023). Distribution planning problem of a supply chain of perishable products under disruptions and demand stochasticity. International Journal of Productivity and Performance Management, 72(1), 246-278.
Yavari, M., Geraeli, M (2019). Heuristic method for robust optimization model for green closed-loop supply chain network design of perishable goods. J. Cleaner Prod. 226, 282–305.