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Abstract 

The state estimation of a quantized system (Q.S.) is a challenging problem for designing feedback control and model-based 

fault diagnosis algorithms. The core of a Q.S. is a continuous variable system whose inputs and outputs are represented by 

their corresponding quantized values. This paper concerns with state estimation of a Q.S. by a qualitative observer. The 

presented observer in this paper uses a non-deterministic automaton as its qualitative model and estimates quantized values of 

the system state. Observer inputs are on-line measured input and output signals of Q.S. The previous proposed qualitative 

observers use dynamics of the continuous variable system of Q.S., whereas in this paper, the qualitative observer model is 

built by a quantitative observer. The main theorem of the paper shows that if the parameters of quantitative observer and 

sampling time are chosen correctly, then qualitative estimation error will be uniformly ultimate bounded, i.e. it will converge 

to a bounded convex set. In addition, simulation results show that reducing bounds of the convex set, results in less additional 

generated spurious states. 
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1. Introduction 

An interesting area of recent researches in 

hybrid systems has been devoted to the Fault 

Detection and Isolation (F.D.I.) for hybrid systems. 

Hybrid systems involve the interaction of time-driven 

dynamics with event-driven dynamics and provide a 

convenient framework for modeling systems in a 

wide range of engineering applications [15].  

The main part of a model-based FDI procedure 

is the generation of residuals which reflect the 

discrepancy between two different faulty modes. One 

of the general approaches for residual generation is 

observer-based approaches [4]. Due to mixed 

behavior of hybrid systems, using state observers for 

these systems is more complicated and some 

solutions are proposed in literature [1, 13]. In some 

of the other solution approaches, the system is 

considered as Q.S. whose qualitative model is used to 

build qualitative observer [2, 3, 10, and 11].  In 

comparison with these approaches, Fig. 1 illustrates 

the idea of our qualitative observer for Q.S. The 

qualitative state observer estimates consistent states 

with observed input and output sequences. A non-

deterministic automaton (N.D.A) is used for discrete-

event description of the qualitative state observer. 

The N.D.A describes a relation between qualitative 

input sequences (denoted by ][U ) and qualitative 

output sequences (denoted by ][Y ) (c.f. section 2 for 

further details). This observer must have a complete 

model. A qualitative model is complete when it can 

generate all output sequences that the quantized 

system may generate for all input sequences [11].  

The qualitative observers presented in the 

literature, use different qualitative models such as 

N.D.A., stochastic automaton, timed automaton and 

Petri nets [5, 7, 8, 10].In all of these observers, 

dynamics of the continuous variable system of Q.S. 

is used to build the qualitative model of the observer. 

In this paper, the qualitative model of the observer is 

constructed based on an asymptotically stable 

observer. By this modification, it is shown that 

qualitative estimation error (Q.E.E.) can be converted 

to a bounded convex set. In [3], it is shown that if the 

model of qualitative observer is complete, then the 

actual system state exists in the set of estimated 

states. But convergence of Q.E.E. is not discussed 

completely. In this paper, it is shown that if the 

quantitative observer is asymptotically stable and the 

sampling time of quantizer is chosen properly, then 

Q.E.E of qualitative observer converges to a bounded 
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convex set. In addition, simulation results show that 

the bounds of the convergence set can be reduced by 

varying the design parameters of the quantitative 

observer and sampling time. Also, reduction   of 

Q.E.E. results in less additional generated spurious 

states, which in turn, increases the performance of 

F.D.I algorithms for hybrid systems. 

 

Fig. 1. Qualitative state observer. 

Since the mentioned method is based on 

qualitative modeling, qualitative model 

representation of Q.S. and the qualitative state 

estimation is described briefly in section 2.  In section 

3 a brief review of Luenberger state observers is 

given and then some basic definitions and conditions 

for convergence of Q.E.E are presented.  For more 

illustration, the proposed observer is applied on a 

two-tank system in section 4. By simulation results, 

the effect of sampling time and quantitative observer 

parameter variations on Q.E.E is investigated.  

2. Qualitative Observer 

Since qualitative models are used for qualitative 

observer, this section gives a brief description of the 

qualitative modeling of a continuous-variable 

discrete-time system [6]. Furthermore, the qualitative 

state observation task is given at the end of this 

section. References [3, 6, 11], are useful for further 

details.    

The core of a Q.S. is a continuous-variable 

discrete-time system which is defined as follows (c.f. 

Fig. 1):  

( ) ( ( ), ( )k +1 k kcx f x u  , (0)
0

x x  

( ) ( ( ), ( )),k k kcy g x u  
(1) 

 

where ( ) nk x R denotes the system state, 

( ) mk u R denotes the system input , and ( ) rk y R  

denotes the system output. 

The state quantizer introduces a partition of the 

state space n
R  into a finite number of disjoint sets 

( )xQ i , { }xi N 0,1,...,N  . The qualitative value 

of the state ( )kx  at time k is given by the index i of 

the set ( )xQ i  to which the state belongs 

[ ( )] ( ) ( )k i k Q ix  x x   (2) 

In a similar manner the output quantizer introduces a 

partition of the output space 
r

R into a finite number 

of disjoint sets 
( )yQ j

,
{ }yj N 0,1,...,R 

. 
( )yQ i

denotes the set of outputs 
r

y R with the same 

qualitative value  i, i.e.  

[ ( )] ( ) ( )k i k Q iy  y y   (3) 

Similarly, the input space partitioning results in 

discrete set ( )uQ l , { }ul N 0,1,...,M   and the set of 

faults is denoted by { }f 0 1 sN f ,f ,...,f . For all 

partitions, it is assumed that sets ( )Q i  (  i 0 ) are 

bounded and the remaining part of the signal space is 
(0)Q . For example, for state space quantizer : 

1

(0) \ ( ( ))
N

n
x

i

Q Q i


 R   (4) 

The injector 
1

 shown in figure 1 maps the 

qualitative value [ ( )]ku  to a continuous value. Since 

the qualitative value [ ( )]ku  represents a set, each of 

its elements can be assigned to output of the injector, 

that is 1([ ]) uQu  . 

The qualitative model describes a relation between all 

possible qualitative input sequences and all 

corresponding qualitative output sequences of the 

Q.S. 

[ ] ([ (0)],[ (1)],...[ ( )])T TU u u u   (5) 

[ ] ([ (0)],[ (1)],...[ ( )])T
S TY y y y  (6) 

Both of sequences of Eqs. (5) and (6) are 

indexed here with the time horizon T. An adequate 

model which generates the set  [ ]TMY  of qualitative 

output sequences has to fulfil the condition for all 

qualitative input sequences and faults and all sets of 

initial states. Such a model is called a complete model 

[1, 10]. 

[ ] [ ]M SY Y   (7) 

In this paper non-deterministic automaton is 

used as qualitative model. A non-deterministic 

automaton is defined as: 

( (0))N ,N ,N ,L,z v wN z   (8) 

In which, z is the state vector of the non-

deterministic automaton, 
N

z ,
Nw and,

Nv denote the 

sets of qualitative values of states, qualitative values 
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of outputs and qualitative values of inputs, 

respectively.  

The behavioral relation describes all possible 

successor states ( )k +1z and outputs w
k

of the 

system for a given current state ( )kz  and input v
k

 

at time instant k. 

: {0 1}L N × N × N × N ,z z v w    (9) 

Such a model is a generator of the set of all I/O 

sequences given the initial state 
( )0z

  and hence, a 

compact representation of the system behavior. In L, 

a one indicates that a transition is possible while a 

zero means that it is not [11]. It is shown that this 

qualitative modeling approach provides a complete 

model that is needed in qualitative observation task 

[3, 11].  Note that, in this paper the qualitative model 

is used for the state observer rather than the Q.S. 

The previous qualitative observers (which 

called pure qualitative observers in this paper) find all 

possible qualitative states which are consistent with 

observed qualitative input and output sequences [3, 

11]. Since the inputs and outputs can only be 

measured qualitatively, and since a quantitative 

observer is used in our approach, the necessary 

signals are obtained by injectors (c.f. Fig. 1). By our 

approach, we are able to adjust parameters of 

quantitative observer; such as error convergence rate, 

to satisfy our desired specifications. Since the overall 

obtained configuration for the proposed observer (the 

gray box in Fig. 1) forms a Q.S., it is replaced by a 

qualitative model. This qualitative model is a N.D.A 

and it is qualitative abstraction of the designed 

quantitative observer rather than the continuous 

variable system. Convergence of the qualitative 

estimated states is an important problem in the 

observation task. Hence, in the next section, this 

problem is investigated and we present coefficient 

conditions that imply convergence of Q.E.E.  

3. Estimation Error Convergence 

In this section the conditions for convergence of 

Q.E.E are derived. In our approach, at first step we 

design a quantitative state observer. For simplicity in 

this paper, the continuous-variable system is 

considered as a linear system; that A, B and C are state 

parameters. A Lunberger observer is used for 

quantitative observer as [14], 

 

 

                              

𝑥 . = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 

𝑥∧
.
= 𝐴𝑥 + 𝐵𝑢 + 𝐾(𝑦 − 𝑦∧), 𝑦∧ = 𝐶𝑥∧ 

(10) 

where x̂  is the estimated state, y is system output, 

and ŷ is the observer output, and K is the observer 

gain matrix. Here we design K so that the observer is 

asymptotically stable. Hence quantitative estimation 

error;  
ˆ( ) = ( ) - ( )t t te x x ,  tends to zero, whenever   t 

tends to  ; i.e.  

( ) 0 t e   when   t    (11) 

A qualitative model for observer of Eq. (10) is 

derived by an abstraction algorithm [11]. This 

qualitative model is described by a N.D.A. which is 

the core of our qualitative state estimator (c.f. Fig 1.). 

The obtained qualitative observer has two noticeable 

differences with the quantitvie state observer:  The 

observer inputs are qualitative signals, and the 

describing model is a qualitative model. 

To investigate the convergence of the estimated 

qualitative states, we assume that all partitions are 

rectangular and equal distance. In addition, we define 

qualitative state convergence as follows.  

Definition: The qualitative state
Q

i converges to 

qualitative state
Q

j if the distance between two 

qualitative states; that is denoted by
( )d

qij
t

, is 

uniformly ultimate bounded (U.U.B.). In this 

definition 

t) (t) (t)d ( M Mq Q Qij i j
  

(12) 

where i
Q

M

and  j
Q

M

are the center points of 
Q

i  and 
Q

j , respectively. Since it is assumed that all 

partitions are equal distance, then Eq. (12) is a 

distance function. In addition, 
( )

qij
d t

 is U.U.B. if 

and only if, 

T  , 0      s.t. t T    )
ijqd ( t    (13) 

Theorem: If estimation error in a quantitative 

state observer converges to zero asymptotically, then 

in qualitative observer, the qualitative estimated state 

converges to the actual qualitative state. 

Proof: In qualitative observer (c.f. Fig. 1), 

inputs are qualitative signals, ][u and ][ y  respectively. 

we assume that )(tu  is a pure discrete signal. (This is 

true in many cases such as discretely controlled 

continuous systems that are found in many 

technological fields [9]. In addition if )(tu is not 

discrete, a bounded term will be added in Eq. (14) and 

therefore the value of  in Eq. (15) will be changed.) 

Thus we rewrite the Eq.  (11) as follows. 

( ) ( ) ( ) ( )t t t    e A KC e K y  , 0t   (14) 

where )()()( ttt  yyy  and )(ty  is output of the 

injector. For injector we have: 
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)]([)( tt yy 
    )(ty                (15) 

The quantitative state observer is assumed 

asymptotically stable. It means that all eigen-values 

of ( )A KC have negative real parts.It is resulted that 

( )te
 is U.U.B. and then for each initial value (0)e , 

T , 0   s.t. ( )  Te  , t T  (16) 

T is considered as convergence time of quantized 

observer and in qualitative abstracting of the observer 

the sampling time,Ts , must satisfy condition 
T Ts

. By this consideration the qualitative observer is built 

for converged quantitative observer and we are sure 

that estimation error for obtained qualitative model is 

bounded.   Now by definition 1, qualitative 

estimation error, 
ˆq

xx
d , is defined as distance 

between actual qualitative state [ ]x , and estimated 

qualitative state [ ]x̂ ; that is, 

ˆx xˆ
(t) (t)

Q Q
 q

xx
d M M  (17) 

where x
(t)

Q
M

 and x̂
(t)

Q
M

 are center points of [ ]x and 

[ ]x̂ , respectively. By using triangular property of 

norms,   

ˆx xQ Q
ˆ

(t) (t) (t) (t) (t) (t) .ˆ ˆ     q
xx

d M Mx x x x  (18) 

By considering property of qualitative 

modeling, it is seen that the first and the third terms 

in right hand side of Eq. (18) are bounded. Similarly, 

it is resulted that the second term is also bounded. 

Therefore ˆq
xx

d
 is U.U.B and by Eq. (13), the 

qualitative estimated state converges to the actual 

qualitative state.   

We call convex convergence set of Q.E.E as 

convergence set.  As it is well-known, increasing 

observer gain matrix K, moves poles of observer far 

from the imaginary axis in s-plane. This fact leads to 

increasing convergence rate of quantitative observer 

and reducing convergence time. On the other hand 

increasing K leads to increasing uncertainty 

introduced by injector in Eq. (14) and convergence 

set respectively, that leads to additional estimated 

states. Thus in designing the quantitative observer, 

this trade off must be considered.  

In next section the proposed qualitative 

observer is simulated for a two-tank system and some 

cases are considered for further illustration. 

4. Illustrative Example 

In the following, the proposed observer is 

simulated on a two-tank system which is depicted in 

Fig. 2.  The   system   behavior is    described by the 

following differential equations [11].  

1
1 2 1 2

1
( ( ) sgn( ) 2 )in v

dh
q P t S h h g h h

dt A
      

2
1 2 1 2 2

1
( sgn( ) 2 2 )v v

dh
S h h g h h S g h

dt A
        

(19) 

 

Fig. 2. Two tank system 

 

Fig. 3. State partitions of the two tank system. 

Where  1 2( , )h hx    is   the system    state 

vector and model parameters are given in table 1. 

The pump can work in 3 modes, "off", "medium 

power", and, "full power". Thus the input qualitative 

values are "off", "medium", and "full ". 
For qualitative modeling we use the Quamo 

Toolbox [12]. In this modeling the continuous system 

state space is partitioned as shown in Fig. 3. The level 

of tank 2 is considered as output of the system and 

consequently with the same partitioning of 2h .  

Here the quantitative observer is considered as a 

Leunberger observer. To investigate the effects of the 

parameters of quantitative observer and sampling 

time of qualitative modeling procedure, four cases 

are considered as follows. 

 s s5T     and     {-1 , -1}P   

 s s5T      and     {-0.1 , -0.1}P  

 s s10T     and     {-1 , -1}P  

 
s s10T     and     {-0.1 , -0.1}P  

Table.1. 
Parameters of the tank system 

Description parameter value 
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Cross-section area of each tank A -2 2
1.5 10 m  

Cross-section of the valves vS  2
.00002m  

Input flow if the pomp is on inq  4.5 / minl  

The gravity constant g 2
9.81 /m s  

 
Where sT  is sampling time and P denoted pole 

of the observer. To simulate these four cases an input 

sequence is applied to the plant model and 

corresponding qualitative output and actual 

qualitative state of the plant is computed. The 

obtained results are shown in Fig. 4 for s s5T  , and, 

in Fig. 6 for s s10T  , respectively. 

 Estimated states for cases 1 and 2 are depicted 

in Fig. 5. Comparison of results with the actual states 

shows that in both cases the observers can estimate 

qualitative states completely. In addition, for case 1, 

fewer spurious states are generated rather than pure 

qualitative observer. But observer of case 2 generated 

more spurious states than the pure qualitative 

observer. By comparison observer poles in case 1 and 

2, it can be seen that, for case 1 poles are chosen 

properly so that the convergence time T is less than

sT . But for case 2 convergence time of the observer 

is increased by choosing {-0.1 , -0.1}P , so that the 

observer has not been converged for s s5T  . The 

same investigations are repeated in case 3 and 4 for 

s s10T  (c.f. Fig. 7). The obtained results show that 

all observers are not complete, (transient state in 50s 

cannot be estimated correctly by all observers). This 

is due to increasing sT
, that leads to loss of transient 

modes of the main system and quantitative observer 

in obtained qualitative models. In fact, changing the 

sampling time is not a good solution to satisfy 

convergence time condition, and in many actual 

cases, it is impossible as well. By comparison Figs. 

6-c and 7-c, it is seen that the observer of case 4 has 

generated less spurious states than the observer of 

case 2, because the convergence time condition is 

satisfied better than for case 4.  

By considering these four cases, it is resulted 

that convergence time condition must be satisfied by 

adjusting parameters of quantitative observer and in 

the obtained qualitative observer must be complete. 

A good experimental criterion that can be used is 

10 5

s sT T
T                 (20) 

5. Conclusion 

In this paper a method is presented to design a 

qualitative state observer. Our method uses a 

quantitative observer as the core of designed 

qualitative observer. By this method, we are able to 

use the advantages of quantitative observer deign 

methods; such as flexibility in convergence time. In 

addition, the necessary signals can be measured 

qualitatively. The main result of the paper presents 

the coefficient conditions for existence of the 

proposed observer. The simulation results show that 

adjusting parameters of quantitative observer leads to 

reduction of spurious states and time of state 

estimation that both are important in some 

applications such as fault diagnosis systems. Using 

nonlinear quantitative observers and refining of state 

space-output space partitions are interesting topics 

that can be studied in the feature works. 
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