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Abstract 

Face is a unique characteristic of the human. Detecting the state of the human face, due to its difficulty on the one hand and 

its many useful features on the other hand, is one of the most important issues in the image processing. In this paper, a five-

layer perceptron artificial neural network (MLP) with a supervisor as a complete connection has been used to separate the 

different facial modes. Learning in the MLP network is done deeply with a high number of layers. The network has 4 class: 

anger, fear, happiness and surprise. First, the main points and areas of the face that are effective in detecting the state of the 

face are extracted by edge finding, and then, using the matching of the Fourier series diagram on the operational points of the 

face, the diagram of those points is obtained. From this diagram, a number of features in the form of three coefficients and an 

angular velocity are used for network training. Face database images with fixed backgrounds are used for network training. 

This network is first implemented with Matlab and then MLP layer multiplex is used to implement on FPGA. The results show 

that the proposed method can be implemented on FPGA platforms with low cost and limited resources, with appropriate output 

accuracy. In this paper, in addition to speed, accuracy has been tried to create an application system for communication between 

humans and computers. 
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1. Introduction 

Detection of the face and its states, due to its 

sensitive and diverse features, has been one of the 

most important research topics in the last two 

decades. Detected human behavior or state are used 

for stronger and more effective interaction between 

human and computer. To achieve natural and 

comprehensive human-computer interaction, human 

facial modes can be used as an interface. Face 

detection uses in the field of video surveillance, 

control of users' access to system resources and 

image retrieval from large image databases. In 

designing animations, designing different characters 

in games and also in computer graphics, face 

detection can be used properly [1]. On the other 

hand, among the configurable hardware, it has high 

speed, multiple resources and prompt processing. 

There are several hardware platforms for hardware 

implementation. Each of these platforms provides a 

kind of balance between efficiency and flexibility 

and planning. Performance here refers to 

computational efficiency, and the usual measure for 

measuring.   

It is the number of instructions per second. 

With comparing hardware platforms such as FPGA, 

ZISC and DSP [2] it can be seen that FPGA is 

reprogrammable and can provide a lot of flexibility 

for the designer. Although FPGA-based 

customizable computational architectures are 

suitable for hardware implementation of neural 

networks, implementation networks with a large 

number of neurons and high, computational volume 

on FPGA artificial neural ANN is still a challenging 

task. It is performed on the features of the facial 

organs, the most important of which are the eyes, 

mouth and eyebrows. Facial modes are created by 

changes in different points of the face. Each of these 

parts is called the active unit (AU). Using the rules, 

the movements of these limbs are determined by 
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different AUs. He described each specific state of 

the face with a number of AUs, but the way changes 

in AUs varies from person to person, even to show 

a particular state. It then groups the features based 

on their geometric relationship, and in addition, it 

can be extended to different views of the face [5]. 

Input data should be independent of rotation, 

distance, size and intensity of ambient light as well 

as facial skin color.  

With the prepared matrix in hand, facial modes 

can be detected in various ways such as statistical 

methods, phase, support vector machine (SVM), 

Markov hidden model, decision tree (DT) and neural 

network. The method used in this paper is based on 

AU. At first, a 5-layer neural network is used to 

classify facial modes in Matlab. Then a 5-layer 

network on the FPGA Spartan3 Xillinx using 

optimizations performed and Layer multiplexing is 

performed in the neural network by determining the 

geometric distances and angles of the eyebrows, lips 

and eyelids, the input matrices of the diagnosis. The 

direct implementation of the neural network is too 

time consuming and requires complex calculations 

[6], [7] and consumes a lot of resources. This 

mathematical model takes the digital neural network 

to the gate level and implements the gates directly, 

but in the parallel architecture presented in this 

paper, all layers are parallel. They are able to work 

with a multiplexer in the control layer, and for this 

reason, the performance speed is very high. The 

sigmoid function has been implemented in 

hardware, and a new method has been used to store 

weights in computational units that can simplify the 

implementation of neural networks on hardware. 

Using the addition and subtraction operations 

instead of multiplying [8] and doubling the value of 

the activation function (sigmoid function) is another 

trick used to save resources and reduce 

computational volume. 

2. Literature Review 

Please use automatic hyphenation and check 

your spelling. Additionally, be sure your sentences 

are complete and that there is continuity within your 

paragraphs. Check the numbering of your graphics 

and make sure that all appropriate references are 

included. 

In order to compare the paper with the existing 

methods, the related works are divided into three 

categories.  

− Diagnosis of facial modes using neural network 

without hardware implementation.  

− Methods that have recently implemented neural 

networks with different optimizations for 

specific applications on FPGA, in the second 

part is only the implementation of neural 

networks and methods of optimizing and 

reducing available resources. 

− Implementation a neural network to detect face 

and state on FPGA.  

Peng et al. [9] introduced a technique called 

LCCR to increase discrimination in representative 

images. The LCCR applies to five different 

databases with five remote measurements. In the 

case of minor faces, they use three facial features, 

namely the right eye, nose and mouth with chin, by 

covering the main images. The results show that the 

right eye, mouth and chin have a high detection rate 

[10]. Murphy et al. [11] show the mechanism of 

human facial perception based on facial stimuli. 

Their work shows that it is difficult for a human 

being to perceive a face when he has turned back. In 

addition, in their experiments, they tried to measure 

the ability of a divider to classify the presented faces 

as a whole and region by region using a dynamic 

diaphragm that gradually moved from the face 

image.  

The main idea in this work is to recognize the 

limitations of human ability to understand and 

recognize. In their work, they tested the idea in four 

modes: identity, gender, age, and emotion in four 

conditions: full face right and left, full face rotated, 

straight diaphragm, and inverted diaphragm. The 

results show that the detrimental effects of the 

inverted face on showing a partial face to the 

participants are not less than the absence of 

diaphragm. Andre and Nomena [12] have studied 

face detection on partial faces due to the presence of 

emotions on the face. Minor faces mean incomplete 

faces that only some AUs can detect. In one of their 

experiments, they tested facial detection for six 

common emotions: happiness, anger, sadness, 

disgust, normaly, and fear. In the case of a partial 

face, the face was divided into two parts, one 

containing the eyes and the other containing the 

mouth. The remarkable result of their work is that 

humans have a poor detection rate when they only 

reach the condition of the eyes and mouth. On the 

other hand, they noted that the feeling of a smile 

produces a relatively better detection rate. However, 

when dealing with the acute closure of a face, the 

performance of current methods is significantly 

reduced. Many previous studies point out that when 

it comes to detecting the human face, familiarity 

seems to be a key cognitive factor. Of course, the 

effect of familiarity changes when the image of the 

target face is partial, closed, with emotions, or his 

age has changed. Lahazan et al. [13] have proposed 

a framework called OSPE for face detection in a 

variety of situations. For example, closed faces, 

facial modes, and changing brightness are some of 

the tips used in testing them. Again, their 

experimental results show that improvements in 
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detection rates are achieved by partial facial data. In 

addition, Dona et al. [14] have developed a 

technique called TPGM to improve the cognitive 

process of using partial faces. In the next section, we 

take a brief look at parallel and optimal 

implementations that reduce resource utilization. In 

a solution [15] for the implementation of high-

volume networks with a high number of layers is 

considered. In this study, a multiplier implements 

each neuron, and nonlinear operations, such as non-

linear network activation functions, are converted 

into linear blocks, which are then implemented. In 

this implementation, for example, if an FPGA has 

3600 multipliers, a 40 × 40 neuron can be 

implemented with it. Internal memory is used to 

store the results of each layer along with the input 

and weights, and for that, Some FPGAs with limited 

memory use external memory.  

An implementation for the Xor issue was 

performed on the Virtex chip [16]. According to the 

paper, this implementation is based on a multilayer 

perceptron network and the use of a post-diffusion 

algorithm, and is used in real-time fields such as 

pattern detection, image processing, and audio 

processing, and so on. It consists of three main 

control units: the post-emission unit, the forward 

unit, and the control unit, which controls both of the 

previous units. The implemented network has three 

layers, the first layer, like the Xor gate, has two 

inputs, the hidden layer consists of two neurons, and 

the output layer has one neuron. In a leading network 

[17] using two activation functions on the hardware 

platform 5 series Virtex, FPGA is implemented. The 

innovation of this paper is in implementation 

activation functions that use digital computer 

algorithm with coordinate rotation. This algorithm 

converges to the answer using iteration. Two types 

of activation functions are implemented using this 

algorithm: sigmoid function and hyperbolic tangent 

function.  

Neurons and connections between layers are 

also implemented directly using a multiplier. VHDL 

hardware language and ISE implementation 

environment is Xilinx and ISim emulator. 

According to the paper, with this method, the 

accuracy of the output results is very high compared 

to other implementations of activation functions, 

and even the speed has been increased. The next 

section examines the implementation of neural 

networks on the FPGA for face detection and its 

state.  

McCreedy et al. [18] designed and 

implemented by 2-Transmogrifier configured 

software. This implementation uses 9 FPGA boards.  

Cedri and colleagues [19] implemented a neural 

network based on face detection on the FPGA 

Model II-Vertex pro. Skin color filtering and edge 

detection are used to reduce processing time. 

However, some operations on the PowerPC 

processor are implemented with the software 

installed. Cho et al. [20] have proposed a method for 

using FPGAs to accelerate face detection based on 

the Haar feature classifier. They retrained the Haar 

attribute with 16 categories in each step. Although 

only classifiers are implemented in FPGA. A host 

microprocessor creates images integral and detects 

face. However, the most powerful Model 5-Vertex 

FPGA is used for implementation because the 

designed size is too large. Hiromoto and his 

colleagues [21] have implemented a real-time object 

discovery based on the AdaBoost algorithm. They 

provide a hybrid architecture of parallel processing 

modules for step formatting as well as a sequential 

module for sequential steps in the cascade design. 

Because the parallel processing module and the 

sequential processing module are split after 

processing time evaluation, they must be redesigned 

and implemented to provide data with new features. 

However, the experimental results and the analysis 

of the implemented system are not discussed. 

3. Implement different face modes in Matlab 

In this paper, the 5-layer perceptron network 

(MLP) with the most widely used algorithm used in 

MLP networks, namely the post-diffusion algorithm 

is used for separation. In the post-diffusion 

algorithm, there are two computational paths: feed 

path and return path. Route path the network 

parameters do not change during the computation 

and the stimulus functions act on each neuron. In the 

return path, the work starts from the last layer, the 

output layer, where the error vector is available. 

Then the error vector from the side Right to left is 

distributed from the last layer to the first layer, and 

the local gradient, neuron to neuron, is computed by 

the recursive algorithm [22]. For the input pattern 

pm, the square of the output error for all cells of the 

network output layer becomes as equation 1 [23]: 

𝐸𝑝 =
1

2
(𝑑𝑝 − 𝑦𝑝)2 =

1

2
∑(

𝐼
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Where djp is the desired output for the j cell in 

the output layer and output is the actual d for the j 

cell in the output layer, s are the dimensions of the 

output vector, yp is the actual output vector, and dp 

is the desired output vector. The total error reference 

E for the pattern P is equation (2): 
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  The weights are adjusted in order to reduce 

the cost function E to a minimum by descending 

gradient method. The equation for updating weights 

as equation (3) is: 
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𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + 𝜂Δ𝑤𝑖𝑗(𝑡) + 𝛼Δ𝑤𝑖𝑗(𝑡 − 1) (3) 

Where ∆𝑤𝑖𝑗(𝑡) = −(
𝜕𝐸𝑃

𝜕𝑤𝑖𝑗(𝑡)
) , learning rate 𝜂  , 

temporal coefficient  of new weight 𝑤𝑖𝑗(𝑡 + 1) 

and old weight 𝑤𝑖𝑗(𝑡) . Also in this method, weights 

are frequently updated for all learning patterns. The 

learning process stops when the total error, E, for the 

pattern p falls below the set threshold value or the 

total number of training periods ends. The error 

propagation training method reduces the probability 

of convergence in local minima [23]. During the 

learning process, the network learning rate is 

regularly measured by the target functions, and 

finally the networks with the lowest error rate and 

the highest accuracy and sensitivity are accepted. 

Some objective functions are: root mean square 

error (RMSE), mean absolute error (MAE), sum of 

squares error (SSE) and good fit coefficient (R.) In 

this network, the neurons of each layer are 

completely connected to the neurons of the previous 

layer. After affecting the actuator function, each 

layer becomes the input of the next layer, and this 

process continues until the network output is 

obtained.  

Activation function in this paper is the logistic 

unipolar sigmoid function. The unipolar sigmoid 

function, whose diagram is S-shaped, is the most 

common form of activation function in artificial 

neural networks. This function, also known as the 

incremental uniform function, shows a good balance 

between linear and nonlinear behavior. An example 

of a sigmoid function is a logistic function in which 

g is the slope coefficient of the sigmoid function. By 

changing the parameter g in (4), the sigmoid 

function with different slopes is obtained [24]. 

𝐹(𝑛𝑒𝑡) = 1
(1 + 𝑒−𝑔.𝑛𝑒𝑡)⁄  (4) 

As g tends to infinity, the sigmoid function 

becomes the threshold function. The important thing 

about this function is that it is a derivative function 

and this is a very important issue in neural networks. 

Common modes of emotion detection are six 

classes: anger, fear, happiness, normally, sad, and 

surprise. For optimal implementation on FPGA, two 

common modes have been removed so the network 

has four classes: Anger, Fear, Happiness, and 

Surprise. First, the main points and areas of the face 

that are effective in detecting facial modes are 

extracted by edge finding. Fig. 1 shows a happy one-

face image of the Kanade-Cohn dataset with three 

edge-finding methods applied to it [25]. Here, the 

Bobby Sobel edge method is used. After the edge-

finding step, it is time to remove the extra lines and 

join the desired lines. For this purpose, 

morphological filters have been used. The first 

operator used is the bridge operator, which is used 

to bridge between discrete pixels and is as follows: 

 
Pixels with a value of zero become one in a 

binary image. The next operator is the diagonal 

bridge that converts the zeros in the original 

diameter to one, as follows: 

 
The result of applying these two operators is 

filling the lines of the mouth and eyes. After 

applying the morphological agents, it is time to 

connect the eyes, mouth and eyebrows to get their 

place. With the help of imfill and imclose 

morphological operators in the form of 4-point, 6-

point and 8-point dots for filling and points 0 and 1 

of the array for closing, the lines of eyes, mouth and 

eyebrows can be turned into full objects [26]. Fig. 2a 

is the result of applying morphological filters to the 

original image. The next filter is for deleting 

continuous pixels that are smaller than a certain 

value. This filter is done by the “bwareaopen” 

command and has 4, 6 and 8 pixel connection points. 

Finally, in Fig. 2c, the desired areas appear on the 

main image, which includes the mouth and eyes. 

Using Fourier series and w which is shown in the 

equation 5, 20 face features such as mouth , eye, and 

eyebrow can be obtained. That is, in fact, the inputs 

of the neural network are 20. Fourier series 

coefficients describe the state of the face and are 

taught to the network as a feature. 

𝑓(𝑥) = 𝑎0 + 𝑎1 cos(𝑥𝜔) + 𝑏1sin⁡(𝑥𝜔) (5) 

Where x and 𝑓(𝑥) are obtained as coordinates 

of points and coefficients and they are multiple by 

𝑎0 , 𝑎1, 𝑏1 and 𝜔 is angular velocity [27]. 

As an example for the image shown in Fig. 1, 

the above values for the lower lip are as 𝑎0 = 176 ∙
4⁡⁡𝑎1 = 70 ∙ 82⁡⁡𝑏1 = 6.66⁡⁡𝜔 = 0 ∙ 071 
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Fig. 1. Drawing a happy face from the Kanade-Cohn Dataset  

 

Fig. 2. Apply morphological filters on the main image, remove 

excess lines by this filter and detect the main areas of the face on 

the main image 

A) Database 

In the dataset matrix, we have 21 columns, 20 

of which are related to the Fourier series 

coefficients, ie our inputs, and the last column is the 

class number (1 to 4 for 4 classes). At this stage, the 

last column of each class is removed and replaced 

by four columns The following 4 classes are added 

to the mark: 

− 0001 means class one of four classes 

− 0010 means class two of four classes 

− 0100 means class three of four classes 

− 1000 means class four of four classes 

Then we produce training and test matrices 

from these 4 classes in the form of 60% training and 

40% testing. Having a diverse and powerful 

database on the one hand helps in accurate detection 

and on the other hand in processing speed 215 

images used to be created from the Kanade-Cohn 

database. Fixed face images with a specific 

background are used to teach the network. The 

sample number of each class is as follows: 

− Class1: 57  

− Class2: 57  

− Class3: 44 

− Class4: 58 

Rows of test and training matrices are also 

moved so that examples from all classes are evenly 

distributed. The training matrix has 147 examples 

and the test matrix has 68 examples, which adds up 

to 215, which is the sum of the total samples. After 

making the matrix, it is time to normalize the matrix 

elements, which is done for ease of calculation so 

that all the elements are placed between zero and 

one. Then four classes are separated from each other 

and the rows of each class are moved randomly. 

B) Network input matrix 

The network input matrix has 20 properties and 

4 classes and has 24 columns. From each selected 

member (upper lip, lower lip, and right eyelid, left 

and right eyebrow) four Fourier series feature 

coefficients are extracted so 20 features are 

extracted. Table (1) shows the number of features 

for each example. 

 

 

Table.1. 
Number of features to generate neural network input matrix 

 Upper lip, Lower lip, Right eyelid, Left eyebrow, Right 

eyebrow 

EX.1  b1 a1 a0 

EX.2  b1 a1 a0 

EX.3  b1 a1 a0 

EX.4  b1 a1 a0 

C) MLP network structure 

The network selected in this part of the MLP 

network is supervised learning by five layers that 

have three hidden layers, in the form of 20-8-8-8-4 

input layer of 20 neurons, output layer of 4 neurons 

and hidden layers each have 8 neurons. First, the 

database matrix is called and the output and 

properties are separated from each other. Then, three 

matrices are randomly assigned as weights for the 

links between the input and hidden layers first, the 

first and second hidden layers, and the second 

hidden layer. Output layers are generated.  

The network starts for a certain number of 

iterations. Examples Line by line pass through the 

activation function, which is the sigmoid function, 

in each layer, multiplied by the values of the 

weights, and move on to the next layer. Weights are 

updated after the repetitions are completed. 

Therefore, the method used in the network is Batch 

learning. Weight update values are obtained from 

equation (3). Then the error signal and the mean of 

the total error are obtained for all examples of 

relations (1) and (2). An error or repetition condition 

can be set for the end of the network. Fig. 3 shows 

the structure of a five-layer perceptron network, 

including layer one, layer two, layer three, and the 

output and number of per layer neurons. 

 

Fig. 3. Five-layer perceptron network including hidden layer 

one, hidden layer two, hidden layer three and output.  

D) Results of 5-layer perceptron network in 

Matlab 

The three parameters Specificity, Sensitivity 

and Accuracy are calculated for each class. which is 

obtained from relations 6 to 8 . 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 
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𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (7) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑡𝑛 + 𝑓𝑝 + 𝐹𝑁
 (8) 

The learning rate of the network is 0.001, 

which is more suitable for coming out of the local 

minimum, but the processing speed is slower and in 

fact the forward steps of weight correction are much 

smaller. In fact, the 5-layer network in normal mode 

and with three hidden layers in the form of 8-8-8 has 

96.73% of the total accuracy and the total error of 

training is 0.42 but the main reason for this increase 

is actually the training and test and normalization 

matrices that have been done in these matrices. In 

fact, when the data is between zero and one, the 

network has less variance and scatter, and is trained 

much more accurately, and the results are better. The 

following are the results and tables related to the 

optimized network.  

The average accuracy of all four classes in 

24000 repetitions is 96.73%, which has a desirable 

value. Fig. 4 shows the error diagram for the four 

classes.  As can be seen, the network has an average 

error (Eav) of 0.037 in 3000 repetitions, which is the 

same as the mean error in relation (2). Table 2 shows 

the specifications of the 5-layer MLP network used 

in terms of structure and parameters used. In this 

table, the training type is sequential Learning, which 

means that unlike Learning Batch, weights are 

updated in each repetition.  

The training error of each class along with the 

network simulation results and the parameters of 

accuracy, sensitivity and specificity in each class are 

shown in Table 3. Fig. 5 also shows the bar chart of 

network parameters. Table 3 shows the sensitivity, 

specificity and accuracy of each class according to 

the relations 6, 7 and 8. In the last row of the table, 

the data used in each class is shown and it can be 

seen that the examples in all four classes are evenly 

distributed and total number is 215. 

 

 

Fig. 4. Training error reduction chart for all 4 classes in 24000 

repetitions.  

 

Fig. 5. Bar chart of three parameters of accuracy, sensitivity 

and specificity for 5-layer network. 

Table.2. 
5-layer MLP network specifications used 

Item Value 

Number of Features 20 

Number of Epoch 24000 

𝐸𝑎𝑣 0.037 

ACC𝑎𝑣 96.73% 

Connection Full connection 

Number of layers 5 

Learning rate 0.001 
Train example 147 

Test example 68 

Learning way Sequential learning  
Number of neurons 20-8-8-8-4 

Table.3. 
5-layer MLP network results in Matlab. 

 Anger Surprise Fear Happiness Total 

Accuracy 98 97 90 98 96.73 

Sensitivity  95 88 92 100 93.75 

Specificity  100 98 93 98 97.25 

𝐹𝑁⁡ 1 1 5 0 - 

𝐹𝑃⁡ 0 1 4 1 - 

𝑇𝑁⁡ 48 60 48 48 - 

𝑇𝑃⁡ 20 8 20 20 - 

𝐸𝑎𝑣 0.083 0.089 0.0521 0.051 0.068 

Number of 

instances 
57 57 44 57 215 

Table.4. 
Compare the results of 5-layer MLP network with other  

 

MLP 

5-Layer 
[28] [29] [30] [31] [32] 

Average 

Accuracy 
 

96.73 99 96.76 98 91.5 89.85 

Average 

Sensitivity 
 

93.75 - - - - - 

Average 

Specificity 
 

97.25 - - - - - 

𝐸𝑎𝑣train (MSE) 
 

0.027 - - 0.004 - - 

𝐸𝑎𝑣⁡test⁡(MSE) 0.11× 10−4 0.07 0.024 0.002 - - 
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E) Compare paper results with other sources 

In this section, the results of the 5-layer MLP 

network in Table 4 are compared with other sources. 

It should be noted that according to Tables 3 and 4, 

the accuracy of this network is repeated for 6000 and 

later repetitions, which has a value of 96.73% , along 

with sensitivity and specificity in this repetition. In 

reference [28], the phase separator method is used in 

such a way that the colour image of the face is 

immediately divided into two areas of the eyes and 

mouth, and in fact, only these two parts of the face 

are used. From 54 Gabor functions and filters are 

used to detect states, then the database matrix is 

given to the PCA algorithm to optimize the 

properties and then to a phase separator. 97% 

accuracy is for one area and 99% for two areas. In 

reference [28], the phase separator method is used in 

such a way that the colour image of the face is 

immediately divided into two areas of the eyes and 

mouth, and in fact, only these two parts of the face 

are used. From 54 Gabor functions and filters are 

used to detect states, then the database matrix is 

given to the PCA algorithm to optimize the 

properties and then to a phase separator. 97% 

accuracy is for one area only and 99% for two areas. 

 [29] uses convolutional neural networks in 

which facial images can be fed directly to the 

network for analysis. In this research, three 

databases -BU, JAFFE +, CK 3GGG have been used 

and according to the author's claim, the accuracy has 

reached 96.76%. In reference [30], Gabor filters 

have been used for the feature. Then the two 

algorithms PCA and LDA are used sequentially for 

database and extraction of the best features and this 

feature matrix is given to a neural network for 

segmentation.  

According to the author, for 199 faces, they 

have obtained a value of 98%. Reference [31] has 

selected one of the support vector machine separator 

network in addition to rabid features to diagnose 

facial modes in 3 tones. In this research, three states 

of surprise, sadness and happiness have been used, 

and the state of surprise has the highest accuracy and 

value of 97%. Sad and happy states have values of 

84.5% and 93%, respectively. The overall accuracy 

of the grid is 91.5. Reference [32] uses an RBF radial 

approximation grid with Gabor 2D filters for 6 face 

modes. In this research, two databases, JAFFE +, 

CK are used, the accuracy of which is 88% for 

JAFFE database and 91.7% for CK + database. If we 

want to calculate the average values of the two bases 

for the total accuracy of the network, the accuracy of 

the whole network is 89.85%.  

4. Performed implementation on FPGA without 

layer multiplexing  

The implementation is done in two ways: 

normal implementation and implementation using 

multiplexing layers. The following modules and the 

Verilog language implement the network 

implemented in Matlab. The neural network 

implementation modules 20-8-8-8-4 without 

multiplex and with multiplex layers are as follows: 

− Middle layer neurons 

− Output layer neurons 

− Multiply Booth 

− Sigmoid stimulation function 

− Control unit for neurons and layers 

− RAM corresponding to the weights 

corresponding to the links between the layers 

When using layer layers, some of the modules 

introduced undergo changes, including the neuron 

and layer control module and the middle layer 

module. The number of intermediate modules in the 

layer multiplex is reduced from three to one. The 

reason for this is to reduce the middle or hidden 

layers from three layers to one layer. Each neuron in 

each layer is assigned a module. For example, 

hidden layer and output neurons have two separate 

modules. For multiplication, shift and addition 

operations are used instead of multiplication. This 

algorithm is performed in Booth multiplication and 

will be explained below.  

To maintain the values related to the weights 

and bias of the neurons, six RAMs have been used. 

If we show the number of neurons in the middle 

layer with N, the RAM of the computational model 

of the link is placed so that in the zero address of this 

RAM the values of the weights. The links between 

the inputs and the number one neuron in the middle 

layer are placed and the other weights are placed in 

the same way and a total of N addresses are required.  

After the weight of the links and the bias values 

in the learning phase are calculated by Matlab 

software, Data are included in the FPGA by the 

above rules. All neural network links are accessible 

by sequential increment of the address. This is 

shown in Fig. 6. When the address is zero, the 

operation shown in Fig. 6 is performed. By 

increasing the address to 1, more links are covered. 

These links are shown in Fig. 7. Therefore, all 

network links are available by increasing the address 

from zero to N (N number of middle layer neurons). 

In Fig. 6, only the number one neuron of the 

first middle layer is complete, the neurons one to 

eight have two other middle layers, and the neurons 

one to four of the output layer are incomplete.  
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Fig. 6. Sequential increase of address and how to calculate 

links and preparation of the amount of neurons in the first 

middle layer 

Since in hardware implementation all the code 

is executed in the software together, so we need to 

address and move forward systematically because it 

is not possible to get the output by multiplying all 

the neurons in the weights at once. Here the values 

of the neurons The output cells are not complete but 

multiplied by their own weight, ie 8, 7, 6, 5, 4, 3, 2 

neurons from the second and third middle layers are 

still remain, so the output is complete when the 

amount of neurons in 8 middle layers in the second 

and Third be prepared. In this clock, we used below 

RAMs to multiply the values.  

− Related to the first input and middle layer 

(named Mid_weight_Mem) in the 

implementation at the address A0.  

− For the first and middle layers (called 

Mid2_weight_Mem) in implementation at 

address A0. The second middle layer and the 

third middle layer) called A0  

− Address in pavement (Mem_weight_Mid3 

refers to the bias of all intermediate layers, 

which is a value of RAM that is connected to all 

three layers because bias is an arbitrary fixed 

number) usually one (in the address A0. 

− Related to interlayer values the third 

intermediate and the output layer at address A0. 

− Corresponds to the bias of the output layer.  

In Fig. 7 at address A1, as can be seen, the 

neurons No. 2 of the first middle layer are completed 

and the other three layers are one-step closer to 

completion. If careful, a new value is added to the 

second and third middle layer neurons number one, 

which is the value of the second neuron of the first 

middle layer. 

 

Fig. 7. Increase the address to one and how to calculate the 

second neuron of the first middle layer. 

As mentioned earlier, the values of these 

neurons are incomplete until all the neurons in the 

first middle layer are complete and the output of 

one-step is closer to its final value. Therefore, with 

eight clock (the number of neurons in the middle 

layer), the amount of all neurons is complete and the 

output is complete. 

A) Middle layer neurons 

In the middle layer module, the inputs are 16 

bits, and since we have 20 inputs, a total of 320 bits, 

which is from zero to 319, are intended for the inputs 

and the weights waiting for it. The first middle layer 

module can be considered as Fig. 8. clk, start, HZ-

bus  Single-bit input signals for Clock, respectively. 

Computational operation of impedance neurons 

(HZ). The output bus lines are available to this 

neuron. These 319 bits contain 8 weights of links 

between 20 inputs and middle layer neurons. 

Weight_Mid is the input value. Mid_Weight 319-bit 

input from a row of RAM addresses related to the 

weights of the links between the input and middle 

layers.  

The 319-bits input contains eight weights of 

links between 20 inputs and the middle layer 

neurons. Since the weights are 16 bits like the inputs, 

the 319 bits of 20 contain 319 bits of input are 

Input_Mid. The weight_Mid is the input value. Two 

middle layer modules called Mid two_Neuron and 

Mid three_Neuron are added along with two RAM 

modules for the following two middle layers. As can 

be seen in the middle layer modules, the signals of 

all three modules (clk, hz-bus) are interconnected, 

which means that the three middle layer modules 

work together. 

Moreover, has an 8-bit output that connects to 

the next middle layer. This module multiplies the 

weights inside the first RAM module at the inputs 

and passes the sigmoid activation function, which is 

the SIG_LUT module, and produces the result as an 

8-bit number. Fig. 9 shows the second module of the 

middle layer. 

 

 
Fig. 8. The first middle layer module 
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Fig. 9.  Mid two Neuron The middle layer module for the 

second layer 

This module also has a 128-bit input because 

each input is 16-bit and has an 8-bit output that 

connects to the next middle layer. Note that for the 

convenience of the output of the first middle layer, 

which was 8 bits, it becomes 16 bits. This is just to 

name the multiplied bits in the modules. 

− Input_Mid two [15: 0], weight_Mid2 [15: 0] 

− Input_Mid two [31:16], weight_Mid2 [31:16] 

If we wanted to use the same 8 bits of output 

of the first module, it would be multiplied as 

follows: 

− Input_Mid two [7: 0], weight_Mid2 [15: 0] 

− Input_Mid two [15: 8], weight_Mid2 [31:16] 

This module also multiplies the weights inside 

the second RAM module at its inputs, which is the 

output of the previous middle layer module, and 

passes the sigmoid activation function, which is the 

same as the SIG_LUT module, and produces the 

result as an 8-bit number. Fig. 10 shows the third 

module of the middle layer. 

 
Fig. 10. Mid three_Neuron Middle layer module for the third 

layer. 

This module also has a 128-bit input because 

each input is 16-bit and has an 8-bit output that 

connects to the next middle layer.  It works just like 

the previous modules. 

B) Output layer neurons 

Fig. 11 shows the output layer neuron module. 

This module is similar to the middle layer module, 

except that here the values for the weight of the links 

and the bias of the neurons are obtained from the 

respective RAMs. Also, input-out is an 8-bit input, 

which is actually the same as the 8-bit output of the 

previous layer neurons and the third middle layer 

module. 

 

Fig. 11. Output layer neuron module 

The output neuron module receives the output 

of the last layer, which is 8 bits, as input, and finally, 

by explaining the output and how it is completed, 

passes the sigmoid function and produces the final 

output. It should be noted that the meaning of bias 

values, which are considered as two RAMs, one for 

the middle layer and one for the output layer, is a 

series of fixed numbers that have the order of 

illumination for neurons, and in this project to all 

Layers are given the same number to save resource 

usage. 

C) RAM related to the weights that are link 

between the input layer and the middle 

layer 

In this module, the Initialization input signal is 

used to initialize the memory. These values are 

stored in memory according to the trained network 

in Matlab software. The 3-bit input specifies the 

desired address. For each value, 4 bits are assigned 

and we have 20 weights (number of inputs). Finally, 

80-bit Data output contains weights. Subsequent 

RAM modules such as RAM corresponding to the 

weights corresponding to the links between the 

middle layer and the output layer. The RAM 

corresponding to the bias corresponding to the 

middle layer neurons and the RAM corresponding to 

the bias corresponding to the output layer neurons 

are similar to the above implementation, except that 

their output data is different based on the application 

of the said RAM and it is avoided. The module of 

this RAM has eight addresses as follows: 

 
mem[0]=_80'b01100001001100100010000111111000000000010
011001001000010001110100011000110000001; 
mem[1]=80'b010100100101001011000001000100010001010100
01010100010001000110010111001101010000; 
mem[2]=80'b0001101001010010010110010101010101010100101
0001101010001001100010010000100010001; 
mem[3]=80'b010110101001001000101011000100010101100100
01110100010001010100010000011100010011; 
mem[4]=80'b110100100101000001001011000110010101010100
01011000101001011001010101100101010101; 
mem[5]=_80'b00110010110100110101100100010001000100100
111000110011001011100010100100100010010; 
mem[6]=_80'b01010010010100111100000100011001000101010
001011010101011000101011001001101011001; 
mem[7]=_80'b11010101010100110011110100010001000101001
101000101000111000101011001000100110101; 
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Each 4 bits is a weight number. Nevertheless, 

in the address line zero (mem (0)) the first four bits 

are 0110 which shows the number 5. The second 

four bits are 0001, which shows the number one and 

so on. When we check the matrix of weights in 

Matlab, it is observed that all values of this matrix 

are between zero and one, and this is because the 

network input vector is normalized to increase the 

network efficiency, each column is divided by its 

maximum so that the input numbers in the range are 

between 0 and 1. Now in the implementation to 

solve this problem, we multiply the weights by 10 

and then put it in RAM. If we see the first 4 weights 

in Matlab, they are as 0/5461, 0/0901, 0/2619, 

0/2162. These numbers are multiplied by 10. The 

first number with rendering is five, the second 

number is one, the third number is three, the fourth 

number is two. These numbers are written in RAM 

in the address of the first 16 bits zero as 0110  0001  

0011  0010. 

However, as you can see, these negative 

numbers RAM due to the large number of negatives. 

But the question that arises is that each RAM of this 

address line is 80 bits, so how in the first module the 

middle layer has a 320-bit weight_ mid input. The 

answer is that every 4 bits have been converted to 16 

bits for ease of writing the module and 

multiplications, which are multiplied as follows in 

the first middle module: 

− Input_Mid [15: 0], weight_Mid [15: 0] 

− Input_Mid [31:16], weight_Mid [31:16] 

Consider that the values of the numbers in the 

next two RAMs are because the 32-bit 

Mem_weight_Mid3 and Mem_weight_Mid2 have 8 

values, each of which has 4 bits, and multiplied by 

32 bits. Just like before, these weights are converted 

to 16 bits for ease of work. 

D) Sigmoid stimulation function 

Hardware implementation of the Sigmoid 

Stimulus Function is a very important part of the 

hardware implementation of neural networks. 

Because this function includes nonlinear mapping 

and operators such as power, addition, and division, 

it will take up many time and hardware resources if 

implemented directly. Therefore, LUT has been 

used here to implement it. From a hardware 

implementation point of view, what should be 

considered in this method is the size of the ROM unit 

and the degree of complexity of the time control for 

LUT addressing. This implementation method 

proposed by Srdjan and Coric [33] is given in 

relation to 9 and 10: 

𝑎𝑖(𝑛𝑒𝑡) =
1

1 + 𝑒−𝑛𝑒𝑡
 (9) 

𝑎𝑖(𝑛𝑒𝑡) =
255

1 + 𝑒
−𝑛𝑒𝑡
8

 (10) 

Where net is a positive integer value. If net is a 

positive and negative value, the correct sigmoid 

value is provided by the following formula: 

𝐹(𝑛𝑒𝑡) = 255 + 𝐹(𝑛𝑒𝑡)∗ (11) 

Where 𝑛𝑒𝑡∗ = 2𝑁 + 𝑛𝑒𝑡 and N is the input 

length .in relation 11,  𝐹(𝑛𝑒𝑡)∗of relation 10 can be 

calculated .The above statements show that although 

this method reduces the number of ROMs involved, 

it does not have the necessary flexibility. Address 

generation scheduling becomes very complicated 

and the processing cycle of the computational unit 

becomes longer with multiple parallelization. 

Examining the interface (10), it can be seen that, if 

the input of the sigmoid function exceeds a certain 

value, its output should be close to 255, and on the 

other hand, if the input of the function is less than a 

certain value, the output should be close to zero. 

Therefore, in order to increase the efficiency in the 

hardware implementation of the sigmoid function in 

this method, the following steps are suggested: 

− If the input of the function exceeds 127, its 

output is considered 255, and similarly, if the 

input of the function is less than -128, its output 

is taken as zero. 

− If the input is between -128 and 127, the output 

should be calculated from the following 

equation: 

𝑎𝑖(𝑛𝑒𝑡) =
255

1 + 𝑒
−𝑛𝑒𝑡
24

 

 

(12) 

These values are stored in LUT. When 

working on a neural network, the addition of 128 to 

the input can simply generate the desired address in 

the LUT. Studies show that this method is suitable 

for the middle and output layers. In addition, 

networks that use this type of implementation have 

similar performance to networks that calculate the 

sigmoid function directly with floating point data. 

E) Booth Multiplication 

In each neuron, we need to implement 

multiplication to perform computational operations. 

For this purpose, here is the Booth multiplication 

algorithm, which is used in the form of shifts and 

additions. The basis of the algorithm is based on the 

fact that the strings 0 in the multiplication factor do 

not need to be added, but only the movement (shift) 

requires .string 1 in multiplier from bit 2k to bit 2m 

can be considered equal to 2k+1 - 2m. Inputs and 

weights are both considered 4-bit and the result is 

16-bit [8]. 

F) Neuron and layer control unit 
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The control unit for neurons and layers actually 

has two important functions. 

− Controlling neurons and links and allowing 

modules to start and stop to reach the input to 

the output.  

− Control layers by multiplexing layers. This unit 

controls the start of the computational operation 

of middle layer neurons by 8-output signals 

start _Mid1 to start_ Mid8.  

The Initialization output signal activates the 

corresponding signal in the memory for 

initialization. 8-output signals HZ_ bus1 to HZ_ 

bus8 Manage the order in which the output bus is 

impeded by middle-layer neurons. The Address_  

Mid and Address _ Out address lines are responsible 

for generating the appropriate address of the 

memory containing the corresponding weights of 

the links. The end_  work signal indicates the end of 

network work. However, the module of the control 

unit does not change and as before, it sends the start 

command to the middle layer modules and gives 

them the memory address in the appropriate clock. 

The boot multiplier module and the look up table are 

also unchanged. Finally, it should be noted that the 

output of this implementation might differ from the 

output of the content for the following reasons: 

− The sigmoid function implemented by the look 

up table may not contain all the values or may 

correct the values. 

− The positive and negative amount of weights 

cannot be applied to exactly any number. 

− Weights are rendered. 

− Giving all the weights to RAM is a very long 

job so it is placed in some lines of duplicate 

numbers. 

In the network implemented in the content, the 

bias values are set by default by the content itself, 

which may be different from the bias values given in 

the implementation. Fig. 12 is a general schematic 

of the implementation with 20 inputs and 4 outputs. 

 

Fig. 12. General schematic of neural network implementation 

with 20 inputs and 4 outputs. 

5. Implementation of 5-layer neural network by 

layers multiplex 

In multi-layer implementation, the 

implementation modules are the same as before, 

except that the middle three layers become one 

layer. In fact, the three layers become multiplex. The 

multiplexer task is to select the output of the middle 

layer neurons in the look up table. The output of 

middle layer neurons is stored in a look up table .The 

method of multiplexing the layers is such that at 

each moment and in one clock, one layer is used 

according to the multiplex address. The results of 

this implementation show that the proposed method 

with multiplexing neural network layers reduces 

resource consumption by about 30 to 40%. The 

multiplexer selects the output of the middle layer 

neurons. In this implementation, we have three 

hidden layers, so the results of the middle layer 

neurons are stored three times, and the multiplexer 

selects the results of the third layer neurons and 

outputs for the neurons of the output layer. The 

optimizations performed for the implementation of 

MLP 20-8-8-8-4 include the following: 

− Binary the value of the sigmoid function 

between zero and one in this optimization, 

instead of using 2 bits for the values 1-and 1 +, 

one bit is used for zero and one for the value of 

the function [34]. 

− Use shifts instead of direct multiplication. In 

this case, instead of multiplying the inputs are 

directly used by the weights of a collector and 

shifter [34].It is used which is much cheaper and 

requires less resources. Generates open output 

in one bit (zero and one) [34]. 

− Use a layer control to multiplex layers [35]. 

In this case, the number of hidden layers is 

simultaneously connected to a multiplexer and the 

selected layer is selected and used at high speed. 

Multiplexer implementation is done in the control 

unit. To control the layers, this unit receives a 

variable called the number of layers. In fact, this 

input specifies the number of hidden layers, which 

can be changed from one to three. Based on the 

number of hidden layers, the control unit operation 

must be repeated, if we have 3 hidden layers, to use 

multiplexing the layers, the control unit operation 

must be repeated exactly 3 times, in which case one 

layer instead of our 3 hardware layers. We have 

three schedules. In the new layer control module and 

neurons, the number of layers is also applied as an 

input to this module. Finally, a module called the 

task control unit is responsible for controlling all 

modules and multiplexing the middle layers. Fig. 13 

shows the structure of a perceptron multilayer 

network using a multiplexer. In this method, only 

one layer with its number of neurons is implemented 

and only the values of its neurons are moved by 
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multiplexer. For example, suppose we have only one 

layer with 8 neurons according to Fig. 3 of the 

reference [35]. First, the inputs in the weights of the 

first layer are calculated by the timing of the control 

block and stored in neurons called s0, and then by 

the control block and multiplex, the value of these 

neurons is multiplied by the corresponding weights 

and stored in neurons s1. Continue until all layers 

are calculated. When a layer is completed and its 

values are calculated, it is stored in a look up table 

connected to the Layers Control, and the next layer 

calculations begin. In this case, for example, instead 

of implementation a 20-8-8-8-4 network, a 20-8-4 

network is implemented, saving overall FPGA 

resources [35]. Use the Look up table to implement 

the sigmoid function instead of using the direct 

implementation of these functions. 

 
 

 

Fig. 13. Conventional MLP network structure and  MLP 

network structure with hidden layer multiplex [35] 

Fig. 14 shows the input layer with 20 neurons 

and the three hidden layers as a multiplex with eight 

neurons and the output layer with four neurons. The 

links between the input layer and the middle layer, 

along with the output neurons, also participate in this 

parallelization, and the results of the middle layer 

calculations are returned to the units by diffusion. 

Therefore, all computational conditions for output 

neurons can be examined at one time. 

 

 

Fig. 14. Structure of 20-8-8-8-4 network implementation with 

parallel link and hidden layer neurons and multiplexes. 

6. Synthesis and simulation 

The synthesis was performed by the XST tool 

included in the ISE bundle, which can be used for 

both HDL-based or schematic design processes, 

using the XC3S50005fg900Spartan3 hardware. The 

ISE software package simulator, Isim, performs all 

simulations. Twenty inputs have values that are 

actually one of the rows of test matrix values in 

Matlab software. As explained earlier, the result is 4 

bits, each bit of which represents a class. For 

example, 0010 network output means the first output 

is zero, the second output is one, the third output and 

fourth are zero. When the reset signal is zero, the 

network starts working. In Fig. 15 (a), the network 

simulation with the implementation without layer, 

multiplexing is examined. In this simulation, the 

inputs and outputs are 16 bits. It can be seen that a 

normal network takes 15 nanoseconds to complete 

the output values. Fig. 15 (b) shows the simulation 

using a multiplex of layers. If the network is 

optimized with a multiplex of layers, it takes three 

nanoseconds to complete the output and remain 

constant, and 12 nanoseconds converge faster to the 

answer. 

7. Evaluation implementation network 

The following is a summary of mapping, 

routing, and implementation reports on 20-8-8-8-4 

networks for the Spartan 3 XC3S5000 5fg900. Table 

5 compares the two types of implementations 

directly without layer multiplexing and with layer 

multiplexing. 

 

 
 

 

Fig. 15. Results of network implementation simulation 20-8-8-

8-4 to detect the state of the face without multiplexing layers 
and  results of network implementation simulation 20-8-8-8-4 to 

diagnose conditions Face by multiplexing layers 

Table.5. 
Comparison of used resources of two types of implementation 
performed directly without multiplex layers and by multiplex 

layers on Spartan 3 XC3S50005fg900 



147                                  International Journal of  Smart Electrical Engineering, Vol.10, No.3, Summer 2021               ISSN:  2251-9246  

EISSN: 2345-6221 

 

Module 

Name 

Optimized Neural  

Network20-8-8-8-4  ( The 

proposed work ) 

Ordinary Neural Network  

20-8-8-8-4( The previous 

work ) 
Optimized 

percent 
Logic 

Utilization 
Used Available Utilization Used Available Utilization 

slice Flip 

Flop 
6374 6374 9% 13549 66560 20 11 

4 Input 

LUTs 
21738 21738 32% 39647 66560 59.5 27 

occupied 

Slices 
11978 11978 35% 23229 33280 70 35 

4 Input 

LUTs 
21963 21963 32% 43842 66560 66 34 

Bonded 

IOBs 
355 355 56% 360 633 57 1 

As can be seen from Table 5, the use of layer 

multiplexing prevents a lot of resource wastage. In 

the last column, for the total resources of the 

hardware platform look-up table, it is optimized by 

34%. Due to this issue, more complex functions 

such as hyperbolic tangent can also be used for the 

activation function, which results in results that are 

more accurate. In total, the optimizations performed 

in this paper uses 62408 FPGA resources, which 

shows 53.73%, decrease in resources consumptions 

compared to the direct implementation (120627 

resources). 

8. Conclusion 

The formation of FPGA in ANN with a large 

number of neurons is a challenging task. Sufficient 

accuracy is one of the most important choices when 

implementation ANNs on FPGAs. Sufficient 

accuracy is used to measure the true capabilities of 

ANN against the cost of its implementation. High 

accuracy creates fewer error packages in the final 

implementation. While less accuracy leads to 

simpler design, more speed and reduced area 

required and less energy consumption. On the other 

hand, using LUTs reduces the need for resources and 

improves speed. In addition, implementation LUT 

does not require external RAM because internal 

memory is sufficient to implement induction 

functions. In this paper, a method for detecting facial 

modes on FPGA using a 5-layer neural network as a 

layered multiplex is presented. The results show that 

the choice of the number of neurons and layers is 

also important. If we want to implement a neural 

network with deep learning by a large number of 

layers using MLP on FPGA, we have a very difficult 

task ahead of us. For example, if we have a network 

with 100 hidden layers, it is almost impossible to 

implement on a low cost FPGA. However, with the 

method presented in this paper, it can be 

implemented. On the other hand, if you use FPGA 

with more resources, you can implement more 

complex functions such as hyperbolic tangent, 

which greatly helps the accuracy of the output. 
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