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Abstract 

Hyperspectral sensors collect information from the earth's surface in the form of images with a large number of electromagnetic 

bands. Accurate classification of hyperspectral images has been one of the hot topics in remote sensing. Spatial information 

as a complementary source for spectral information helps increase the classification accuracy of hyperspectral images (HSI). 

Local covariance matrix descriptor (LCMD) is the new spatial-spectral feature generation method for HSI classification. 

Although the LCMD is easy to use and performs well in HSI classification, it has some limitations, such as discarding the 

nonlinear relationships between features, which are useful in HSI classification. To address these issues, we propose a local 

kernel matrix descriptor (LKMD) for the classification of HSIs. In this study, the performance of LCMD is compared with 

LKMD with two widely used kernels, RBF and polynomial, and final classification results on two real HSIs, Indian Pines and 

Pavia University, proved the superiority of LKMD over LCMD. 
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1. Introduction 

Hyperspectral imagery (HSI), which contains 

a wide range of spectral bands, can be applied to 

study various surface phenomena. HSI has many 

applications in agriculture, urban planning, geology, 

and environmental studies [1-3]. An HSI contains a 

wealth of spatial and spectral information, requiring 

advanced pattern recognition and image processing 

techniques to process. With the advancement of 

electronics science and the development of high-

resolution hyperspectral sensors, spatial features are 

being used as additional information to improve the 

accuracy of HSI classification [4]. It is challenging 

to classify HSI due to the curse of dimensionality, 

the small training sample size, the significant 

within-class spectral variations, and low between-

class spectral variations[5]. 

To date, various methods have been proposed 

in the literature to address these issues. Different 

dimensionality reduction methods, such as principal 

components analysis (PCA), minimum noise 

fraction (MNF) transform, linear discriminant 

analysis (LDA), clustering-based, and optimization-

based methods, are proposed in the literature to 

handle the high dimensionality of HSIs [6-9]. The 

second problem is addressed using advanced 

classification methods, such as support vector 

machine (SVM), extreme learning machine (ELM), 

and random multigraphs (RMG), which can produce 

accurate classification results in the situation of 

small training samples [10-13]. A variety of sample 

expansion and augmentation techniques have been 

used to increase the number of training samples to 

improve classification accuracy [14-16]. The third 

challenge, spectral variability, is generally 

addressed by incorporating spatial features in the 

classification process [17-19]. According to the 

literature, Gray-level co-occurrence matrix 

(GLCM), extended morphological profiles, attribute 

profiles, Gabor filters, moment invariants, local 

binary patterns, wavelets, fractal features, guided 

filters, and deep-learning-based features are some of 

the most important spatial features generation 

methods used in the classification of HSIs [11, 13, 

19, 20]. Stacking spatial and spectral features is a 
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popular feature combination method for HSI 

classification. Although this method is efficient and 

straightforward, it neglects local relationships 

between features, which can be useful in HSI 

classification.  

Tuzel et al. introduced covariance matrix 

descriptors (CMD) for object and texture detection 

in the computer vision field [21]. The covariance 

matrix is a powerful feature descriptor for evaluating 

the linear relationships between features. After that, 

CMD is employed in several computer vision and 

image processing studies, such as face recognition 

and action recognition [22, 23]. Recently, Fang et al. 

used local covariance matrix descriptors (LCMD) of 

pixels and log-Euclidean kernel SVM to classify 

HSIs [24]. Accordingly, local covariance matrix 

descriptors are used in several studies to classify 

HSI. Zhao et al. combined the density peak 

clustering and covariance matrix representation for 

HSI classification [25]. He et al. propose a deep-

learning-based method based on multiscale 

covariance representations for HSI classification 

[26]. A new study combines covariance matrix 

representation with a deep random patch network to 

classify HSI [27]. A new classification method for 

HSI is also proposed based on multiscale adaptive 

weighted filtering and covariance matrix 

representation [28]. Despite being a simple and 

efficient local descriptor, the covariance matrix 

representation has three major limitations. These 

include the singularity of LCMD in small window 

sizes, a fixed shape representation, and the inability 

to evaluate nonlinear relationships between features 

[29].  

A kernel matrix descriptor (KMD) is 

proposed in computer vision to address these issues 

[29, 30]. As an important note, a kernel matrix can 

evaluate nonlinear relationships and higher-order 

statistics of features. A traditional covariance matrix 

is a particular form of the kernel matrix when using 

a linear kernel [29]. The KMD has been studied in 

various areas of image processing and computer 

vision, but its performance for HSI classification has 

not yet been evaluated. As a result, this research 

aims to develop the concept of local kernel matrix 

descriptors (LKMD) for HSI classification. A 

comparison is also made between the performance 

of LKMD with two different kernel functions and 

LCMR. LKMD is expected to improve the 

classification accuracy of HSI due to its ability to 

evaluate nonlinear relationships between features. 

The following sections of the article are as 

follows: Concepts of LCMD and LKMD and log-

Euclidean SVM are presented in the next section. 

Section 3 introduces the HSI datasets used in this 

work. Experimental results are provided in section 

4, and finally, the last section concludes the study. 

2. Methodology 

The proposed method of this study is depicted 

in Fig. 1. In the first stage, the MNF dimensionality 

reduction method is applied to the original HSI to 

extract the more informative features and eliminate 

the redundant spectral features. In the second stage, 

as the spatial-spectral feature generation methods, 

both types of local matrix features, LCMD and 

LKMD, are generated. These matrix-based features 

are fed to supervised log-Euclidean kernel SVM in 

the third stage to classify HSI. Finally, classification 

accuracy based on test samples is used to compare 

the performance of local descriptors. The following 

subsections provide more information on the 

LCMD, LKMD, and log-Euclidean kernel SVM. 

 

Fig. 1. Flowchart of the proposed method 

A) The LCMD and LKMD  

The covariance matrix as the linear kernel can 

model the linear relationship between the 

hyperspectral bands. Assume a sliding window with 

size (L) around each pixel (total pixels in the widow 

is R=L× 𝐿) of HSI with the N number of the spectral 

features. The LCMD with the size N×N for each 

pixel is defined as [24]: 

𝐿𝐶𝑀𝐷 =
1

𝑅−1
∑ (𝑥𝑖 − 𝜇). (𝑥𝑖 − 𝜇)𝑇𝑅

𝑖=1                    (1) 

In which 𝑥𝑖 is the feature vector of an ith pixel 

in window L, and 𝜇 is the mean vector.  

A kernel matrix descriptor has recently been 

proposed in computer vision to address the 

limitations of the covariance descriptor. Different 

kernels, such as RBF and Polynomial kernels, have 

different abilities to evaluate the nonlinear 

relationship of the features [29]. This paper aims to 

compare them with LCMD. Similar to LCMD, 

assume a sliding window with size (L×L) around 

each pixel. In this window, each band of HSI can be 

expressed as the yi (i=1 to N) vector with the 

dimension equal to R=L×L. Each element of the 

LKMD matrix (with the size of N×N ) with RBF and 

polynomial kernel are calculated with [29]: 

𝑘𝑅𝐵𝐹(𝑦𝑖 , 𝑦𝑗) = exp(−𝛽||𝑦𝑖 − 𝑦𝑗||2)                    (2) 
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𝑘𝑃𝑜𝑙𝑦(𝑦𝑖 , 𝑦𝑗) = (||𝑦𝑖 − 𝑦𝑗||2 +  𝛽2)−1 2⁄
                  (3) 

Where 𝛽 is the scaling parameter of kernels 

that is set to 0.1 based on trial and error. A 

regularization technique can be used to make both 

LCMD and LKMD strictly positive defined.  

B) Log-Euclidean kernel SVM 

 The symmetric positive definite (SPD) 

matrices such as LCMD and LKMD lie on a 

manifold. The SPD matrix cannot be classified using 

SVM with standard kernels. The SVM with log-

Euclidean kernel function (klogm) is the best choice 

for classifying SPD matrices, which is defined for 

two different SPD matrices, C1 and C2, as follows 

[24]: 
klogm(C1, C2) = trace[logm(C1).logm(C2)]               (4) 

logm is the logarithm of the matrix. 

3. Hyperspectral datasets 

Indian Pines: The Indian Pines dataset is a 
benchmark HSI collected by the AVIRIS sensor 
from an agricultural and semi-urban area in Indiana, 
the USA, with a spatial resolution of 20m. This 
image contains 145×145 pixels in 224 spectral 
bands. After removing the 24 noisy bands in the pre-
processing stage, the remaining 200 bands are used 
in the experiment. Based on the ground truth map 
(GTM) of this image, this scene contains the 16 
agricultural classes. The unbalanced distribution of 
the classes makes the classification of this image 
difficult. Fig. 2-a depicts a color composite of the 
Indian Pines dataset. 

Pavia University: The Pavia University dataset 
from an urban area is the second benchmark HSI. 
This image was captured by a ROSIS-3 
hyperspectral camera from the University of Pavia, 
with a spatial resolution of 1.3 m. This image 
contains 610×340 pixels with 115 spectral bands. 
After removing the 12 noisy bands, the experiments 
use the remaining 103 bands. Based on the GTM of 
the image, this scene contains the nine urban classes. 
Fig. 2-b depicts a color composite of this HSI. 

4. Experimental results 

In this study, ten samples from each class are 

randomly selected based on ground truth maps 

(GTMs) of each HSI as training samples, with the 

rest serving as tests for assessing the classification 

results. The experiments employ four classification 

metrics for accuracy evaluation: overall accuracy 

(OA), average accuracy (AA), kappa coefficient 

(kappa), and class accuracy [31]. 
 

  
a b 

Fig. 2. HSI Datasets. a) Indian Pines. b) Pavia University 

For LCMD and LKMD, two parameters should 

be tuned: window size (w) and the number of MNF 

components (#MNF). We analyzed these two 

parameters in our first experiment, and the results 

are shown in Fig. 3.  Based on Fig. 3, the optimum 

values of #MNF and w for the LCMD method are 25 

and 23 in the Indian Pines dataset, respectively, and 

25 and 15 for the Pavia University dataset. The 

optimal values of #MNF and w for LKMD with 

RBF kernel are 25 and 7 for Indian pines and 15 and 

7 for Pavia University, respectively. The optimum 

values of #MNF and w for the LKMD-Poly for both 

data are 25 and 7. Although we did not see a single 

optimum parameter combination for each method in 

each dataset, as the rule of the thumb for LKMD 

methods, appropriate results are achieved when 

more MNF components are selected, and the w is 

considered between 7 and 11. 

The second experiment compares the 

classification results of spectral features, LCMD, 

and LKMD. SVM with an RBF kernel is used for 

spectral-based classification of HSI, and SVM with 

a log-Euclidean kernel is used to classify LCMD and 

LKMD. For both datasets, the classification results 

of each method are shown in Tables 1 and 2. 

According to Tables 1 and 2, both LCMD and 

LKMD can improve the accuracy of HSI 

classification. This is due to LCMD and LKMD's 

ability to evaluate the local relationships between 

the features. Generally, LKMD achieves higher 

accuracy than LCMD due to considering nonlinear 

local relationships between features. Based on the 

results, LKMD-RBF and LKMD-Poly appear to 

have a comparable performance. LKMD-Poly may 

perform better in low-resolution HSI from 

agricultural regions, such as Indian Pines. In 

contrast, LKMD-RBF may perform better in high-

resolution HSI from urban areas, such as Pavia 

University. 

Fig. 4 and Fig. 5 show the final classified 

images for each method. Based on these figures, it is 
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straightforward that both LCMD and LKMD can 

generate smoother classified images than the 

original spectral-based HSI classification. It 

demonstrated the effectiveness of using spatial 

information to increase the classification accuracy 

of HSI once more. 

 

Fig. 3. Parameters settings) first row Indian Pines, second row 

Pavia University 

Table.1. 
Classification results of Indian Pines  

Class Methods 

 Spectra

l 

LCMD LKMD 

RBF Poly 

1 72.22 100 100 100 
2 35.61 62.69 83.14 84.34 

3 37.56 79.14 94.39 93.41 

4 65.19 80.61 88.10 84.14 
5 58.59 83.93 93.65 94.08 

6 

7 
8 

9 

10 
11 

12 

13 
14 

15 

16 

86.25 

94.44 
75.85 

100 

44.59 
45.76 

55.57 

94.87 
64.30 

49.73 

95.18 

83.61 

100 
98.5 

100 

76.19 
70.59 

76.84 

97.43 
97.13 

98.93 

93.97 

99.30 

100 
100 

100 

82.32 
67.23 

86.45 

98.46 
97.92 

90.42 

100 

98.47 

100 
100 

100 

82.01 
68.79 

86.96 

97.94 
97.29 

92.28 

100 
OA 

AA 

Kappa 

53.49 

67.23 

0.473 

79.40 

87.48 

0.769 

85.51 

92.59 

0.835 

85.83 

92.48 

0.8405 

Table.2. 
Classification results of Pavia University  

Class Methods 

 Spectra

l 

LCMD LKMD 

RBF Poly 

1 75.27 69.85 73.61 79.68 
2 75.65 88.16 94.75 95.05 

3 58.30 80.46 70.84 76.59 

4 80.12 80.09 95.05 91.74 
5 99.62 99.85 100 100 

6 

7 
8 

9 

75.21 

76.89 
65.63 

99.46 

95.13 

84.62 
78.73 

77.04 

95.33 

99.09 
73.26 

93.59 

88.08 

88.71 
66.61 

95.94 

OA 
AA 

Kappa 

75.46 
78.46 

0.683 

84.28 
83.22 

0.796 

88.82 
88.4 

0.8536 

88.24 
86.94 

0.845 

 

 

Fig. 4. GTM and classified images of the Indian Pines scene 

 

Fig. 5. GTM and classified images of the Pavia University 

scene 

5. Conclusions 

According to recent research, the local 

covariance matrix is a new spatial-spectral feature 

descriptor that considers the local linear relationship 

of features. However, because of the complex 

relationship between the features in the HSI, it 

seems that local kernel features that can evaluate the 

local nonlinear relationships and higher-order 

statistics can better represent the HSI. In this study, 

two types of local kernel matrix descriptors, RBF 

and polynomial kernels are compared with the 

covariance matrix. The final results on the two HSIs 

demonstrated that the local kernel matrix descriptors 

outperformed the local covariance matrix 

descriptors in HSI classification. In future research, 

we will create a local combined multi-kernel matrix 

descriptor for HSI classification based on the fusion 

of RBF and polynomial kernels. 
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