
135 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

Detect and Implement Facial Modes in Image on FPGA using

Multilayer Neural Network

Ali Abdolazimi1, Amir Sabbagh Mollahoseini*2,Farshid Keynia3

1,2 Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran
3Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences, Graduate

University of Advanced Technology, Kerman, Iran

Abstract

Face is a unique characteristic of the human. Detecting the state of the human face, due to its difficulty on the one hand and

its many useful features on the other hand, is one of the most important issues in the image processing. In this paper, a five-

layer perceptron artificial neural network (MLP) with a supervisor as a complete connection has been used to separate the

different facial modes. Learning in the MLP network is done deeply with a high number of layers. The network has 4 class:

anger, fear, happiness and surprise. First, the main points and areas of the face that are effective in detecting the state of the

face are extracted by edge finding, and then, using the matching of the Fourier series diagram on the operational points of the

face, the diagram of those points is obtained. From this diagram, a number of features in the form of three coefficients and an

angular velocity are used for network training. Face database images with fixed backgrounds are used for network training.

This network is first implemented with Matlab and then MLP layer multiplex is used to implement on FPGA. The results show

that the proposed method can be implemented on FPGA platforms with low cost and limited resources, with appropriate output

accuracy. In this paper, in addition to speed, accuracy has been tried to create an application system for communication between

humans and computers.

Keywords: Detecting facial modes, MLP, implementation FPGA, Neural Network.

Article history: Received 05-July-2021; Revised 12-July-2021; Accepted 18-Aug-2021. Article Type: Research Paper

© 2021 IAUCTB-IJSEE Science. All rights reserved

http://dx.doi.org/10.30495/ijsee.2021.684015

1. Introduction

Detection of the face and its states, due to its

sensitive and diverse features, has been one of the

most important research topics in the last two

decades. Detected human behavior or state are used

for stronger and more effective interaction between

human and computer. To achieve natural and

comprehensive human-computer interaction, human

facial modes can be used as an interface. Face

detection uses in the field of video surveillance,

control of users' access to system resources and

image retrieval from large image databases. In

designing animations, designing different characters

in games and also in computer graphics, face

detection can be used properly [1]. On the other

hand, among the configurable hardware, it has high

speed, multiple resources and prompt processing.

There are several hardware platforms for hardware

implementation. Each of these platforms provides a

kind of balance between efficiency and flexibility

and planning. Performance here refers to

computational efficiency, and the usual measure for

measuring.

It is the number of instructions per second.

With comparing hardware platforms such as FPGA,

ZISC and DSP [2] it can be seen that FPGA is

reprogrammable and can provide a lot of flexibility

for the designer. Although FPGA-based

customizable computational architectures are

suitable for hardware implementation of neural

networks, implementation networks with a large

number of neurons and high, computational volume

on FPGA artificial neural ANN is still a challenging

task. It is performed on the features of the facial

organs, the most important of which are the eyes,

mouth and eyebrows. Facial modes are created by

changes in different points of the face. Each of these

parts is called the active unit (AU). Using the rules,

the movements of these limbs are determined by

pp. 135:140

https://dx.doi.org/10.30495/ijsee.2021.684015
https://dx.doi.org/10.30495/ijsee.2021.684015

136 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

different AUs. He described each specific state of

the face with a number of AUs, but the way changes

in AUs varies from person to person, even to show

a particular state. It then groups the features based

on their geometric relationship, and in addition, it

can be extended to different views of the face [5].

Input data should be independent of rotation,

distance, size and intensity of ambient light as well

as facial skin color.

With the prepared matrix in hand, facial modes

can be detected in various ways such as statistical

methods, phase, support vector machine (SVM),

Markov hidden model, decision tree (DT) and neural

network. The method used in this paper is based on

AU. At first, a 5-layer neural network is used to

classify facial modes in Matlab. Then a 5-layer

network on the FPGA Spartan3 Xillinx using

optimizations performed and Layer multiplexing is

performed in the neural network by determining the

geometric distances and angles of the eyebrows, lips

and eyelids, the input matrices of the diagnosis. The

direct implementation of the neural network is too

time consuming and requires complex calculations

[6], [7] and consumes a lot of resources. This

mathematical model takes the digital neural network

to the gate level and implements the gates directly,

but in the parallel architecture presented in this

paper, all layers are parallel. They are able to work

with a multiplexer in the control layer, and for this

reason, the performance speed is very high. The

sigmoid function has been implemented in

hardware, and a new method has been used to store

weights in computational units that can simplify the

implementation of neural networks on hardware.

Using the addition and subtraction operations

instead of multiplying [8] and doubling the value of

the activation function (sigmoid function) is another

trick used to save resources and reduce

computational volume.

2. Literature Review

Please use automatic hyphenation and check

your spelling. Additionally, be sure your sentences

are complete and that there is continuity within your

paragraphs. Check the numbering of your graphics

and make sure that all appropriate references are

included.

In order to compare the paper with the existing

methods, the related works are divided into three

categories.

− Diagnosis of facial modes using neural network

without hardware implementation.

− Methods that have recently implemented neural

networks with different optimizations for

specific applications on FPGA, in the second

part is only the implementation of neural

networks and methods of optimizing and

reducing available resources.

− Implementation a neural network to detect face

and state on FPGA.

Peng et al. [9] introduced a technique called

LCCR to increase discrimination in representative

images. The LCCR applies to five different

databases with five remote measurements. In the

case of minor faces, they use three facial features,

namely the right eye, nose and mouth with chin, by

covering the main images. The results show that the

right eye, mouth and chin have a high detection rate

[10]. Murphy et al. [11] show the mechanism of

human facial perception based on facial stimuli.

Their work shows that it is difficult for a human

being to perceive a face when he has turned back. In

addition, in their experiments, they tried to measure

the ability of a divider to classify the presented faces

as a whole and region by region using a dynamic

diaphragm that gradually moved from the face

image.

The main idea in this work is to recognize the

limitations of human ability to understand and

recognize. In their work, they tested the idea in four

modes: identity, gender, age, and emotion in four

conditions: full face right and left, full face rotated,

straight diaphragm, and inverted diaphragm. The

results show that the detrimental effects of the

inverted face on showing a partial face to the

participants are not less than the absence of

diaphragm. Andre and Nomena [12] have studied

face detection on partial faces due to the presence of

emotions on the face. Minor faces mean incomplete

faces that only some AUs can detect. In one of their

experiments, they tested facial detection for six

common emotions: happiness, anger, sadness,

disgust, normaly, and fear. In the case of a partial

face, the face was divided into two parts, one

containing the eyes and the other containing the

mouth. The remarkable result of their work is that

humans have a poor detection rate when they only

reach the condition of the eyes and mouth. On the

other hand, they noted that the feeling of a smile

produces a relatively better detection rate. However,

when dealing with the acute closure of a face, the

performance of current methods is significantly

reduced. Many previous studies point out that when

it comes to detecting the human face, familiarity

seems to be a key cognitive factor. Of course, the

effect of familiarity changes when the image of the

target face is partial, closed, with emotions, or his

age has changed. Lahazan et al. [13] have proposed

a framework called OSPE for face detection in a

variety of situations. For example, closed faces,

facial modes, and changing brightness are some of

the tips used in testing them. Again, their

experimental results show that improvements in

137 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

detection rates are achieved by partial facial data. In

addition, Dona et al. [14] have developed a

technique called TPGM to improve the cognitive

process of using partial faces. In the next section, we

take a brief look at parallel and optimal

implementations that reduce resource utilization. In

a solution [15] for the implementation of high-

volume networks with a high number of layers is

considered. In this study, a multiplier implements

each neuron, and nonlinear operations, such as non-

linear network activation functions, are converted

into linear blocks, which are then implemented. In

this implementation, for example, if an FPGA has

3600 multipliers, a 40 × 40 neuron can be

implemented with it. Internal memory is used to

store the results of each layer along with the input

and weights, and for that, Some FPGAs with limited

memory use external memory.

An implementation for the Xor issue was

performed on the Virtex chip [16]. According to the

paper, this implementation is based on a multilayer

perceptron network and the use of a post-diffusion

algorithm, and is used in real-time fields such as

pattern detection, image processing, and audio

processing, and so on. It consists of three main

control units: the post-emission unit, the forward

unit, and the control unit, which controls both of the

previous units. The implemented network has three

layers, the first layer, like the Xor gate, has two

inputs, the hidden layer consists of two neurons, and

the output layer has one neuron. In a leading network

[17] using two activation functions on the hardware

platform 5 series Virtex, FPGA is implemented. The

innovation of this paper is in implementation

activation functions that use digital computer

algorithm with coordinate rotation. This algorithm

converges to the answer using iteration. Two types

of activation functions are implemented using this

algorithm: sigmoid function and hyperbolic tangent

function.

Neurons and connections between layers are

also implemented directly using a multiplier. VHDL

hardware language and ISE implementation

environment is Xilinx and ISim emulator.

According to the paper, with this method, the

accuracy of the output results is very high compared

to other implementations of activation functions,

and even the speed has been increased. The next

section examines the implementation of neural

networks on the FPGA for face detection and its

state.

McCreedy et al. [18] designed and

implemented by 2-Transmogrifier configured

software. This implementation uses 9 FPGA boards.

Cedri and colleagues [19] implemented a neural

network based on face detection on the FPGA

Model II-Vertex pro. Skin color filtering and edge

detection are used to reduce processing time.

However, some operations on the PowerPC

processor are implemented with the software

installed. Cho et al. [20] have proposed a method for

using FPGAs to accelerate face detection based on

the Haar feature classifier. They retrained the Haar

attribute with 16 categories in each step. Although

only classifiers are implemented in FPGA. A host

microprocessor creates images integral and detects

face. However, the most powerful Model 5-Vertex

FPGA is used for implementation because the

designed size is too large. Hiromoto and his

colleagues [21] have implemented a real-time object

discovery based on the AdaBoost algorithm. They

provide a hybrid architecture of parallel processing

modules for step formatting as well as a sequential

module for sequential steps in the cascade design.

Because the parallel processing module and the

sequential processing module are split after

processing time evaluation, they must be redesigned

and implemented to provide data with new features.

However, the experimental results and the analysis

of the implemented system are not discussed.

3. Implement different face modes in Matlab

In this paper, the 5-layer perceptron network

(MLP) with the most widely used algorithm used in

MLP networks, namely the post-diffusion algorithm

is used for separation. In the post-diffusion

algorithm, there are two computational paths: feed

path and return path. Route path the network

parameters do not change during the computation

and the stimulus functions act on each neuron. In the

return path, the work starts from the last layer, the

output layer, where the error vector is available.

Then the error vector from the side Right to left is

distributed from the last layer to the first layer, and

the local gradient, neuron to neuron, is computed by

the recursive algorithm [22]. For the input pattern

pm, the square of the output error for all cells of the

network output layer becomes as equation 1 [23]:

𝐸𝑝 =
1

2
(𝑑𝑝 − 𝑦𝑝)2 =

1

2
∑(

𝐼

𝑗=1

𝑑𝑗
𝑝
− 𝑦𝑗

𝑝
)2 (1)

Where djp is the desired output for the j cell in

the output layer and output is the actual d for the j

cell in the output layer, s are the dimensions of the

output vector, yp is the actual output vector, and dp

is the desired output vector. The total error reference

E for the pattern P is equation (2):

𝐸 = ∑𝐸𝑃

𝑃

𝑃=1

=
1

2
∑∑(

𝐼

𝑗=1

𝑑𝑗
𝑝
− 𝑦𝑗

𝑝
)2

𝑃

𝑃=1

 (2)

 The weights are adjusted in order to reduce

the cost function E to a minimum by descending

gradient method. The equation for updating weights

as equation (3) is:

138 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝜂Δ𝑤𝑖𝑗(𝑡) + 𝛼Δ𝑤𝑖𝑗(𝑡 − 1) (3)

Where ∆𝑤𝑖𝑗(𝑡) = −(
𝜕𝐸𝑃

𝜕𝑤𝑖𝑗(𝑡)
) , learning rate 𝜂 ,

temporal coefficient of new weight 𝑤𝑖𝑗(𝑡 + 1)

and old weight 𝑤𝑖𝑗(𝑡) . Also in this method, weights

are frequently updated for all learning patterns. The

learning process stops when the total error, E, for the

pattern p falls below the set threshold value or the

total number of training periods ends. The error

propagation training method reduces the probability

of convergence in local minima [23]. During the

learning process, the network learning rate is

regularly measured by the target functions, and

finally the networks with the lowest error rate and

the highest accuracy and sensitivity are accepted.

Some objective functions are: root mean square

error (RMSE), mean absolute error (MAE), sum of

squares error (SSE) and good fit coefficient (R.) In

this network, the neurons of each layer are

completely connected to the neurons of the previous

layer. After affecting the actuator function, each

layer becomes the input of the next layer, and this

process continues until the network output is

obtained.

Activation function in this paper is the logistic

unipolar sigmoid function. The unipolar sigmoid

function, whose diagram is S-shaped, is the most

common form of activation function in artificial

neural networks. This function, also known as the

incremental uniform function, shows a good balance

between linear and nonlinear behavior. An example

of a sigmoid function is a logistic function in which

g is the slope coefficient of the sigmoid function. By

changing the parameter g in (4), the sigmoid

function with different slopes is obtained [24].

𝐹(𝑛𝑒𝑡) = 1
(1 + 𝑒−𝑔.𝑛𝑒𝑡)⁄ (4)

As g tends to infinity, the sigmoid function

becomes the threshold function. The important thing

about this function is that it is a derivative function

and this is a very important issue in neural networks.

Common modes of emotion detection are six

classes: anger, fear, happiness, normally, sad, and

surprise. For optimal implementation on FPGA, two

common modes have been removed so the network

has four classes: Anger, Fear, Happiness, and

Surprise. First, the main points and areas of the face

that are effective in detecting facial modes are

extracted by edge finding. Fig. 1 shows a happy one-

face image of the Kanade-Cohn dataset with three

edge-finding methods applied to it [25]. Here, the

Bobby Sobel edge method is used. After the edge-

finding step, it is time to remove the extra lines and

join the desired lines. For this purpose,

morphological filters have been used. The first

operator used is the bridge operator, which is used

to bridge between discrete pixels and is as follows:

Pixels with a value of zero become one in a

binary image. The next operator is the diagonal

bridge that converts the zeros in the original

diameter to one, as follows:

The result of applying these two operators is

filling the lines of the mouth and eyes. After

applying the morphological agents, it is time to

connect the eyes, mouth and eyebrows to get their

place. With the help of imfill and imclose

morphological operators in the form of 4-point, 6-

point and 8-point dots for filling and points 0 and 1

of the array for closing, the lines of eyes, mouth and

eyebrows can be turned into full objects [26]. Fig. 2a

is the result of applying morphological filters to the

original image. The next filter is for deleting

continuous pixels that are smaller than a certain

value. This filter is done by the “bwareaopen”

command and has 4, 6 and 8 pixel connection points.

Finally, in Fig. 2c, the desired areas appear on the

main image, which includes the mouth and eyes.

Using Fourier series and w which is shown in the

equation 5, 20 face features such as mouth , eye, and

eyebrow can be obtained. That is, in fact, the inputs

of the neural network are 20. Fourier series

coefficients describe the state of the face and are

taught to the network as a feature.

𝑓(𝑥) = 𝑎0 + 𝑎1 cos(𝑥𝜔) + 𝑏1sin⁡(𝑥𝜔) (5)

Where x and 𝑓(𝑥) are obtained as coordinates

of points and coefficients and they are multiple by

𝑎0 , 𝑎1, 𝑏1 and 𝜔 is angular velocity [27].

As an example for the image shown in Fig. 1,

the above values for the lower lip are as 𝑎0 = 176 ∙
4⁡⁡𝑎1 = 70 ∙ 82⁡⁡𝑏1 = 6.66⁡⁡𝜔 = 0 ∙ 071

139 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

Fig. 1. Drawing a happy face from the Kanade-Cohn Dataset

Fig. 2. Apply morphological filters on the main image, remove

excess lines by this filter and detect the main areas of the face on

the main image

A) Database

In the dataset matrix, we have 21 columns, 20

of which are related to the Fourier series

coefficients, ie our inputs, and the last column is the

class number (1 to 4 for 4 classes). At this stage, the

last column of each class is removed and replaced

by four columns The following 4 classes are added

to the mark:

− 0001 means class one of four classes

− 0010 means class two of four classes

− 0100 means class three of four classes

− 1000 means class four of four classes

Then we produce training and test matrices

from these 4 classes in the form of 60% training and

40% testing. Having a diverse and powerful

database on the one hand helps in accurate detection

and on the other hand in processing speed 215

images used to be created from the Kanade-Cohn

database. Fixed face images with a specific

background are used to teach the network. The

sample number of each class is as follows:

− Class1: 57

− Class2: 57

− Class3: 44

− Class4: 58

Rows of test and training matrices are also

moved so that examples from all classes are evenly

distributed. The training matrix has 147 examples

and the test matrix has 68 examples, which adds up

to 215, which is the sum of the total samples. After

making the matrix, it is time to normalize the matrix

elements, which is done for ease of calculation so

that all the elements are placed between zero and

one. Then four classes are separated from each other

and the rows of each class are moved randomly.

B) Network input matrix

The network input matrix has 20 properties and

4 classes and has 24 columns. From each selected

member (upper lip, lower lip, and right eyelid, left

and right eyebrow) four Fourier series feature

coefficients are extracted so 20 features are

extracted. Table (1) shows the number of features

for each example.

Table.1.
Number of features to generate neural network input matrix

 Upper lip, Lower lip, Right eyelid, Left eyebrow, Right

eyebrow

EX.1  b1 a1 a0

EX.2  b1 a1 a0

EX.3  b1 a1 a0

EX.4  b1 a1 a0

C) MLP network structure

The network selected in this part of the MLP

network is supervised learning by five layers that

have three hidden layers, in the form of 20-8-8-8-4

input layer of 20 neurons, output layer of 4 neurons

and hidden layers each have 8 neurons. First, the

database matrix is called and the output and

properties are separated from each other. Then, three

matrices are randomly assigned as weights for the

links between the input and hidden layers first, the

first and second hidden layers, and the second

hidden layer. Output layers are generated.

The network starts for a certain number of

iterations. Examples Line by line pass through the

activation function, which is the sigmoid function,

in each layer, multiplied by the values of the

weights, and move on to the next layer. Weights are

updated after the repetitions are completed.

Therefore, the method used in the network is Batch

learning. Weight update values are obtained from

equation (3). Then the error signal and the mean of

the total error are obtained for all examples of

relations (1) and (2). An error or repetition condition

can be set for the end of the network. Fig. 3 shows

the structure of a five-layer perceptron network,

including layer one, layer two, layer three, and the

output and number of per layer neurons.

Fig. 3. Five-layer perceptron network including hidden layer

one, hidden layer two, hidden layer three and output.

D) Results of 5-layer perceptron network in

Matlab

The three parameters Specificity, Sensitivity

and Accuracy are calculated for each class. which is

obtained from relations 6 to 8 .

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6)

140 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑡𝑛 + 𝑓𝑝 + 𝐹𝑁
 (8)

The learning rate of the network is 0.001,

which is more suitable for coming out of the local

minimum, but the processing speed is slower and in

fact the forward steps of weight correction are much

smaller. In fact, the 5-layer network in normal mode

and with three hidden layers in the form of 8-8-8 has

96.73% of the total accuracy and the total error of

training is 0.42 but the main reason for this increase

is actually the training and test and normalization

matrices that have been done in these matrices. In

fact, when the data is between zero and one, the

network has less variance and scatter, and is trained

much more accurately, and the results are better. The

following are the results and tables related to the

optimized network.

The average accuracy of all four classes in

24000 repetitions is 96.73%, which has a desirable

value. Fig. 4 shows the error diagram for the four

classes. As can be seen, the network has an average

error (Eav) of 0.037 in 3000 repetitions, which is the

same as the mean error in relation (2). Table 2 shows

the specifications of the 5-layer MLP network used

in terms of structure and parameters used. In this

table, the training type is sequential Learning, which

means that unlike Learning Batch, weights are

updated in each repetition.

The training error of each class along with the

network simulation results and the parameters of

accuracy, sensitivity and specificity in each class are

shown in Table 3. Fig. 5 also shows the bar chart of

network parameters. Table 3 shows the sensitivity,

specificity and accuracy of each class according to

the relations 6, 7 and 8. In the last row of the table,

the data used in each class is shown and it can be

seen that the examples in all four classes are evenly

distributed and total number is 215.

Fig. 4. Training error reduction chart for all 4 classes in 24000

repetitions.

Fig. 5. Bar chart of three parameters of accuracy, sensitivity

and specificity for 5-layer network.

Table.2.
5-layer MLP network specifications used

Item Value

Number of Features 20

Number of Epoch 24000

𝐸𝑎𝑣 0.037

ACC𝑎𝑣 96.73%

Connection Full connection

Number of layers 5

Learning rate 0.001
Train example 147

Test example 68

Learning way Sequential learning
Number of neurons 20-8-8-8-4

Table.3.
5-layer MLP network results in Matlab.

 Anger Surprise Fear Happiness Total

Accuracy 98 97 90 98 96.73

Sensitivity 95 88 92 100 93.75

Specificity 100 98 93 98 97.25

𝐹𝑁⁡ 1 1 5 0 -

𝐹𝑃⁡ 0 1 4 1 -

𝑇𝑁⁡ 48 60 48 48 -

𝑇𝑃⁡ 20 8 20 20 -

𝐸𝑎𝑣 0.083 0.089 0.0521 0.051 0.068

Number of

instances
57 57 44 57 215

Table.4.
Compare the results of 5-layer MLP network with other

MLP

5-Layer
[28] [29] [30] [31] [32]

Average

Accuracy

96.73 99 96.76 98 91.5 89.85

Average

Sensitivity

93.75 - - - - -

Average

Specificity

97.25 - - - - -

𝐸𝑎𝑣train (MSE)

0.027 - - 0.004 - -

𝐸𝑎𝑣⁡test⁡(MSE) 0.11× 10−4 0.07 0.024 0.002 - -

141 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

E) Compare paper results with other sources

In this section, the results of the 5-layer MLP

network in Table 4 are compared with other sources.

It should be noted that according to Tables 3 and 4,

the accuracy of this network is repeated for 6000 and

later repetitions, which has a value of 96.73% , along

with sensitivity and specificity in this repetition. In

reference [28], the phase separator method is used in

such a way that the colour image of the face is

immediately divided into two areas of the eyes and

mouth, and in fact, only these two parts of the face

are used. From 54 Gabor functions and filters are

used to detect states, then the database matrix is

given to the PCA algorithm to optimize the

properties and then to a phase separator. 97%

accuracy is for one area and 99% for two areas. In

reference [28], the phase separator method is used in

such a way that the colour image of the face is

immediately divided into two areas of the eyes and

mouth, and in fact, only these two parts of the face

are used. From 54 Gabor functions and filters are

used to detect states, then the database matrix is

given to the PCA algorithm to optimize the

properties and then to a phase separator. 97%

accuracy is for one area only and 99% for two areas.

 [29] uses convolutional neural networks in

which facial images can be fed directly to the

network for analysis. In this research, three

databases -BU, JAFFE +, CK 3GGG have been used

and according to the author's claim, the accuracy has

reached 96.76%. In reference [30], Gabor filters

have been used for the feature. Then the two

algorithms PCA and LDA are used sequentially for

database and extraction of the best features and this

feature matrix is given to a neural network for

segmentation.

According to the author, for 199 faces, they

have obtained a value of 98%. Reference [31] has

selected one of the support vector machine separator

network in addition to rabid features to diagnose

facial modes in 3 tones. In this research, three states

of surprise, sadness and happiness have been used,

and the state of surprise has the highest accuracy and

value of 97%. Sad and happy states have values of

84.5% and 93%, respectively. The overall accuracy

of the grid is 91.5. Reference [32] uses an RBF radial

approximation grid with Gabor 2D filters for 6 face

modes. In this research, two databases, JAFFE +,

CK are used, the accuracy of which is 88% for

JAFFE database and 91.7% for CK + database. If we

want to calculate the average values of the two bases

for the total accuracy of the network, the accuracy of

the whole network is 89.85%.

4. Performed implementation on FPGA without

layer multiplexing

The implementation is done in two ways:

normal implementation and implementation using

multiplexing layers. The following modules and the

Verilog language implement the network

implemented in Matlab. The neural network

implementation modules 20-8-8-8-4 without

multiplex and with multiplex layers are as follows:

− Middle layer neurons

− Output layer neurons

− Multiply Booth

− Sigmoid stimulation function

− Control unit for neurons and layers

− RAM corresponding to the weights

corresponding to the links between the layers

When using layer layers, some of the modules

introduced undergo changes, including the neuron

and layer control module and the middle layer

module. The number of intermediate modules in the

layer multiplex is reduced from three to one. The

reason for this is to reduce the middle or hidden

layers from three layers to one layer. Each neuron in

each layer is assigned a module. For example,

hidden layer and output neurons have two separate

modules. For multiplication, shift and addition

operations are used instead of multiplication. This

algorithm is performed in Booth multiplication and

will be explained below.

To maintain the values related to the weights

and bias of the neurons, six RAMs have been used.

If we show the number of neurons in the middle

layer with N, the RAM of the computational model

of the link is placed so that in the zero address of this

RAM the values of the weights. The links between

the inputs and the number one neuron in the middle

layer are placed and the other weights are placed in

the same way and a total of N addresses are required.

After the weight of the links and the bias values

in the learning phase are calculated by Matlab

software, Data are included in the FPGA by the

above rules. All neural network links are accessible

by sequential increment of the address. This is

shown in Fig. 6. When the address is zero, the

operation shown in Fig. 6 is performed. By

increasing the address to 1, more links are covered.

These links are shown in Fig. 7. Therefore, all

network links are available by increasing the address

from zero to N (N number of middle layer neurons).

In Fig. 6, only the number one neuron of the

first middle layer is complete, the neurons one to

eight have two other middle layers, and the neurons

one to four of the output layer are incomplete.

142 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

Fig. 6. Sequential increase of address and how to calculate

links and preparation of the amount of neurons in the first

middle layer

Since in hardware implementation all the code

is executed in the software together, so we need to

address and move forward systematically because it

is not possible to get the output by multiplying all

the neurons in the weights at once. Here the values

of the neurons The output cells are not complete but

multiplied by their own weight, ie 8, 7, 6, 5, 4, 3, 2

neurons from the second and third middle layers are

still remain, so the output is complete when the

amount of neurons in 8 middle layers in the second

and Third be prepared. In this clock, we used below

RAMs to multiply the values.

− Related to the first input and middle layer

(named Mid_weight_Mem) in the

implementation at the address A0.

− For the first and middle layers (called

Mid2_weight_Mem) in implementation at

address A0. The second middle layer and the

third middle layer) called A0

− Address in pavement (Mem_weight_Mid3

refers to the bias of all intermediate layers,

which is a value of RAM that is connected to all

three layers because bias is an arbitrary fixed

number) usually one (in the address A0.

− Related to interlayer values the third

intermediate and the output layer at address A0.

− Corresponds to the bias of the output layer.

In Fig. 7 at address A1, as can be seen, the

neurons No. 2 of the first middle layer are completed

and the other three layers are one-step closer to

completion. If careful, a new value is added to the

second and third middle layer neurons number one,

which is the value of the second neuron of the first

middle layer.

Fig. 7. Increase the address to one and how to calculate the

second neuron of the first middle layer.

As mentioned earlier, the values of these

neurons are incomplete until all the neurons in the

first middle layer are complete and the output of

one-step is closer to its final value. Therefore, with

eight clock (the number of neurons in the middle

layer), the amount of all neurons is complete and the

output is complete.

A) Middle layer neurons

In the middle layer module, the inputs are 16

bits, and since we have 20 inputs, a total of 320 bits,

which is from zero to 319, are intended for the inputs

and the weights waiting for it. The first middle layer

module can be considered as Fig. 8. clk, start, HZ-

bus Single-bit input signals for Clock, respectively.

Computational operation of impedance neurons

(HZ). The output bus lines are available to this

neuron. These 319 bits contain 8 weights of links

between 20 inputs and middle layer neurons.

Weight_Mid is the input value. Mid_Weight 319-bit

input from a row of RAM addresses related to the

weights of the links between the input and middle

layers.

The 319-bits input contains eight weights of

links between 20 inputs and the middle layer

neurons. Since the weights are 16 bits like the inputs,

the 319 bits of 20 contain 319 bits of input are

Input_Mid. The weight_Mid is the input value. Two

middle layer modules called Mid two_Neuron and

Mid three_Neuron are added along with two RAM

modules for the following two middle layers. As can

be seen in the middle layer modules, the signals of

all three modules (clk, hz-bus) are interconnected,

which means that the three middle layer modules

work together.

Moreover, has an 8-bit output that connects to

the next middle layer. This module multiplies the

weights inside the first RAM module at the inputs

and passes the sigmoid activation function, which is

the SIG_LUT module, and produces the result as an

8-bit number. Fig. 9 shows the second module of the

middle layer.

Fig. 8. The first middle layer module

143 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

Fig. 9. Mid two Neuron The middle layer module for the

second layer

This module also has a 128-bit input because

each input is 16-bit and has an 8-bit output that

connects to the next middle layer. Note that for the

convenience of the output of the first middle layer,

which was 8 bits, it becomes 16 bits. This is just to

name the multiplied bits in the modules.

− Input_Mid two [15: 0], weight_Mid2 [15: 0]

− Input_Mid two [31:16], weight_Mid2 [31:16]

If we wanted to use the same 8 bits of output

of the first module, it would be multiplied as

follows:

− Input_Mid two [7: 0], weight_Mid2 [15: 0]

− Input_Mid two [15: 8], weight_Mid2 [31:16]

This module also multiplies the weights inside

the second RAM module at its inputs, which is the

output of the previous middle layer module, and

passes the sigmoid activation function, which is the

same as the SIG_LUT module, and produces the

result as an 8-bit number. Fig. 10 shows the third

module of the middle layer.

Fig. 10. Mid three_Neuron Middle layer module for the third

layer.

This module also has a 128-bit input because

each input is 16-bit and has an 8-bit output that

connects to the next middle layer. It works just like

the previous modules.

B) Output layer neurons

Fig. 11 shows the output layer neuron module.

This module is similar to the middle layer module,

except that here the values for the weight of the links

and the bias of the neurons are obtained from the

respective RAMs. Also, input-out is an 8-bit input,

which is actually the same as the 8-bit output of the

previous layer neurons and the third middle layer

module.

Fig. 11. Output layer neuron module

The output neuron module receives the output

of the last layer, which is 8 bits, as input, and finally,

by explaining the output and how it is completed,

passes the sigmoid function and produces the final

output. It should be noted that the meaning of bias

values, which are considered as two RAMs, one for

the middle layer and one for the output layer, is a

series of fixed numbers that have the order of

illumination for neurons, and in this project to all

Layers are given the same number to save resource

usage.

C) RAM related to the weights that are link

between the input layer and the middle

layer

In this module, the Initialization input signal is

used to initialize the memory. These values are

stored in memory according to the trained network

in Matlab software. The 3-bit input specifies the

desired address. For each value, 4 bits are assigned

and we have 20 weights (number of inputs). Finally,

80-bit Data output contains weights. Subsequent

RAM modules such as RAM corresponding to the

weights corresponding to the links between the

middle layer and the output layer. The RAM

corresponding to the bias corresponding to the

middle layer neurons and the RAM corresponding to

the bias corresponding to the output layer neurons

are similar to the above implementation, except that

their output data is different based on the application

of the said RAM and it is avoided. The module of

this RAM has eight addresses as follows:

mem[0]=_80'b01100001001100100010000111111000000000010
011001001000010001110100011000110000001;
mem[1]=80'b010100100101001011000001000100010001010100
01010100010001000110010111001101010000;
mem[2]=80'b0001101001010010010110010101010101010100101
0001101010001001100010010000100010001;
mem[3]=80'b010110101001001000101011000100010101100100
01110100010001010100010000011100010011;
mem[4]=80'b110100100101000001001011000110010101010100
01011000101001011001010101100101010101;
mem[5]=_80'b00110010110100110101100100010001000100100
111000110011001011100010100100100010010;
mem[6]=_80'b01010010010100111100000100011001000101010
001011010101011000101011001001101011001;
mem[7]=_80'b11010101010100110011110100010001000101001
101000101000111000101011001000100110101;

144 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

Each 4 bits is a weight number. Nevertheless,

in the address line zero (mem (0)) the first four bits

are 0110 which shows the number 5. The second

four bits are 0001, which shows the number one and

so on. When we check the matrix of weights in

Matlab, it is observed that all values of this matrix

are between zero and one, and this is because the

network input vector is normalized to increase the

network efficiency, each column is divided by its

maximum so that the input numbers in the range are

between 0 and 1. Now in the implementation to

solve this problem, we multiply the weights by 10

and then put it in RAM. If we see the first 4 weights

in Matlab, they are as 0/5461, 0/0901, 0/2619,

0/2162. These numbers are multiplied by 10. The

first number with rendering is five, the second

number is one, the third number is three, the fourth

number is two. These numbers are written in RAM

in the address of the first 16 bits zero as 0110 0001

0011 0010.

However, as you can see, these negative

numbers RAM due to the large number of negatives.

But the question that arises is that each RAM of this

address line is 80 bits, so how in the first module the

middle layer has a 320-bit weight_ mid input. The

answer is that every 4 bits have been converted to 16

bits for ease of writing the module and

multiplications, which are multiplied as follows in

the first middle module:

− Input_Mid [15: 0], weight_Mid [15: 0]

− Input_Mid [31:16], weight_Mid [31:16]

Consider that the values of the numbers in the

next two RAMs are because the 32-bit

Mem_weight_Mid3 and Mem_weight_Mid2 have 8

values, each of which has 4 bits, and multiplied by

32 bits. Just like before, these weights are converted

to 16 bits for ease of work.

D) Sigmoid stimulation function

Hardware implementation of the Sigmoid

Stimulus Function is a very important part of the

hardware implementation of neural networks.

Because this function includes nonlinear mapping

and operators such as power, addition, and division,

it will take up many time and hardware resources if

implemented directly. Therefore, LUT has been

used here to implement it. From a hardware

implementation point of view, what should be

considered in this method is the size of the ROM unit

and the degree of complexity of the time control for

LUT addressing. This implementation method

proposed by Srdjan and Coric [33] is given in

relation to 9 and 10:

𝑎𝑖(𝑛𝑒𝑡) =
1

1 + 𝑒−𝑛𝑒𝑡
 (9)

𝑎𝑖(𝑛𝑒𝑡) =
255

1 + 𝑒
−𝑛𝑒𝑡
8

 (10)

Where net is a positive integer value. If net is a

positive and negative value, the correct sigmoid

value is provided by the following formula:

𝐹(𝑛𝑒𝑡) = 255 + 𝐹(𝑛𝑒𝑡)∗ (11)

Where 𝑛𝑒𝑡∗ = 2𝑁 + 𝑛𝑒𝑡 and N is the input

length .in relation 11, 𝐹(𝑛𝑒𝑡)∗of relation 10 can be

calculated .The above statements show that although

this method reduces the number of ROMs involved,

it does not have the necessary flexibility. Address

generation scheduling becomes very complicated

and the processing cycle of the computational unit

becomes longer with multiple parallelization.

Examining the interface (10), it can be seen that, if

the input of the sigmoid function exceeds a certain

value, its output should be close to 255, and on the

other hand, if the input of the function is less than a

certain value, the output should be close to zero.

Therefore, in order to increase the efficiency in the

hardware implementation of the sigmoid function in

this method, the following steps are suggested:

− If the input of the function exceeds 127, its

output is considered 255, and similarly, if the

input of the function is less than -128, its output

is taken as zero.

− If the input is between -128 and 127, the output

should be calculated from the following

equation:

𝑎𝑖(𝑛𝑒𝑡) =
255

1 + 𝑒
−𝑛𝑒𝑡
24

(12)

These values are stored in LUT. When

working on a neural network, the addition of 128 to

the input can simply generate the desired address in

the LUT. Studies show that this method is suitable

for the middle and output layers. In addition,

networks that use this type of implementation have

similar performance to networks that calculate the

sigmoid function directly with floating point data.

E) Booth Multiplication

In each neuron, we need to implement

multiplication to perform computational operations.

For this purpose, here is the Booth multiplication

algorithm, which is used in the form of shifts and

additions. The basis of the algorithm is based on the

fact that the strings 0 in the multiplication factor do

not need to be added, but only the movement (shift)

requires .string 1 in multiplier from bit 2k to bit 2m

can be considered equal to 2k+1 - 2m. Inputs and

weights are both considered 4-bit and the result is

16-bit [8].

F) Neuron and layer control unit

145 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

The control unit for neurons and layers actually

has two important functions.

− Controlling neurons and links and allowing

modules to start and stop to reach the input to

the output.

− Control layers by multiplexing layers. This unit

controls the start of the computational operation

of middle layer neurons by 8-output signals

start _Mid1 to start_ Mid8.

The Initialization output signal activates the

corresponding signal in the memory for

initialization. 8-output signals HZ_ bus1 to HZ_

bus8 Manage the order in which the output bus is

impeded by middle-layer neurons. The Address_

Mid and Address _ Out address lines are responsible

for generating the appropriate address of the

memory containing the corresponding weights of

the links. The end_ work signal indicates the end of

network work. However, the module of the control

unit does not change and as before, it sends the start

command to the middle layer modules and gives

them the memory address in the appropriate clock.

The boot multiplier module and the look up table are

also unchanged. Finally, it should be noted that the

output of this implementation might differ from the

output of the content for the following reasons:

− The sigmoid function implemented by the look

up table may not contain all the values or may

correct the values.

− The positive and negative amount of weights

cannot be applied to exactly any number.

− Weights are rendered.

− Giving all the weights to RAM is a very long

job so it is placed in some lines of duplicate

numbers.

In the network implemented in the content, the

bias values are set by default by the content itself,

which may be different from the bias values given in

the implementation. Fig. 12 is a general schematic

of the implementation with 20 inputs and 4 outputs.

Fig. 12. General schematic of neural network implementation

with 20 inputs and 4 outputs.

5. Implementation of 5-layer neural network by

layers multiplex

In multi-layer implementation, the

implementation modules are the same as before,

except that the middle three layers become one

layer. In fact, the three layers become multiplex. The

multiplexer task is to select the output of the middle

layer neurons in the look up table. The output of

middle layer neurons is stored in a look up table .The

method of multiplexing the layers is such that at

each moment and in one clock, one layer is used

according to the multiplex address. The results of

this implementation show that the proposed method

with multiplexing neural network layers reduces

resource consumption by about 30 to 40%. The

multiplexer selects the output of the middle layer

neurons. In this implementation, we have three

hidden layers, so the results of the middle layer

neurons are stored three times, and the multiplexer

selects the results of the third layer neurons and

outputs for the neurons of the output layer. The

optimizations performed for the implementation of

MLP 20-8-8-8-4 include the following:

− Binary the value of the sigmoid function

between zero and one in this optimization,

instead of using 2 bits for the values 1-and 1 +,

one bit is used for zero and one for the value of

the function [34].

− Use shifts instead of direct multiplication. In

this case, instead of multiplying the inputs are

directly used by the weights of a collector and

shifter [34].It is used which is much cheaper and

requires less resources. Generates open output

in one bit (zero and one) [34].

− Use a layer control to multiplex layers [35].

In this case, the number of hidden layers is

simultaneously connected to a multiplexer and the

selected layer is selected and used at high speed.

Multiplexer implementation is done in the control

unit. To control the layers, this unit receives a

variable called the number of layers. In fact, this

input specifies the number of hidden layers, which

can be changed from one to three. Based on the

number of hidden layers, the control unit operation

must be repeated, if we have 3 hidden layers, to use

multiplexing the layers, the control unit operation

must be repeated exactly 3 times, in which case one

layer instead of our 3 hardware layers. We have

three schedules. In the new layer control module and

neurons, the number of layers is also applied as an

input to this module. Finally, a module called the

task control unit is responsible for controlling all

modules and multiplexing the middle layers. Fig. 13

shows the structure of a perceptron multilayer

network using a multiplexer. In this method, only

one layer with its number of neurons is implemented

and only the values of its neurons are moved by

146 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

multiplexer. For example, suppose we have only one

layer with 8 neurons according to Fig. 3 of the

reference [35]. First, the inputs in the weights of the

first layer are calculated by the timing of the control

block and stored in neurons called s0, and then by

the control block and multiplex, the value of these

neurons is multiplied by the corresponding weights

and stored in neurons s1. Continue until all layers

are calculated. When a layer is completed and its

values are calculated, it is stored in a look up table

connected to the Layers Control, and the next layer

calculations begin. In this case, for example, instead

of implementation a 20-8-8-8-4 network, a 20-8-4

network is implemented, saving overall FPGA

resources [35]. Use the Look up table to implement

the sigmoid function instead of using the direct

implementation of these functions.

Fig. 13. Conventional MLP network structure and MLP

network structure with hidden layer multiplex [35]

Fig. 14 shows the input layer with 20 neurons

and the three hidden layers as a multiplex with eight

neurons and the output layer with four neurons. The

links between the input layer and the middle layer,

along with the output neurons, also participate in this

parallelization, and the results of the middle layer

calculations are returned to the units by diffusion.

Therefore, all computational conditions for output

neurons can be examined at one time.

Fig. 14. Structure of 20-8-8-8-4 network implementation with

parallel link and hidden layer neurons and multiplexes.

6. Synthesis and simulation

The synthesis was performed by the XST tool

included in the ISE bundle, which can be used for

both HDL-based or schematic design processes,

using the XC3S50005fg900Spartan3 hardware. The

ISE software package simulator, Isim, performs all

simulations. Twenty inputs have values that are

actually one of the rows of test matrix values in

Matlab software. As explained earlier, the result is 4

bits, each bit of which represents a class. For

example, 0010 network output means the first output

is zero, the second output is one, the third output and

fourth are zero. When the reset signal is zero, the

network starts working. In Fig. 15 (a), the network

simulation with the implementation without layer,

multiplexing is examined. In this simulation, the

inputs and outputs are 16 bits. It can be seen that a

normal network takes 15 nanoseconds to complete

the output values. Fig. 15 (b) shows the simulation

using a multiplex of layers. If the network is

optimized with a multiplex of layers, it takes three

nanoseconds to complete the output and remain

constant, and 12 nanoseconds converge faster to the

answer.

7. Evaluation implementation network

The following is a summary of mapping,

routing, and implementation reports on 20-8-8-8-4

networks for the Spartan 3 XC3S5000 5fg900. Table

5 compares the two types of implementations

directly without layer multiplexing and with layer

multiplexing.

Fig. 15. Results of network implementation simulation 20-8-8-

8-4 to detect the state of the face without multiplexing layers
and results of network implementation simulation 20-8-8-8-4 to

diagnose conditions Face by multiplexing layers

Table.5.
Comparison of used resources of two types of implementation
performed directly without multiplex layers and by multiplex

layers on Spartan 3 XC3S50005fg900

147 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

Module

Name

Optimized Neural

Network20-8-8-8-4 (The

proposed work)

Ordinary Neural Network

20-8-8-8-4(The previous

work)
Optimized

percent
Logic

Utilization
Used Available Utilization Used Available Utilization

slice Flip

Flop
6374 6374 9% 13549 66560 20 11

4 Input

LUTs
21738 21738 32% 39647 66560 59.5 27

occupied

Slices
11978 11978 35% 23229 33280 70 35

4 Input

LUTs
21963 21963 32% 43842 66560 66 34

Bonded

IOBs
355 355 56% 360 633 57 1

As can be seen from Table 5, the use of layer

multiplexing prevents a lot of resource wastage. In

the last column, for the total resources of the

hardware platform look-up table, it is optimized by

34%. Due to this issue, more complex functions

such as hyperbolic tangent can also be used for the

activation function, which results in results that are

more accurate. In total, the optimizations performed

in this paper uses 62408 FPGA resources, which

shows 53.73%, decrease in resources consumptions

compared to the direct implementation (120627

resources).

8. Conclusion

The formation of FPGA in ANN with a large

number of neurons is a challenging task. Sufficient

accuracy is one of the most important choices when

implementation ANNs on FPGAs. Sufficient

accuracy is used to measure the true capabilities of

ANN against the cost of its implementation. High

accuracy creates fewer error packages in the final

implementation. While less accuracy leads to

simpler design, more speed and reduced area

required and less energy consumption. On the other

hand, using LUTs reduces the need for resources and

improves speed. In addition, implementation LUT

does not require external RAM because internal

memory is sufficient to implement induction

functions. In this paper, a method for detecting facial

modes on FPGA using a 5-layer neural network as a

layered multiplex is presented. The results show that

the choice of the number of neurons and layers is

also important. If we want to implement a neural

network with deep learning by a large number of

layers using MLP on FPGA, we have a very difficult

task ahead of us. For example, if we have a network

with 100 hidden layers, it is almost impossible to

implement on a low cost FPGA. However, with the

method presented in this paper, it can be

implemented. On the other hand, if you use FPGA

with more resources, you can implement more

complex functions such as hyperbolic tangent,

which greatly helps the accuracy of the output.

References

[1] M. Beringer, F. Spohn, A. Hildebrandt, J. Wacker, and G.
Recio, “Reliability and validity of machine vision for the

assessment of facial expressions,” Cogn. Syst. Res., vol. 56, pp.
119–132, 2019.

[2] F. Yang and M. Paindavoine, “Implementation of an RBF
neural network on embedded systems: real-time face tracking and
identity verification,” IEEE Trans. Neural Networks, vol. 14, no.
5, pp. 1162–1175, 2003.

[3] H. Tsutsui, H. Nakamura, R. Hashimoto, H. Okuhata, and
T. Onoye, “An fpga implementation of real-time retinex video
image enhancement,” in 2010 World Automation Congress,
2010, pp. 1–6.

[4] Y. Lee and S.-B. Ko, “FPGA implementation of a face
detector using neural networks,” in 2006 Canadian Conference on
Electrical and Computer Engineering, 2006, pp. 1914–1917.

[5] S. Wang, Q. Gan, and Q. Ji, “Expression-assisted facial
action unit recognition under incomplete au annotation,” Pattern
Recognit., vol. 61, pp. 78–91, 2017.

[6] A. Dinu, M. N. Cirstea, and S. E. Cirstea, “Direct neural-
network hardware-implementation algorithm,” IEEE Trans. Ind.
Electron., vol. 57, no. 5, pp. 1845–1848, 2009.

[7] A. Dinu and M. Cirstea, “A digital neural network FPGA
direct hardware implementation algorithm,” in 2007 IEEE
International Symposium on Industrial Electronics, 2007, pp.
2307–2312.

[8] D. Govekar and A. Amonkar, “Design and implementation
of high speed modified booth multiplier using hybrid adder,” in
2017 International Conference on Computing Methodologies and
Communication (ICCMC), 2017, pp. 138–143.

[9] X. Peng, L. Zhang, Z. Yi, and K. K. Tan, “Learning locality-
constrained collaborative representation for robust face
recognition,” Pattern Recognit., vol. 47, no. 9, pp. 2794–2806,
2014.

[10] Y. Pan, J. L. Trahan, and R. Vaidyanathan, “A scalable and
efficient algorithm for computing the city block distance
transform on reconfigurable meshes,” Comput. J., vol. 40, no. 7,
pp. 435–440, 1997.

[11] J. Murphy and R. Cook, “Revealing the mechanisms of
human face perception using dynamic apertures,” Cognition, vol.
169, pp. 25–35, 2017.

[12] M. G. Calvo, A. Fernández-Mart\’\in, and L. Nummenmaa,
“Facial expression recognition in peripheral versus central vision:
Role of the eyes and the mouth,” Psychol. Res., vol. 78, no. 2, pp.
180–195, 2014.

[13] B. Lahasan, S. L. Lutfi, I. Venkat, M. A. Al-Betar, and R.
San-Segundo, “Optimized symmetric partial facegraphs for face
recognition in adverse conditions,” Inf. Sci. (Ny)., vol. 429, pp.
194–214, 2018.

[14] Y. Duan, J. Lu, J. Feng, and J. Zhou, “Topology preserving
structural matching for automatic partial face recognition,” IEEE
Trans. Inf. Forensics Secur., vol. 13, no. 7, pp. 1823–1837, 2018.

[15] V. Domen and B. Simon, “Implementation of Massive
Artificial Neural Networks with Field-programmable Gate
Arrays,” IFAC Proc. Vol., vol. 45, no. 4, pp. 133–138, 2012.

[16] S. Murugan, K. P. Lakshmi, J. Sundar, and K.
MathiVathani, “Design and Implementation of Multilayer
Perceptron with On-chip Learning in Virtex-E,” AASRI
Procedia, vol. 6, pp. 82–88, 2014.

[17] V. Tiwari and N. Khare, “Hardware implementation of
neural network with Sigmoidal activation functions using
CORDIC,” Microprocess. Microsyst., vol. 39, no. 6, pp. 373–381,
2015.

[18] R. McCready, “Real-time face detection on a configurable
hardware system,” in International Workshop on Field
Programmable Logic and Applications, 2000, pp. 157–162.

[19] M. S. Sadri et al., “An FPGA based fast face detector,”
2004.

[20] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, “Fpga-based
face detection system using haar classifiers,” in Proceedings of

148 International Journal of Smart Electrical Engineering, Vol.10, No.3, Summer 2021 ISSN: 2251-9246

EISSN: 2345-6221

the ACM/SIGDA international symposium on Field
programmable gate arrays, 2009, pp. 103–112.

[21] M. Hiromoto, H. Sugano, and R. Miyamoto, “Partially
parallel architecture for adaboost-based detection with haar-like
features,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no.
1, pp. 41–52, 2008.

[22] P. Baldi and P. Sadowski, “Learning in the machine:
Recirculation is random backpropagation,” Neural Networks,
vol. 108, pp. 479–494, 2018.

[23] W. Zhou and J. Jia, “A learning framework for shape
retrieval based on multilayer perceptrons,” Pattern Recognit.
Lett., vol. 117, pp. 119–130, 2019.

[24] H. K. Ghritlahre and R. K. Prasad, “Exergetic performance
prediction of solar air heater using MLP, GRNN and RBF models
of artificial neural network technique,” J. Environ. Manage., vol.
223, pp. 566–575, 2018.

[25] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar,
and I. Matthews, “The extended cohn-kanade dataset (ck+): A
complete dataset for action unit and emotion-specified
expression,” in 2010 ieee computer society conference on
computer vision and pattern recognition-workshops, 2010, pp.
94–101.

[26] Y. Li, M. J. Zuo, Y. Chen, and K. Feng, “An enhanced
morphology gradient product filter for bearing fault detection,”
Mech. Syst. Signal Process., vol. 109, pp. 166–184, 2018.

[27] Z. Jiang, D. Zhang, and G. Lu, “Radial artery pulse
waveform analysis based on curve fitting using discrete Fourier
series,” Comput. Methods Programs Biomed., vol. 174, pp. 25–
31, 2019.

[28] A. Hernandez-Matamoros, A. Bonarini, E. Escamilla-
Hernandez, M. Nakano-Miyatake, and H. Perez-Meana, “Facial
expression recognition with automatic segmentation of face
regions using a fuzzy based classification approach,” Knowledge-
Based Syst., vol. 110, pp. 1–14, 2016.

[29] A. T. Lopes, E. de Aguiar, A. F. De Souza, and T. Oliveira-
Santos, “Facial expression recognition with convolutional neural
networks: coping with few data and the training sample order,”
Pattern Recognit., vol. 61, pp. 610–628, 2017.

[30] C. MageshKumar, R. Thiyagarajan, S. P. Natarajan, S.
Arulselvi, and G. Sainarayanan, “Gabor features and LDA based
face recognition with ANN classifier,” in 2011 International
Conference on Emerging Trends in Electrical and Computer
Technology, 2011, pp. 831–836.

[31] E. M. Bouhabba, A. A. Shafie, and R. Akmeliawati,
“Support vector machine for face emotion detection on real time
basis,” in 2011 4th International Conference on Mechatronics
(ICOM), 2011, pp. 1–6.

[32] R. Saabni, “Facial expression recognition using multi
Radial Bases Function Networks and 2-D Gabor filters,” in 2015
Fifth International Conference on Digital Information Processing
and Communications (ICDIPC), 2015, pp. 225–230.

[33] S. Coric, M. Leeser, E. Miller, and M. Trepanier, “Parallel-
beam backprojection: an FPGA implementation optimized for
medical imaging,” in Proceedings of the 2002 ACM/SIGDA
tenth international symposium on Field-programmable gate
arrays, 2002, pp. 217–226.

[34] S. Liang, S. Yin, L. Liu, W. Luk, and S. Wei, “FP-BNN:
Binarized neural network on FPGA,” Neurocomputing, vol. 275,
pp. 1072–1086, 2018.

[35] Z. Lin, Y. Dong, Y. Li, and T. Watanabe, “A hybrid
architecture for efficient FPGA-based implementation of
multilayer neural network,” in 2010 IEEE Asia pacific conference
on circuits and systems, 2010, pp. 616–619.

