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Abstract 

The prompt diagnosis of abnormalities in power transformers is of paramount importance. Dissolved Gas Analysis (DGA) 

serves as an essential and vital tool for identifying faults. This paper introduces a method based on a decision tree (DT) 

algorithm using DGA to assess the condition of transformer oil samples in two steps: Normal/Faulty and Fault Type. The DTs 

in this paper were trained using 80% of the 729-sample dataset and evaluated with the remaining 20%. The dataset includes 

concentrations of five gases dissolved in transformer mineral oil: H2, CH4, C2H2, C2H4, and C2H6. These key features, along 

with other necessary parameters for learning DTs, contribute to the analysis; by employing two separate and sequential DTs 

for diagnosing transformer oil samples, the proposed method significantly improves the accuracy of identifying the health 

status and the type of potential fault. In the test samples, the method achieved a precision of 95.5% for normal state detection 

and 78.3% for fault type identification. 
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1. Introduction 

Power transformers play a crucial role in 

ensuring the uninterrupted supply of electricity and 

are among the most significant components in power 

networks. However, they are also among the 

costliest elements. Replacing them in the event of 

malfunctions can be a costly and labor-intensive 

process. Consequently, it becomes imperative to 

diligently monitor and assess the condition of power 

transformers. These devices produce combustible 

gases in minimal concentrations during regular 

operation. The quantity of these gases is directly 

linked to the duration of usage and is associated with 

the inherent degradation of both cellulose and the 

transformer oil [1]. In the event of a fault within the 

transformer, the insulators are subjected to both 

electrical and thermal stresses; these stresses lead to 

the chemical breakdown of insulation in oil-filled 

transformers. As a result of this chemical 

decomposition, gases are produced, and these gases 

can be dissolved in the transformer oil. Research 

conducted in recent decades has substantiated a 

close correlation between the dissolved gases in 

transformer oil and the nature of faults. 

Consequently, the type of fault occurring in the 

transformer can be identified by analysing the 

quantity and type of gases generated [2]. 

Various approaches have been developed for 

interpreting Dissolved Gas Analysis (DGA), 

encompassing both conventional and computational 

intelligent methods. Conventional methods such as 

the Key gas method introduced in [3], Dornenburg 

ratio [4], and Rogers ratio [5] rely on assessing the 

concentration and ratio of dissolved gases. 

Additionally, graphical methods such as Duval 

triangle 1 [6], Duval pentagon 1 [7] have been 

introduced, demonstrating their superior accuracy. 

In recent times, computational intelligence methods 

have gained increased attention due to significant 

advancements in processor speed and computer 

memory capacity. Artificial Intelligence (AI) 

classification techniques, including artificial neural 

networks [8, 9], fuzzy logic [10], support vector 

machines with k-nearest neighbors [11], DT [1], and 

random forest [12],  have been employed. While 

new methods based on artificial intelligence often 

enhance diagnosis accuracy, they are frequently 
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challenging to comprehend and lack interpretability 

for fault detection. Moreover, many of these 

methods do not account for diagnosing the health 

status of the transformer .Therefore, it is important 

to provide an intelligent method that covers these 

disadvantages of new methods and at the same time 

has high interpretability. 

The aim of the present paper is to propose a 

new method based on computational intelligence for 

detecting incipient faults in transformers through 

dissolved gas analysis. The main difference between 

this study and previous research is the simplicity of 

detecting the normal or faulty status of samples. 

Finally, the performance of the proposed method 

will be compared with conventional methods. In the 

following, the importance of DGA, the structure of 

the DT algorithm, and its application in fault 

detection are discussed in Section II. The statistical 

results of the new method are presented in Section 

III, and the paper concludes in Section IV. 

2. Methodology 

The DGA test is important because it informs 

transformer specialists about the occurrence of 

critical conditions. In fact, before the Buchholz relay 

warns and the amount of gas caused by the mineral 

oil in the transformers reaches a high limit, 

performing this test allows for checking the 

condition of the transformer immersed in oil and 

diagnosing potential faults. In this paper, due to the 

positive impact of artificial intelligence algorithms, 

the DT algorithm has been employed for fault 

detection. The methodology of this paper is visually 

represented in the flowchart provided in Figure 1. 

A) Decision Tree 

DTs are predictive models within supervised 

learning, valued not only for their undeniable utility 

across a broad spectrum of applications but also for 

their robustness; single DTs are characterized by 

their high interpretability. The entire model can be 

accurately represented through a straightforward 

two-dimensional graphic, specifically a binary tree. 

This binary tree visualization makes it easy to 

comprehend and interpret the decision-making 

process of the algorithm [13]. For this reason, in this 

paper, single DTs have been used to diagnose the 

condition of transformer oil samples. 

To build a DT, various settings should be 

considered. Here are three of the most important 

features: 

₋ Feature selection: The selection of features 

from the dataset is a crucial setting for any 

machine learning algorithm. 

₋ The depth of the tree: This determines how 

many levels and how deep the tree extends. 

₋ The degree of impurity: To determine impurity, 

two criteria are used, which are explained below 

[13]: 

Start
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Fig. 1.Proposed method for detecting power transformer faults. 
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B) Using DTs in fault diagnosis 

In this article, two DTs are proposed. The first 

tree is used to diagnose the health of the transformer. 

Initially, the state of the sample is determined 

between two states: normal and faulty; in the next 

step, the second DT is employed. This tree comes 

into play when the first tree identifies the sample as 

faulty. The second DT is then used to diagnose the 

specific type of fault. 

The primary features of the dataset include the 

concentrations of the five main gases measured in 

parts per million (ppm). However, additional 

features can be introduced; the simplest addition is 

the percentage of each of the five main gases, 

calculated based on equations 4 to 8. 

H2% = 
100×[H2]

[H2]+[CH4]+[C2H2]+[C2H4]+[C2H6]
 

 

(4) 

CH4% = 
100×[CH4]

[H2]+[CH4]+[C2H2]+[C2H4]+[C2H6]
 

 

(5) 

C2H2% = 
100×[C2H2]

[H2]+[CH4]+[C2H2]+[C2H4]+[C2H6]
 

 

(6) 

C2H4% = 
100×[C2H4]

[H2]+[CH4]+[C2H2]+[C2H4]+[C2H6]
 

 

(7) 

C2H6% = 
100×[C2H6]

[H2]+[CH4]+[C2H2]+[C2H4]+[C2H6]
 

 

(8) 

The next set of features involves gas ratios, as 

outlined in Table 1. The final feature is the sum of 

the concentrations of the five main gases, measured 

in ppm; Figure 2 shows these features. 

To assess the performance of the models, two 

indicators, accuracy and recall, have been 

employed; these indicators are calculated according 

to equations 9 and 10. 

Accuracy = 
TP +TN

TP + TN + FP + FN
 (9) 

Recall = 
TP

TP + FN
 (10) 

In these relationships, TP, TN, FP, and FN 

represent true positive, true negative, false positive, 

and false negative, respectively. 

Table.1. 
Gas Ratios obtained from IEEE C57.104 [3]. 
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Fig. 2. Features extracted from gas chromatography experiment 

for DGA and creating DT. 

3. Results and discussion 

Diagnosing the health of the transformer is the 

first step in the DGA test. In [3, 15], conditions are 

considered for this, and the methods of Rogers ratio 

and Dornenburg ratio also address this case. In this 

paper, a DT is used to detect the health status of the 

oil samples. 

To create DTNF (Normal/Faulty DT), first, it 

is necessary to divide the dataset samples into two 

categories: normal and faulty. We have 177 normal 

samples and 552 faulty samples. In the next step, 

training and testing samples should be specified. 

Here, 80% of the samples are designated as training 

data, and the remaining 20% are assigned as test 

data. DTs are then built using the training samples. 

Figure 3 shows the effect of the maximum 

depth change on the accuracy score for a DTNF with 

Gini impurity criterion. The Accuracy Score 

calculated as below: 

1

1

AccuracyScore

n

i ii

n

ii

N Accuracy

N

=

=


=



 (11) 

Where, i is the class number, n is the count of 

classes, and Ni is the number of samples in class i. 

Figure 4 shows the effect of the maximum 

depth change on the accuracy score for a DTNF with 

Entropy impurity criterion. According to Figures 3 

and 4, the DT trained by the Entropy impurity 

criterion exhibits better performance in detecting the 
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Normal/Faulty status of the transformer. As the 

depth of a tree increases, the two-dimensional 

representation of the tree become larger, sometimes 

leading to overfitting. On the other hand, a machine 

learning model performs well when its performance 

is consistent between the training and testing data. 

Therefore, choosing a depth of 6 and the Entropy 

criterion is a suitable option for DTNF. 

The second DT related to the Normal/Faulty 

status is represented in Figure 5. This tree contains 

29 nodes. The rhombuses and rectangles are called 

nodes. Specifically, rhombuses are decision nodes, 

and rectangles are leaves of a DT. The green 

rectangles belong to the Normal class, and red 

rectangles belong to the Faulty class. The expression 

[a, b], present in all nodes, represents the number of 

[Normal, Faulty] samples. The first node, which 

contains the condition "Total < 52.5", serves as the 

root node of the tree. 

In this DT, all the conditions are in the form of 

"<", representing "less than"; if this condition is met, 

the samples are directed to the left side of the 

decision node; otherwise, they are directed to the 

right side. 

The Feature Importance index can be used to 

specify the importance of each feature in a DT. To 

achieve this, it is necessary to determine the 

importance of each node first, and subsequently, the 

importance of each feature is determined. The 

importance of node k is calculated using equation 

12. 

k

k kf kr

Importance_Node =

Impurity Impurity Impurity

100

k kf krN N N

N N N
 −  − 

 
(12) 

N is the total train data, Nk is the number of 

instances that exist in node k, kf represents the left 

sub-node of node k, and Nkf is the number of 

instances in this sub-node. Similarly, kr represents 

the right sub-node of node k, and Nkr is the number 

of instances in this sub-node. The importance of 

each feature calculated as equation 13. 

M

mm=0
m K

kk=1

Importance_Node
Importance_feature =

Importance_Node




 (13) 

Where, Importance_Nodem is node’s 

importance splitting on feature m, M is the number 

of nodes that split on feature m, and K is the total 

number of nodes. 

Figure 6 represents features importance of 

DTNF. Based on this graph, C2H2%, C2H2 (ppm), 

Total (ppm), and C2H6% emerge as the most useful 

features in DTNF. Other features have less impact 

on DTNF construction. The sum of the importance 

of features in a DT is equal to 1. 

 
Fig. 3. The performance of DTNFG (DTNF with Gini criterion) on 

both test and training data. 

 
Fig. 4. The performance of DTNFE (DTNF with Entropy 

criterion) on both test and training data. 

Total < 52.5TRUE FALSE

C2H2% < 19.87

C2H6 < 6.4

Faulty

Faulty

C2H6% < 20.46

CH4% < 25.47

Faulty

C2H2% < 17.84

H2% < 3.13

Normal

Faulty

C2H2% < 0.01

Faulty

C2H2 < 1.4

Normal

Faulty

C2H2 % < 0.01

C2H2 < 0.5

Faulty

Normal

C2H2 < 4.35

Faulty

CH4% < 22.91

Normal

Faulty

C2H2% < 0.01

Normal

Faulty

 
Fig. 5. Final DTNF: Identifying transformer health. 
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After detecting the fault in the sample, it is 

necessary to determine the type of fault. This is done 

in this step by using a specific DT designed to detect 

the type of fault (DTF). 

Figure 7 illustrates the impact of varying the 

maximum depth on the Accuracy score for a DTF 

employing the Gini impurity criterion. When the 

depth of the DT is 2 or 3, it can ultimately 

distinguish between 2 or 4 fault classes; therefore, 

the minimum selected depth for the DT in this 

situation should be 4. 

Figure 8 demonstrates how altering the 

maximum depth influences the Accuracy score in a 

DTF that utilizes the Entropy impurity criterion. 

Based on the information provided in Figures 

7 and 8, it is evident that the DT, trained using the 

Gini impurity criterion, shows superior performance 

in identifying transformer type faults. Furthermore, 

as emphasized earlier, a machine learning model is 

considered effective when its performance remains 

consistent between training and testing data; 

therefore, opting for a depth of 5 and the Gini 

criterion appears to be a suitable choice for DTF. 

 
Fig. 6. Final DTNF features importance. 

 
Fig. 7. The performance of DTFG (DTF with Gini criterion) on 

both test and training data. 

 
Fig. 8. The performance of DTFE (DTF with Entropy criterion) 

on both test and training data. 

The ultimate DT associated with the Faulty 

status is presented in Figure 9, comprising a total of 

33 nodes. Different fault classes are represented by 

colored rectangles within the tree, and decision 

nodes, similar to DTNF in Figure 5, are depicted by 

rhombuses. 

To assess the importance of features in DTF, 

you can utilize the Feature Importance scale, as per 

equation 13. Figure 10 illustrates the importance of 

each feature used in this tree. According to this 

chart, C2H4%, R3, and H2% stand out as the most 

valuable features in the DTF model. 

In order to create DTs for fault detection, 729 

samples have been used. These normal samples 

were obtained from Alvand Tavan Energy (ATE) 

Company, and samples containing a type of fault 

were obtained from Egyptian Electricity Holding 

Company (EEHC) [14]. These samples contain 

concentrations of five gases: hydrogen, ethane, 

methane, ethylene, and acetylene according to Table 

2. 

 Following the introduction of the ultimate 

DTs for identifying early-stage faults in 

transformers, it becomes imperative to evaluate the 

performance of the proposed method. Table 3 shows 

a comparison between the performance of DTNF 

and common methods of distinguishing between 

Normal and Faulty states. According to Table 3, 

DTNF outperforms the IEEE C57.109 standard, 

Dornenburg method, and Rogers method by 

approximately 40%, 50%, and 70%, respectively, in 

detecting normal samples. Additionally, it exhibits 

better performance in detecting faulty samples with 

improvements of 17%, 40%, and 8%, respectively, 

as indicated by the Recall statistical index. In two-

class models, the Accuracy index has the same value 

for both classes. And DTNF had the best 

performance in this index. 

In Table 4, a performance comparison between 

DTF and prevalent fault detection methods is 

presented based on the recall statistical index. The 
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results indicate that DTF showcases the highest 

performance in all fault classes except T2. 

Specifically, for the T2 fault class, the IEC 60599 

ratio method achieves approximately 10% greater 

accuracy than DTF, reaching 87.9%. However, 

when considering all test data, the proposed DTF 

method surpasses Duval triangle 1, Duval pentagon 

1, and IEC 60599 ratio by 13.6%, 14.3%, and 35.2%, 

respectively. 

The utilization of two distinct DTs, namely 

DTNF and DTF, for sample status detection stems 

from the substantial distinction between 'Normal' 

and 'Faulty' samples. Significantly, the 'Total' 

feature emerges as one of the pivotal factors for 

discerning the Normal/Faulty state of the samples. 

Another crucial consideration is ensuring the 

correctness of the dataset's information; if there are 

doubts about the accuracy of the information in the 

dataset, it will impact the confidence level of the 

model created from it. Therefore, refining the 

dataset samples using methods outlined in the IEEE 

C57.104 standard before utilization not only 

enhances the model's confidence level but also 

increases the accuracy of the built model due to the 

more uniform samples. The notations used in Table 

2 are T1: Low temperature overheating (T < 

300ºC),T2: Medium temperature overheating (300º 

< T < 700ºC) ,T3: High temperature overheating (T 

> 700ºC), D1: discharge of low energy, D2: 

discharge of high energy, PD: Partial discharge. 

Table.2. 
Count of samples for each fault type. 

Normal PD D1 D2 T1 T2 T3 

177 68 80 139 104 58 103 
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Fig. 9. Final DTF: Identifying the type of fault. 

 
Fig. 10. Final DTF features importance. 

Table.3. 
Comparative analysis of final DTNFE and common methods for 

distinguishing between normal and faulty samples on testing 

data. 

Method Accuracy (%) Recall (%) 
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IEEE C57.109 [3] 69.7 43.6 78.8 

Dornenburg [4] 49.0 33.3 54.6 

Rogers [5] 68.4 12.8 87.6 

DTNFE 92.3 83.0 95.6 

Table.4. 
Performance comparison of final DTFG and common fault 

detection methods on testing data. 

Method Recall (%) 
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Duval Triangle 1 [6] 38.2 78.8 64.8 51.0 48.3 94.2 64.7 

Duval Pentagon 1 [7] 39.7 80.0 63.3 49.0 44.8 94.2 64.0 

IEC 60599 ratio [15] 22.1 11.3 17.3 60.6 87.9 73.8 43.1 

DTFG 62.5 84 76.5 70.2 78.5 94.7 78.3 

4. Conclusion 

This paper proposes a new approach based on 

machine learning algorithms, introducing two 

specialized DTs to detect the Normal/Faulty state 

and fault type of each sample. The key 

characteristics of this method are: 

The initial step of this paper involves 

diagnosing the health of transformers, a crucial 

process given the vital distinction between healthy 

and defective transformers. 

All diagnoses in this method are conducted by 

individual DTs, characterized by high 

interpretability. This ensures that the diagnosis of 

errors or the health of the oil samples is done in a 

simple and understandable manner. 

In test samples, this method demonstrated an 
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detecting the Normal/Faulty state and identifying 

the type of fault. In training samples, it achieved an 

accuracy of 95.2% and 95.5%, respectively, in 

detecting the Normal/Faulty state and identifying 

the fault type. 
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