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Abstract 

Orifice flow meter is one of the most common devices in industry which is used for measuring the gas flow. This system 

includes an orifice plate, temperature and pressure transmitters, and a flow computer. The flow computer is used for 

collecting information related to temperature, pressure, and their differences under various conditions. Also the flow 

computer can calculate the flow rate of gas at the standard conditions. Relations used in the flow computer are quite complex 

and nonlinear and also measurement noise can affect this device easily. Moreover, it needs calibration at different times 

which is expensive. To replace the flow computer, in this paper, a type-2 fuzzy neural network (T2FNN) has been utilized to 

calculate the gas flow. The temperature, pressure, and pressure differences are used on either side of the orifice as the inputs 

of T2FNN and it considers the flow of gas as output. In this paper, the particle swarm optimization (PSO) algorithm has been 

utilized to train the antecedent and consequent parameters of T2FNN. Using some simulations, it has been shown that the 

designed T2FNN can measure the flow of gas much better than the type-1 fuzzy neural network (T1FNN) in the presence of 

a high level of measurement noise.  
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1. Introduction 

Fluid flow measurement plays a very 

important role in industrial process control [1]. 

Also, in many trades, the flow of fluid is the main 

index in measuring the economic value of fluid. 

Orifice flow meter, working based on the 

differential pressure, is the most common flow 

meter in gas flow measurement [2, 3]. This flow 

meter includes a metal plate for making the 

differential pressure and a flow computer for 

measuring the gas flow. To do this, the flow 

computer gets its data from the transmitters and 

then, it calculates the flow of the gas (passing 

through the pipe) according to the defined 

formulas. It should be noted that to get the precise 

amount of gas flow, complex and nonlinear 

formulas should be considered in the flow 

computer. Moreover, measurement noise of the 

transmitters can degrade the performance of the 

orifice flow meter [4, 5]. Using the capability of the 

artificial neural networks (ANNs) and fuzzy neural 

networks (FNNs) in modeling the nonlinear 

functions, these techniques can be used instead of 

the flow computer to measure the flow of fluid. In 

this method, using some information of the fluid 

i.e. the pressure and temperature, as the inputs of 

ANN or FNN is desirable since these networks 

estimate the real flow of gas. ANN or FNN has the 

ability to map the nonlinear functions with less 

information about analytic models [1]. So, they can 

deal with the mentioned problems regarding the 

flow computer. It should be noted that using the 

estimated output of these techniques, the 

calibration of the flow computer is also possible. 

There are two different approaches to the FNNs 

design: Type-1 FNNs (T1FNNs) and type-2 FLSs 

(T2FNNs). T2FNN is an extension of T1FNN with 

three-dimensional membership functions. The extra 

dimension provides a new degree of freedom that 

lets the uncertainties be handled in totally new 

ways [6, 7]. A Type-2 fuzzy set can be visualized 

as a three dimensional primary and secondary 

membership function. The primary membership is 

any subset in [0, 1] and there is a secondary 

membership value corresponding to each primary 
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membership value that defines the possibility of the 

primary membership.  

In this study, due to the capability of T2FNN 

in modeling the nonlinear functions, this system 

has been utilized for calculating the gas flow. For 

this purpose, temperature, pressure, and pressure 

differences on either side of orifice are used as the 

inputs of T2FNN. The important issue in 

application of T2FNN is how to set the parameters 

of the consequent and antecedent parts, such as 

standard deviations and canters [8]. In this study, 

the particle swarm optimization (PSO) algorithm 

has been utilized to train the antecedent and 

consequent parameters of T2FNN. Using some 

simulations, it has been shown that the designed 

T2FNN can measure the flow of gas much better 

than the type-1 fuzzy neural network (T1FNN) in 

the presence of a high level of measurement noise. 

The remaining parts of the paper are 

organized as follows: The flow measurement 

problem is presented in Section 2. The concept of 

T2FNN and its training procedure are considered in 

Sections 3. In Section 4, simulation results in 

validating the designed T2FNN are stated. Finally, 

the conclusion is addressed in Section 5. 

2. Flow Measurement 

In an orifice flow meter, the orifice plate 

generates differential pressure in order to measure 

the flow rate of gas. Using temperature, differential 

pressure, and pressure transmitters, the flow 

computer can calculate the gas flow. A flow 

computer is an electronic computer which 

implements a wide selection of complex density 

algorithms using the analog and digital signals 

received from flow meters, temperature, and 

pressure transmitters. The Flow computer uses 

long, complex, and non-linear formulas to calculate 

the flow of gas, and therefore, the computational 

errors are undeniable due to noise in the data. 

Moreover, like other measuring devices, the orifice 

flow meter needs to be calibrated. For this purpose, 

it is necessary to calibrate a flow computer which 

costs much more and also requires the process to be 

discontinued. To deal with these problems and 

considering the capability of FNN in learning from 

the system, in this paper, T2FNN has been utilized 

to model the flow computer to estimate the flow of 

the gas. In the industrial environment, the measured 

data is always distorted by noise and, therefore, 

T2FNN is a suitable solution to tackle this 

uncertainty.  

In this study, T2FNN has been utilized for 

calculating the gas flow from the static pressure, 

differential pressure, and temperature. In other 

words, these variables are used as the inputs of 

T2FNN, which are commonly available in 

industrial plants, and the flow of gas is the output 

of the designed T2FNN. The overall scheme of the 

proposed method using T2FNN is shown in Fig 1. 
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Fig. 1. The overall scheme of the proposed method in 
measuring the gas flow 

3. Type -2 Fuzzy Neural Network  

The concept of type-2 fuzzy sets was 

introduced by Zadeh as an extension of type-1 with 

the aim of being able to model the uncertainties 

that invariably exist in the rule base of the system 

[9]. T2FNNs, which benefit from type- 2 fuzzy 

sets, can better handle the vagueness inherent in the 

linguistic words which are modelled by the 

membership functions (MFs). Therefore, they are 

more suitable under circumstances where it is 

difficult to determine the exact MF for a fuzzy set 

[10]. At the type-2 fuzzy sets, the antecedents and 

consequents of the rules are uncertain. While a 

type-1 membership grade is a crisp number in [0, 

1], a type-2 membership grade can be any subset in 

[0, 1] which is called the primary membership. 

Additionally, there is a secondary membership 

value corresponding to each primary membership 

one [9]. In the generalized T2FNNs [11], the 

secondary MFs can take values in the interval of [0, 

1], while in the interval T2FNNs, they are uniform 

functions that only take the value of 1. The 

computational burden of the general T2FNNs is 

very high compared to the interval one. So, the use 

of the interval T2FNNs is more commonly seen in 

the literature. An interval type-2 fuzzy set, A , may 

be represented as [9, 12]: 
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and u. Also, xJ is called the primary MF of x and 
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shows a type-2 Gaussian MF with an adjustable 
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It can be seen from Fig 2. that the type-2 

fuzzy set has a region called footprint of 

uncertainty (FOU) and is bounded by an upper MF 

and a lower one, which are denoted as ( )
A

x  and 

( )
A

x , respectively. 
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Fig. 2. Fuzzy type-2 membership function 

It is worth pointing out that the T2FNNs rules 

and the inference engine section will remain the 

same as T1FNNs, but the antecedents and/or the 

consequents are as the type-2 fuzzy set. For 

reducing the type-2 fuzzy consequent to the type-1 

fuzzy consequent, some methods called type-

reduction approaches are explained in [13]. For this 

study, the center-of-set (COS) type-reduction 

method is used as follows: 
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where Ycos(x) is an interval set determined by 

its two end-points: yl and yr; also these parameters 

are calculated as follows: 
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and f  and f  are the firing levels; 

[ , ]i i

l ry y corresponds to the centroid of the type-2 

interval consequent set, which can be obtained by 

the iterative approach which is stated in [9]; and M 

is the number of the rules. Finally, the output of the 

type-reduction section (real output) is passed from 

a defuzzifier; since fuzzy type-2 is interval, the 

mean of the left and right points can be used as a 

defuzzifier which is obtained as follows: 

2

l r
s

y y
f


  (5) 

T2FNN includes inputs, a fuzzifier, an 

inference and a rule base, type reduction, a 

defuzzifier, and output. The main difference 

between the T1FNN and T2FNN structures is the 

type reduction stage.  

The important issue in applying T2FNNs is 

how to set the parameters of the consequent and 

antecedent parts. During the recent years, some 

optimization methods have been employed to tune 

the parameters of the T2FNN models. These 

methods can basically be assigned into two 

categories: derivative-based and derivative-free 

optimization methods. Genetic algorithm (GA) [14] 

and PSO [15] can be considered as two main 

examples of the derivative-free algorithms. On the 

other hand, gradient descent [16], least square [17], 

and Extended Kalman Filter (EKF) [18] are some 

examples of the derivative-based optimization 

methods. It is worth pointing out that derivative-

free methods are less likely to get entrapped in 

local minima.  

They are also easier to be implemented 

because they do not need derivatives which may be 

hard to calculate while they generally converge 

faster. In this paper, due to simple relations and 

high convergence speed of PSO [19], this 

optimization algorithm has been used to train the 

proposed T2FNN to estimate the flow rate.  

The dynamics of PSO are defined as follows, 

which are the equations to update the position (x) 

and velocity (v) of the particles [20]: 
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where ω, r1, and r2 are the random variables 

in [0,1] and c1 and c2 are constant parameters. 

Also, xpbest and xgbest are particle’s best known 

position and the swarm's best known position, 

respectively. The step after creating the network is 

to collect data from the flow meter for T2FNN 

training and testing process. The input- output 

(target) pairs for T2FNN training can be obtained 

from transmitters as the flow meter is working at 

the standard conditions (the temperature, pressure, 

pressure difference on either side of orifice are used 

as the input and the flow of the gas is used as the 

output of T2FNN). Using these data, the PSO 

algorithm is utilized to tune the mentioned T2FNN 

parameters (the consequent and antecedent 

parameters). The stopping criterion is an important 

issue in application of the PSO algorithm for 

training FNN and ANN.  

The maximum number of iteration is the most 

common stopping criterion for the PSO algorithm. 

In this study, through several simulations, we 

observed that the performance of PSO was 

improved by increasing the number of maximum 

iteration from 80 to 110. According to these 

simulations, when the maximum iteration is less 

than 80, T2FNN is undertrained and unable to 

approximate the flow computer. In contrast, the 
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PSO performance decreased when the number of 

the maximum iteration increases from 100 to 110. 

This may be due to the fact that the data is 

overtrained and sometimes overfit due to the fact 

that too many numbers of iterations are conducted. 

So, the best maximum iteration obtained is set to be 

100. 

4. Simulation Results 

Because the input and target data have very 

different ranges, for training and testing the 

considered T2FNN, we have normalized both the 

desired and input data between 0 and 1. From 500 

input- output pairs, about 20 percent and 80 percent 

have been utilized for the testing and training 

processes, respectively. It is worth pointing out that 

the root mean square error (RMSE) is defined as 

the cost function for PSO. The population size is 

set as 15 and also c1=c2=2 and ω=0.75 have been 

used for the PSO parameters.  

It should be noted that PSO tries to minimize 

the cost function (the mentioned RMSE) by finding 

the appropriate T2FNN consequent and antecedent 

parameters. Fig 3. shows the training process of the 

proposed T2FNN using PSO. Also, the MFs 

obtained for the three inputs of T2FNN are shown 

in Fig 4.From these Figs, it can be seen that PSO 

has minimized RMSE by finding appropriate 

values for the T2FNN parameters. 

To evaluate the trained T2FNN better, some 

input-output pairs have been utilized to test the 

designed networks. The given data can be 

corrupted by the uniformly distributed 

nonstationary additive noise. This fact has been 

considered in the test process of T2FNN. Also, the 

testing results have been compared with T1FNN. It 

should be noted that the structure of the considered 

T1FNN is similar to T2FNN except for the fact that 

the MFs of T1FNN are of type-1. Therefore, to 

show the effectiveness of the proposed T2FNN 

method dealing with uncertainties, the mentioned 

noise with different signal to noise (SNR) levels is 

assumed to corrupt the input data.  

The results of the testing process for the 

proposed T2FNN and T1FNN and the noise with 

SNR=50db (low power noise) are shown in Fig 5. 

From this Fig, it can be seen that the 

performance of the testing process using T1FNN is 

degraded even by the low power noise. On the 

other hand, using the proposed T2FNN, the effect 

of noise on estimation of gas flow is negligible. 

This is due to the fact that unlike T1FNN, T2FNN 

benefits from the type-2 membership functions 

which enable it to deal with the effect of 

uncertainties. Therefore, it predicts the output with 

less error.  

To better demonstrate the efficiency of the 

proposed method, the prediction power of this 

method is examined when the high level of noise 

(SNR=20dB) is distorting the test data. The outputs 

of the proposed method and the T1FNN system for 

this case are shown in Fig 6. From this Fig, 

capability of the proposed method is visible and 

this method has predicted the target data with less 

error compared to T1FNN.  

 

 
Fig. 3. Training process of the proposed T2FNN using PSO 

 
Fig. 4.  The obtained MFs for T2FNN after the training 

process 

 
Fig. 5.  Testing processes for T2FNN and T1FNN (SNR= 

50 dB) 

 
Fig. 6. Testing processes for T2FNN and T1FNN (SNR= 20 
dB) 
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To illustrate a qualitative comparison between 

the proposed T2FNN method and the T1FNN one, 

the calculated RMSE for different SNRs has been 

illustrated in Table 1. From this table, it is clear 

that in different levels of noise (with SNR from 20 

to 50 dB), the testing performances obtained by the 

proposed T2FNN method are much better than 

those of the type-1 method at the noisy data 

environment. These results are expected due to the 

main characteristic of the type-2 fuzzy systems in 

their handling of uncertainty through their FOU. 

Table.1. 
RMSE related to the test process using the proposed T2FNN and 

T1FNN 

T1FNN  Proposed T2FNN  SNR(dB) 
0.0065 0.0045 50 dB 
0.010 0.005 40 dB 
0.035 0.008 30 dB 
0.220 0.11 20 dB 

5. Conclusion 

In this paper, using the modeling properties of 

the soft computing approaches, a T2FNN has been 

utilized to estimate the flow of gas. In this method, 

the temperature, pressure, and pressure differences 

on the either side of orifice are considered as the 

inputs of T2FNN and it considers the flow of gas as 

the output. Using a given set of the input–output 

training data, PSO has been exploited to tune the 

parameters of the designed T2FNN model. It has 

been discussed that by appropriate setting of the 

number of iteration in PSO, we can avoid the 

problem of over/ under-training in designing 

T2FNN. It is worth pointing out that the designed 

T2FNN can be used to replace as well as to 

calibrate the flow computer, which benefits from 

the complex and nonlinear formula to calculate the 

flow of gas. Using some simulations, it has been 

shown that the designed T2FNN model can 

measure the flow of gas much better than T1FNN 

in the presence of a high level of measurement 

noise. 
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