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Abstract 

Since the emergence of power market, the target of power generating utilities has mainly switched from cost minimization to 

revenue maximization. They dispatch their power energy generation units in the uncertain environment of power market. As a 

result, multi-stage stochastic programming has been applied widely by many power generating agents as a suitable tool for 

dealing with self-scheduling strategies under uncertainty. However, dependence structure between stochastic variables has been 

almost ignored in the literature. Copula function is a new concept in the probability and statistics field which has the capability 

to represent the dependence structure among stochastic variables. However, Copula function has recently taken into account in 

power system studies by some articles. In this article, self-scheduling strategy of a generation utility owning thermal units is 

investigated while the dependence structure among stochastic load and market price variables is taking into account. We assume 

that the generation utility is a price-taker agent in a power market, and it also has to meet the load of a specific region as a 

retailer. The results indicates that as the stochastic dependence structure among load and price variables is considered in 

modeling load and price scenarios, the output of unit commitment problem changes so that the revenue of generation utility 

increases. 

Keywords:  Unit Commitment; Stochastic Dependence Structure; Multistage Stochastic Programming; Scenario Tree Construction; Copula 
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1. Introduction 

Energy scheduling is the main task of power 

generation companies and system operators to take 

profit from energy trade in power market, reduce 

generation costs, and maintain power system 

security. Energy scheduling is mainly conducted 

through unit commitment, unit on/off scheduling. 

Hence, unit commitment decisions are significant to 

maintain reliability and cost efficiency in the power 

system as a whole. In general, the goal of unit 

commitment problem is to find a unit on/off 

schedule that minimizes the commitment and 

dispatch costs of meeting the forecasted system load, 

taking into account various physical, inter-temporal 

constraints for generating resources, transmission, 

and system reliability requirements [1].  

From a system operator view, in the event that 

the actual system condition obviously deviates from 

the expected condition, the system operator needs to 

take corrective actions such as committing 

expensive fast-start generators, voltage reduction, or 

load shedding in emergency situations to maintain 

system security [1]. In the other hand, a generation 

utility tries to reduce the cost and maximize the 

revenues of power energy generation by producing 

energy in peak energy price hours.  

Hence, this energy scheduling model is a 

typically large-scale stochastic optimization 

decision making model which takes into account 

stochastic input parameters such as the demand for 

replacement reserves, wind and solar power energy 

production forecasts, load and market price 

forecasts. The model evaluates optimal unit 

commitment and economic dispatch at hourly time-

resolution and minimizes the expected value of 

production costs of the system that comprises fuel 

cost, start-up cost, and variable operation and 

maintenance cost [2].  
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However, optimal unit commitment in power 

market is an intricate decision making problem since 

there are several random and uncertain influential 

factors in power market that affect optimal 

dispatching of generation units. Unit commitment 

strategies in high uncertain environment have been 

under specific attention in recent years. With the 

uncertainty that is presented in random variables 

such as electricity demand, market-clearing price, 

penetrating renewable resources of energy which are 

volatile, and uncertainties associated with the load 

forecast error, changes of system interchange 

schedules, generator’s failure to follow dispatch 

signals, and unexpected transmission and generation 

outages, it is of special importance to plan the system 

in an efficient and robust way in order to reach 

several uncertain potential outcomes 

[1,2].Therefore, modeling random variables has a 

vital role in energy scheduling since. If we could not 

forecast influential random variables in energy 

scheduling accurately, then we will make decisions 

on unit commitment based on improper information; 

this could result in fatal economic and security 

decisions for a generation company (Genco) and 

power system.  

Many authors investigated effects of stochastic 

variables in unit commitment of Gencos from 

different views and aspects. There are many articles 

about optimal scheduling of hydro-electric power 

generation and modeling random water inflow and 

price of the market in order to optimize profits of 

hydro Gencos [3-8]. Furthermore, a lot of study have 

been conducted on the effects of operation of 

renewable energy especially wind and solar energy 

in unit commitments [9-21]. Some other authors 

argue stochastic unit commitment in general in 

power market [22,23].  

However, less attention is paid to modeling 

dependence structure of stochastic variables in unit 

commitment decision making process, or 

dependence structure has been only limited to linear 

correlation between random variables. While 

stochastic dependence structure is not only restricted 

to linear correlation. Extensive research and studies 

have been conducted in this subject in finance and 

risk analysis of financial markets. It is shown that 

dependence structure among random variables is 

more complicated than linear correlation. This could 

change the results of quantitative relations and 

equation drastically. There are few stochastic unit 

commitment studies taking into account nonlinear 

stochastic dependence structure between random 

factors [e.g., 18,24]  

Then, in this paper, we investigate energy 

scheduling strategy of a Genco taking into account 

stochastic dependence structure between random 

variables, in this case load and market-clearing price. 

We assume the Genco acts as both a retailer and a 

power generator such that it must meet the electricity 

load of a specific region. For this aim, we model 

nonlinear stochastic dependence structure among 

load and power market price by a copula function. In 

the second section, we describe how to generate load 

and price scenarios. In the next section, stochastic 

dependence structure among load and price is 

modeled by means of copula function. In order to 

reduce the curse of dimensionality of optimization 

problem, the random scenarios (load and price) are 

simulated in section 4. Hence, scenario reduction 

methodology is applied to construct two load-price 

scenarios considering two different dependence 

structures between random variables, linear and 

copula. Then by defining a measure, we will show 

scenario tree made taking into account copula 

dependence structure among random variables is 

better than the one made by linear dependence 

structure. In the final section, we will solve unit 

commitment problem applying each scenario tree 

and show that considering dependence structure 

between random variables will result in a better unit 

commitment solution. 

2. Scenario Generation 

A) Load and Price Simulation 

A scenario is a time series of random 

variable/variables. Several different methods to 

generate scenarios are represented and proposed so 

far. These methods include a wide range of statistical 

methods that aim to generate abundant amount of 

samples in order to form different stochastic 

scenarios so that stochastic pattern of our random 

variables are simulated.  

In general, we need to have enough knowledge 

and perception about the stochastic behavior of all 

random variables to cope with stochastic problems. 

Problems are categorized to different levels 

according to the information they give about their 

random patterns [25]; they represent all the needed 

information of their stochastic variables, general 

random behaviors (their parametric probability 

distribution function), random samples, or even less 

information [25].  

In our case study, historical samples of hourly 

load and price of Iran power market are available, 75 

samples from each hour for each load and price. 

According to the central limit theorem, probability 

distribution of samples of each time stage (hour) 

could be highly approximated by normal 

distribution. Then, samples are fitted to normal 

distribution and corresponding parameters (mean 

and standard deviation) are estimated.   

Monte Carlo simulating method is applied to 

simulate 100 samples for each variable in each time 

step. To do so, having normal probability 

distribution of samples, cumulative distribution 
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functions of samples are drawn. Then, [0,1] distance 

is divided to 100 equal parts; next a random sample 

is randomly taken from each part. In this way, 

abundant random samples are taken from different 

parts of the probability distribution function; more 

samples are taken from more probable distances.  

Applying above process, 100 load scenarios 

and 100 price scenarios are generated. Remember 

two-variate load-price scenarios are the input of our 

unit commitment problem. Load and price samples 

of each time step should form two-variable samples. 

The question is which two load-price samples sit 

aside each other and what the correct arrangement of 

load and price samples is to form two-variate 

samples. This is the question which will be answered 

in the next section. 

B) Stochastic Dependence Structure Modeling 

Measuring the dependence structure among 

random variables is often represented by linear 

correlation whereas in this way great part of 

information related to the stochastic dependence 

structure might be neglected. Pearson’s correlation 

method represents dependence structure of random 

variables better than linear correlation since it 

assumes the elliptical shape of normal distribution in 

applications. The research in this subject resulted to 

take a special attention on copula function. 

The correlation between random variables or 

samples is measured by the Copula concept. 

Recently, much attention is being paid to copula 

concept in statistical modeling and simulation 

problems especially in Finance. Copula function is a 

suitable means to represent dependence structure of 

random variables by defining a mapping from 

cumulative distribution of joint distribution of 

random variables to cumulative distributions of each 

separate marginal distribution.  

Copula function is a function that links 

(couples) the univariate marginal distributions to the 

joint distribution. Copulas provide a way to generate 

distribution functions that model the correlated 

multivariate processes and describe the dependence 

structure between the components. The cumulative 

distribution function of a vector of random variables 

can be expressed in terms of marginal distribution 

functions of each component and a copula function. 

In contrast to the correlation coefficient which 

measures co-variations up to the second order, 

copula functions captures the complete/perfect 

dependence structure [26,27].  

This capability makes the copula function as a 

very effective means for modeling and simulation of 

dependent random variables. There are several 

different kinds of copula functions that Gaussian 

Copula is the most common one.  

In this paper, d-dimensional Gaussian Copula 

was employed to derive dependence structure 

between load and price samples according to the 

following algorithm [28]: 

 Simulate: X ~ Nd (0,R) 

 Set: U=( Φ(X1) , … , Φ(Xd) ) 

Where Nd(0,R) is the multivariate Gaussian 

distribution with expectation 0, correlation matrix R 

between load and price samples, d is equal to 2, and 

Φ denotes the distribution function of a standard 

univariate Gaussian distribution. 

Having linear correlation between historical 

load and price data, we simulated Gaussian copula 

for load and price variables. Fig. 1 illustrates 

histograms of simulated load-price variables of two 

time stages taking into account stochastic 

dependence structure as linear correlation among 

load and price variables and as copula function of 

these random variables. It is obvious that the samples 

drawn from linear and copula dependence structure 

models are generally alike. However, there are 

differences in pattern of samples especially in tails 

of the samples. 

3. Electricity Market Price-Load Scenario Tree 

Generation 

After dependence structure simulation, 

scenarios are generated to form two scenario fans. 

Determining optimum value of our objective 

function through the scenario fan is a large-scale 

and, in most real cases, an impractical problem. The 

number of nodes of each scenario fans is so large that 

solving the optimization problem is almost 

intractable or impractical; the number of scenarios of 

each scenario fan needs to be reduced. Hence, the 

clustering methods are applied to generate 

multistage scenario tree from the set of individual 

scenarios by bundling scenarios based on cluster 

analysis. For instance K-means clustering approach 

can be applied in order to capture the inter-stage 

dependencies in scenarios [28]. This method is 

implied to make a scenario tree for sampled data of 

discount bond yields [28]. Probability clustering by 

appropriate probability metric is another approach to 

generate scenario tree that has been employed in 

some stochastic power management models 

[29,30,31]. In this approach, both scenarios and total 

nodes of scenarios are reduced so that the probability 

distance between an initial scenario fan and its 

scenario tree takes a minimum value. In this 

approach, forward and backward algorithms are 

proposed to generate a scenario tree from the initial 

scenario fan. These algorithms are based on a stage-

by-stage process in which deleted candidates or 

remaining candidates are selected according to their 

probability distances from other nodes. This process 

terminates when all candidates' probability distances 

are equal to or more than a predetermined tolerance. 

Ultimately two sets of nodes or points including 
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remaining and deleted nodes are formed. Theses 

algorithms are described in detail in [31,32]. 

In forward scenario tree algorithm, scenarios 

are clustered in a forward way, starting from first 

stage to the last one. In this paper, forward scenario 

reduction is applied to construct scenario tree. 

Moreover, Error Tolerances of each step is the same 

formula as Heitsch and Römisch applied in their 

article [33]. 

In this way, we first estimated normal 

probability distribution, linear correlation, and the 

corresponding Gaussian copula according to 75 

historical samples from load and price of Iran power 

market in each daily hour. Then, we simulated two 

series of load-price bi-variate samples for each daily 

hour, one by the use of Monte-Carlo simulation 

method from estimated normal probability 

distribution and linear correlation (that is, the 

corresponding estimated Gaussian probability 

distribution), and the other one by simulating 

estimated Gaussian copula. Hence, two scenario 

fans, each containing 100 scenarios are generated; 

one by considering linear correlation (we call it 

linear scenario fan), and another one by considering 

copula dependence structure among load and price 

variables. Copula dependence structure scenarios are 

made by simulating Gaussian copula of between 

historical load and price in each hour. Hereafter, we 

call the former scenario structure, linear scenario fan 

and the latter, copula scenario fan. 

In the next step, two scenario trees are 

generated by employing forward scenario tree 

construction method, considering the same tolerance 

variation for both of them. This resulted to two 

scenario trees with 47 and 46 scenarios respectively 

from linear scenario fan and copula scenario tree. 

Hereafter, we call the former, Linear Scenario Tree 

(LST) and the latter, Copula Scenario Tree (CST). 

The numbers of nodes in LST and CST were reduced 

to 874 and 808 nodes respectively from 2400 initial 

node embedded in their associated scenario fans. 

Figs 2(a) and 2(b) illustrate LST and copula CST 

respectively. 

 

(a1)  

(a2)

 

(b1)  (b2)  

Fig. 1. Comparison of histograms of simulated load-price variables of some of time stages incorporating linear dependence structure (left-

side histograms) and copula dependence structure (right-side histograms). Histogram of samples in stage 1 and stage 4 is illustrated 

in (a1),(a2) and (b1),(b2). 
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(a)                     (b) 

Fig. 2.  (a) linear dependence structured scenario tree (LST) (b) 

copula dependence structured scenario tree (CST) 

Here we present a measure introduced in [25] 

to compare scenario trees generated with different 

approaches. This measure, that we call it SCenario 

Tree Probability Distance Mean (SCTPDM), 

compares the distance of each scenario tree from its 

original scenario fan. Probability distances between 

a scenario tree and its original scenario fan can be 

evaluated by this measure. To gain the measure, 

probability distance of each scenario of a scenario 

tree from its scenario fan is determined and its mean 

is evaluated as our measure. For illustrating the 

probability distance of a scenario tree form its 

original scenario fan, its probability distribution of 

the distance is plotted. Probability distribution of this 

probability distance and mean value of that distance 

for two approaches show how close each scenario 

tree is from its scenario fan. We can express the 

mean of the probability distance of a scenario tree 

form its derived scenario fan mathematically as the 

following equation: 

SCTPDMi = Ps,j. Min
jϵSCFan

‖ηs
i −ηs

j
‖
r
 

Where SCTPDMi is the probability distance 

measure of the ith scenario of the scenario tree from 

its scenario fan, Ps,j is the probability of scenario ηi 

in stage s, ηis is the sth stage of ith scenario of 

scenario tree and ηjs is the sth stage of jth scenario 

of scenario fan of the scenario tree, || . ||r is r-norm 

function. Note that the result is the sum of the 

production of the probability of each node of a 

scenario of a scenario tree by the distance scenario 

ηi of the scenario fan. 

According to SCTPDM, LST is farther from its 

scenario fan than CST according to probability 

distance measure. 

Mean SCTPDMlinear=0.1062, Mean 

SCTPDMCopula= 0.0960. 

Fig. 3 illustrates more details about SCTPDM 

of LST and CST. Blue curve indicates distribution 

probability plot of SCTPDM of scenarios of LST 

and the red curve shows that of CST. The range of 

SCTPDM of LST is about [0, 0.5141] while that 

range is almost [0.0517, 0.3611] for CST. As it is 

considered from the plots, SCTPDM of LST 

scenarios are highly farther than that of CST 

scenarios.  

 

Fig. 3. Comparison of probability distance measures of Linear 

Scenario Tree (LST) and Copula Scenario Tree (CST) 

4. Self Energy Scheduling Based on Stochastic 

Dependence Structure 

In this section, it is shown that considering 

dependence structure might impact the energy 

scheduling of a Genco and consequently affects its 

revenue and profits. To show this, a case study of a 

Genco owning 10 thermal units is introduced. This 

model and its detail information are taken from [34]. 

It is assumed that the Genco acts as a retailer in 

power market. In better expression, it must meet the 

load of an area. It has two options: to buy power 

energy from market or to produce energy by its own 

units. The Genco's aim is to gain more profits 

considering meeting the load and reducing its 

generation costs. In order to achieve this target, it 

should decide when and how much electricity to 

produce by its units. Similarly, the optimal strategy 

for electricity retailer under uncertain environment is 

determined in more detail in [35]. However, our aim 

is to show that energy scheduling in an uncertain 

environment by considering perfect stochastic 

dependence structure between random variables 

result in more profits for the Genco or a power 

generation utility. 

Bidding strategy of a Genco is believed to be 

based on its market price and demand forecasting 

[36]; therefore, these two stochastic variables are of 

special importance in self-energy scheduling of the 

Genco. Although fuel cost and Forced Outage Rates 

(FOR) of units are other influential factors that can 

affect self-scheduling of a Genco, we do not 

incorporate these factors in this study. 

Self-energy scheduling of the Genco needs to 

apply Stochastic Programming approach. As stated 

before, load and price scenarios were simulated, 

reduced the dimensionality of the combinatorial 

optimization problem by constructing related 

scenario tree, and in this phase, the stochastic 

programming problem is solved by applying 

scenario trees. Expected profits of self-energy 

scheduling of the Genco is the solution of the 

problem. The results for both states, when 
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considering copula dependence structure and linear 

dependence structure among load and price 

variables, are determined. The results are shown in 

tables 1 and 2. 

Table.1.  
Genco's units on-off scheduling considering linear dependence 

structure among load and price 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

U 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

U 3 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 

U 4 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 

U 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 

U 6 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

U 7 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

U 8 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

U 9 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

U 10 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table.1. 
Genco's units on-off scheduling considering copula dependence 

structure among load and price 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

U 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 

U 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

U 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

U 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

U 6 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 

U 7 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

U 8 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

U 9 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

U 

10 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

As it is considered, green and red cells indicate 

an on-state of a power generation unit in a specific 

hour. Red cells indicate the states in which the 

results of the two stochastic dependence models are 

not the same; that is, while a unit in a specific hour 

is on in a model while at the same hour, that unit in 

the another model is scheduled to be off. It is obvious 

that the units are in on-state in more hours in the 

copula dependence structure model than in the linear 

dependence structure model.  

The expected profits of the Genco in the two 

models are 1089858 and 1229800 for the Linear and 

Copula model, respectively. 

As a result, the Genco prefers to generate more 

power in linear model than in copula model. While 

in the linear model the Genco prefers to buy power 

from electricity market than to generate by its own 

units. Moreover, the case in which the Genco 

considers copula model, it should expect to gain 

more profit than in linear model since the former 

model simulates price and demand dependence 

structure more accurately. 

5. Conclusion 

In this study, we showed how perfect stochastic 

dependence structure between random variables 

affects self-energy scheduling of a Genco. First of 

all, load and price scenarios of Iran power market 

were simulated by two approaches. In the first 

approach, linear dependence structure among load 

and price variables were incorporated in simulation 

process by taking into account linear correlation 

among historical load and price data. In the second 

approach, load and price scenarios were simulated 

by applying copula function of load and price. To do 

this, Gaussian copula function was simulated from 

available information of historical load and price 

data. 

Due to the curse of dimensionality, load-price 

scenario trees of the original scenarios were 

constructed. In order to indicate that the scenario tree 

generated through copula based scenarios is a better 

scenario tree than that of linear dependence 

structured scenarios, a suitable measure, SCTPDM, 

was defined in aspect of the probability distance 

measure from their corresponding scenario trees and 

applied. It was shown that this measure is lower for 

CST than for LST.  

Finally, stochastic programming problem of 

self-energy scheduling was solved for both CST and 

LST separately. As a result, on-off scheduling of 

units of the Genco was drawn for CST and LST 

models. It was concluded from the results that Genco 

tends to produce more power energy in CST model 

than in LST one. Moreover, expected profit of the 

Genco in CST model is more than in LST one. 

Incorporating more influential random 

variables for self-energy scheduling is proposed for 

future research. Energy scheduling can also be 

extended to all power units in a power system 

considering security constraints. Of course, in this 

case, a system operator will schedule power units of 

the power system according to generation bids of 

Gencos and security of the whole power system. The 

aim of this energy scheduling would be mainly to 

maintain the security of the power system while 

reducing generation costs.  
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