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Abstract 

One of the important and necessary practices for improving nutrients availability in sustainable agriculture 
is using microorganisms. Beside the negative effects of chemical fertilizers on the soil and human health, 
plant growth promoting rhizobacteria are known as an alternative to supply the organic nutrients of plants 
during the past decades. Enriching soil fertility by eco-friendly methods in medicinal plants could well-
support plants growth and production. Most studies found that bio-fertilizers such as Plant Growth 
Promoting Rhizobacteria (PGPR) could promote physio-morphological characteristics and yield of medicinal 
plants. The mechanisms of plant growth promoting rhizobacteria could be summarized in symbiotic and 
associative nitrogen fixation, solubilization and mineralization of nutrients, production of phytohormones, 
vitamins, and antagonistic components against pathogens which enhance plant resistance to the stress and 
non-stress conditions. This paper also concluded that the soil type, environmental variables, soil 
management practices, microbial interactions and plant species could affect bacterial diversity and 
composition of the rhizosphere. Three major secondary metabolites of medicinal plants such as Terpenoids, 
phenolics and alkaloids were also increased due to the impact of microorganisms in metabolic pathway of 
plants such as Jasmonic acid signaling pathway. Thereby, significant increases in growth and yield of 
medicinal plants in response to inoculation with PGPR could be one of the promising approaches in 
sustainable agriculture. 
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Introduction 

Essential oils due to the therapeutic 
activities have a great importance in the 
cultivation of medicinal plants while yield 

quantity comes in the second order of 
importance. For some medicinal plants, 
sustainable agricultural approaches are the best 
method to achieve better performance on the 
account of the harmony with nature; therefore, 
global approach is more focused on eco-friendly 
production of medicinal plants using sustainable 
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agricultural systems (Sharifi Ashorabadi et al., 
2002). The term bio-fertilizer refers to the 
microbial inoculants that contain one or more 
beneficial soil organisms, such as nitrogen fixing, 
phosphate solubilizing or cellulolytic 
microorganisms that provide the plant nutrient 
needs in a form which could be assimilated by the 
plant (Mohammadi et al., 2012). Since chemical 
fertilizers could not supply crop nutrients directly, 
organic fertilizers are applied with special 
bacteria and fungi. In fact, bio-fertilizers could be 
introduced as a good alternative to chemical 
fertilizers eliminating several negative impacts of 
the chemical fertilizers on the environment and 
sustainable agriculture (Wu et al., 2005). N 
fixation bacteria such as Rhizobium and 
cyanobacteria, bio-inoculants namely, 
Azotobacter, Azospirillum, Phosphorus 
Solubilizing Bacteria (PSB), siderophores, and 
Vesicular Arbuscular Mycorrhiza (VAM) could be 
regarded as a broad spectrum of bio-fertilizers 
(Gupta, 2004).  

Recently, environmentally-friendly 
agricultural practices have attracted a lot of 
attention. A considerable number of bacterial 
species could handle a beneficial effect on plant 
growth. Application of these bacteria and crop 
production have been the focus of many studies 
in agriculture. Microbial populations are key 
components of the soil–plant continuum where 
they are involved in interactions affecting plant 
development (Vassilev et al., 2006). Plant growth 
promoting rhizobacteria (PGPR) or root-
colonizing bacteria are known as effective factors 

for plant growth. In fact, most of the effective 
colonizers are from species of Azospirillum, 
Alcaligenes, Arthrobacter, Acinetobacter, Bacillus, 
Burkholderia, Enterobacter, Erwinia, 
Flavobacterium, Pseudomonas, and Rhizobium, 
Serratia (Krishnamurthy et al., 1998 and Tilak et 
al., 2005). PGPR plays an important role in many 
of ecosystem processes such as those involved in 
the biological control of plant pathogens, N 
fixation, solubilizing of nutrients, and 
phytohormone synthesis. In general, the 
beneficial effects of these rhizobacteria on plant 
growth can be categorized into direct or indirect 
mechanisms (Lugtenberg and Kamilova, 2009).  
 

Direct mechanisms 
Nitrogen fixation 

The process of micro-organisms fixing 
atmospheric nitrogen is called Biological Nitrogen 
Fixation (BNF) where using a complex enzyme 
system known as nitrogenase, N2 in the 
atmosphere changes to ammonia (Fig. I). This is 
mostly done within subsoil plant nodules making 
the nitrogen available for assimilation by plants 
(Odame, 1997).  

Nitrogen fixing organisms are generally 
categorized as (a) symbiotic N2 fixing bacteria 
including members of the family rhizobiaceae 
which forms symbiosis with leguminous plants 
(e.g. rhizobia) (Zahran, 2001) and non-
leguminous trees (e.g. Frankia) and (b) non-
symbiotic (free living, associative and 
endophytes) N2 fixing bacteria.  

Examples of free living nitrogen fixing 
bacteria are classified into obligate anaerobes 
(Clostridium pasteurianum), obligate aerobes 
(Azotobacter), facultative anaerobes, Oxygenic 
photosynthetic bacteria (Nostoc commune 
belonging to species of cyanobacterium), 
Anoxygenic photosynthetic bacteria, 
(Rhodobacter), and some methanogens 
(Bhattacharyya and Jha, 2012; Mohammadi and 
Sohrabi, 2012). Generally, rhizobacteria could 
affect plant in two ways: some rhizobacteria fix 
atmospheric nitrogen, making it available to the 
plant and thereby promoting plant growth in 
nitrogen-deficient soils. Other rhizobacteria 
directly impress plant growth by production of 
hormones. These beneficial root-interactive 

 

 
Fig. I. Nitrogen fixation cycle 
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microbes are complex and cumulative because of 
their ability in interactions with plants, 
pathogens, antagonists, and environmental 
factors (Babalola, 2010). 

 

Phosphate solubilization 

Soil P is mainly found in insoluble forms 
which is not available for plants, while the plants 
absorb it only in two soluble forms, the 
monobasic (H2PO-4) and the dibasic (HPO4

-2) ions 
(Bhattacharyya and Jha, 2012). The phospho-
microorganisms which are mainly bacteria and 
fungi, make insoluble phosphorus available to the 
plants (Gupta, 2004) (Fig. II). Some of the soil 
bacteria and a few species of fungi by secreting 
organic acids can bring insoluble phosphate into 
soluble forms (Gupta, 2004). Examples of P-
Solubilizing Bacteria (PSB) are Bacillus, 
Beijerinckia, Burkholderia, Enterobacter, Erwinia, 
Flavobacterium, Microbacterium, Pseudomonas 
and Serratia (Bhattacharyya and Jha, 2012). 

A universal and important symbiosis 
phenomenon in the nature is Mycorrhiza, and 
Arbuseular Mycoriza (AM) is the most widespread 
mycorrhiza type developed from the terrestrial 
plant roots and Zygomycete fungus (Lin et al., 
2010). AM is one of the essential factors in low-
input sustainable agriculture so that, production 
of many agricultural and horticultural crops in soil 
is dependent on it (Bethlenfalvay and Linderman, 
1992). Most studies show that in the presence of 
Mycorrhiza increase in absorption of mineral 
nutrition and plants growth, tolerability to the 

drought, and toxic pollution could be seen (Fig. 
III). 

Siderophore production 

Iron is a vital nutrient for almost all forms 
of life. In the aerobic environment, iron occurs 
principally as Fe3+ and is likely to form insoluble 
hydroxides and oxyhydroxides, thus making it 
generally inaccessible to both plants and 
microorganisms (Rajkumar et al., 2010). The best 
implications to free-living rhizobia are 
siderophore production and cross-utilization as 
compared to siderophore non-producing strains 
for being able to survive better in soil 
(Raaijmakers et al., 1995). Most of the 
siderophores are water-soluble and can be 
divided into extracellular siderophores and 
intracellular siderophores (Ahemad and Kibret, 
2014). In addition to being able to use their own 
ferri-siderophore complexes, S. meliloti and 
Bradyrhizobium japonicum can also utilize iron 
complexed to siderophores produced by other 
rhizospheric microorganisms (Loper and Henkels, 
1999). Besides iron, siderophores also form stable 
complexes with other heavy metals that are of 
environmental concern, such as Al, Cu, Cd, Ga, P 
and Zn, as well as with radionuclides including U 
and Np (Neubauer et al., 2000). Hence, bacterial 
siderophores help to reduce the stresses imposed 
on plants by high soil levels of heavy metals 
(Ahemad and Kibret, 2014). 

Indirect mechanisms 

The application of PGPR could indirectly 
control plant diseases and keep them from 
negative effects of environmental stress 
conditions and in some ways, could promote 
plant characteristics (Kamilova and Lugtenberg, 
2009; Vacheron et al., 2013). Then, indirect 
effects of PGPRs could be linked to the 
production of phytohormones and biocontrol 
agents. 

Phytohormones  

Several PGPR strains like Azospirillum 
brasilense are able to produce NO which is 
involved in the auxin signaling pathway 
controlling lateral root formation (Molina-Favero 

 
 
Fig. II: Phosphorous fixation cycle. 
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et al., 2008). DAPG (2,4-diacetylphloroglucinol ) is 
a well-known antimicrobial compound produced 
by biocontrol fluorescent pseudomonads 
(Couillerot et al., 2009) and at lower 
concentrations involved in systemic resistance 
(Bakker et al., 2007), stimulating root exudation 
(Phillips et al., 2004) and enhancing root 
branching (Walker et al., 2011). Cytokinin 
production (especially Zeatin) has been 
documented in various PGPR like Arthrobacter 
giacomelloi, Azospirillum brasilense, 
Bradyrhizobium japonicum, Bacillus licheniformis, 
Pseudomonas fluorescens and Paenibacillus  
polymyxa (Vacheron et al., 2013). Cytokinins 
stimulate plant cell division, control root 
meristem differentiation and induce proliferation 
of root hairs while inhibiting lateral root 
formation and primary root elongation (Riefler et 
al., 2006). Ethylene is another key 
phytohormone, which inhibits root elongation 
and auxin transport, promotes senescence and 
abscission of various organs and leads to fruit 
ripening (Glick et al., 2007). The ability of 

Azospirillum brasilense to produce ethylene 
presumably promotes root hair development in 
tomato plants (Ribaudo et al., 2006). Several 
reports have revealed that ABA produced by 
PGPRs is involved in drought stress by closing 
stomata and limiting water loss (Bauer et al., 
2013). Production of gibberellins has been 
documented in several PGPR belonging to 
Achromobacter xylosox-idans, Acinetobacter 
calcoaceticus, Azospirillum spp., Azotobacter 
spp., Bacillus spp., Herbaspirillum seropedicae, 
Gluconobacter dia-zotrophicus and rhizobia 
(Gutiérrez-Mañero, 2001, Bottini et al., 2004, 
Dodd et al., 2010). Gibberellins promote primary 
root elongation and lateral root extension (Yaxley 
et al., 2001). Although the production of 
hormones by PGPR has been well described, the 
genetic determinants involved in their 
biosynthesis remain largely unknown and 
bacterial mutants affected in hormone 
biosynthesis are mostly lacking (Vacheron et al., 
2013) (Fig. III). 

 
Fig. III. Impact of phyto-stimulating PGPR on root system architecture (RSA), nutrient acquisition, and root functioning 
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Table 1 
Effects of PGPR strains on medicinal plants growth characteristics and essential oil yield 
 

PGPR Plant species Results of addition of bacteria to plants 
References 
 

G. moseae and B. subtilis Thymus daenensis 

75% increase in shoot /root dry weight, 117% in 
plant yield and stimulated essential oil yield by 93 % 
compared to non-inoculated controls or to plants 
single inoculated. 

(Bahadori et al., 
2013) 

Arbuseular Mycoriza 

Lemon grass 
(Symbopogon martini) 
and on mint (Mentha 
arvensis)  

Percentage of essential oil and essential yield 
increased by mycorrhizal inoculation in comparison 
with non-inoculated 

(Gupta, 1990; 
Khaliq, 1997)  

Glomus macrocarpum and 
Glomus fasciculatum 

Foeniculum vulgare. 
Growth characteristics and essential oil 
concentration significantly improved 

(Kapoor et al., 
2004) 

Polymyxa and Azospirillum 
brasilense 

Palmarosa 
(Cymbopogon martini) 

Biomass and phosphorus content maximized (Ratti et al., 2001) 

Glomus macrocarpum and 
Glomus fasiculatum 

Fennel 
(Foeniculum vulgare) 

Improved properties as follow; number of umbels in 
plant, seed weight, phosphorus concentration, 
biomass, percentage of AM root colonization, root 
and amount of essence (concentration of essential 
oil). 

(Kapoor et al., 
2004) 

Pseudomonas fluorescens and 
Azospirillum brasilense   

Marigold (Tagetes 
minuta) 

Essential oil and phenolic content by single 
inoculation and co-inoculation of  Pseudomonas 
fluorescens and Azospirillum brasilense  had been 
significantly increased 

(Cappellari et al., 
2013) 

Azotobacter Chroococcum + 
Bacillus megaterium +Bacillus 
circulanse 

Rosmarinus officinalis 

Plant height; number of branches; plant fresh and 
dry weights, oil percentage and yield in fresh herb 
and total carbohydrates were increased compared 
to other biofertilizers treatments 

(Abdullah et al., 
2012) 

G. moseae and B. subtilis Not specific plant 
Plant P uptake improved and enhanced essential oil 
content 

(Artursson et al., 
2006) 

G. fasciculatum 
Basil  
 (Ocimum basilicum), 

Inoculation significantly increased essential oil 
content and yield 

(Rasouli-
Sadaghiani et al., 
2010) 

Arbuseular Mycoriza 
Basil 
(Ocimum basilicum), 

Linalool formed the highest relative abundance of 
the main compounds in leaf essential oils 

(Rasouli-
Sadaghiani et al., 
2010) 

Azotobacter chroococcum and 
Azospirillum lipoferum 

Coriander, Fennel, 
Davana  turmeric and 
Dill  

Increased yield and essential oil 

(Kumar et al., 
2002; Mahfouz 
and Sharaf-Eldin, 
2007; Velmurugan 
and  Chezhiyan, 
2008; Kumar et al. 
2009 and Darzi  et 
al., 2012) 

Rhizobium bacteria 
fenugreek (Trigonella 
foenum-graecum) 

promote dill (Anethum graveolens L.) fresh and dry 
weight, height and umbel number, essential oil and 
yield components 

(Shafagh-
Kolvanagh and 
Shokati, 2010; 
Shokati and 
Ghassemi-
Golezani, 2013 
and Shokati and 
Zehtab-Salmasi, 
2014) 

Pseudomonas fluorescens, 
Bacillus subtilis, Sinorhizobium 
meliloti, and Bradyrhizobium 

Origanum majorana L. 

P. fluorescens and Bradyrhizobium sp. showed 
significant increases in shoot length, shoot weight, 
number of leaf, number of node, and root dry 
weight 

(Banchio et al., 
2008) 
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Biocontrol agents 

One of the environmentally friendly 
approaches in bio-controlling of diseases is using 
PGPRs. In this sense, interaction of some 
rhizobacteria with the plant roots can result in 
plant resistance against some pathogenic 
bacteria, fungi, and viruses. This phenomenon is 
called Induced Systemic Resistance (ISR) 
(Lugtenberg and Kamilova, 2009). In this process, 
rhizobacteria could produce antifungal 
metabolites like, HCN, phenazines, pyrrolnitrin, 
2,4-diacetylphloroglucinol, pyoluteorin, 
viscosinamide, and tensin (Bhattacharyya and 
Jha, 2001). Moreover, ISR involves jasmonate and 
ethylene signaling within the plant and these 
hormones stimulate the host plant defense 
responses against a variety of plant pathogens 
(Glick et al., 2007). More results of PGPR strains 
on medicinal plants growth characteristics and 
essential oil contents are shown in Table 1.  

Beside the positive effects of PGPRs on 
medicinal plants shown in Table 1, it should be 
mentioned that there are significant differences 
between the effectiveness of PGPRs. In a study to 
evaluate PGPR strains Pseudomonas fluorescens, 
Bacillus subtilis, Sinorhizobium meliloti, and 
Bradyrhizobium, it was found that only P. 
fluorescens and Bradyrhizobium sp. showed 
significant increases in shoot weight, shoot 
length, number of nodes, number of leaves, and 
root dry weight of Origanum majorana L. (Sweet 
marjoram) in comparison with control plants or 
plants treated with other PGPRs (Banchio et al., 
2008). On the other hand, another important 
point to establish a strong relationship between 
medicinal plants and PGPRs is the genus of plant 
which had a meaningful effect on microbial 
population. Ahmed Eman et al. (2014) reported a 
significant difference in densities of microbial 
count in the rhizosphere of eleven medicinal 
plants viz., Ocimum basilicum, Marrubium 
vulgare, Melissa officinals, Origanum syriacum, 
Quisqualis indica, Solidago virgaurea, Melilotus 
officinalis, Cymbopogon citratus, Matricaria 
chamomilla, Thymus vulgaris, and Majorana 
hortensis where the lowest populations were 
found in the rhizosphere of M. chamomilla and 
M. hortensis. Similar results have been reported 
showing that beside the soil type, environmental 

variables, soil management practices and 
microbial interactions, plant species could affect 
the diversity and composition of bacterial taxa in 
the rhizosphere (Backman et al., 1997, Bashan et 
al., 2008, Chet and Chernin, 2002, Khalid et al., 
2004). 

PGPRs in addition to increasing essential 
oil yield, biomass, and absorption of nutrients are 
associated with activation of octadecanoid, 
shikimate, jasmonate, and terpenoid pathways. 
In fact, one of the benefits of replacing PGPRs is 
developing stable formulation of antagonistic 
PGPR (Ghorbanpour et al., 2015). The Jasmonic 
Acid (JA) signaling pathway is generally regarded 
as an integral signal for the biosynthesis of many 
plant secondary products including terpenoids, 
flavonoids, alkaloids, and phenylpropanoids. 
Many elicitors (like pathogens and PGPRs) 
stimulate endogenous JA biosynthesis in plants, 
so the JA signaling pathway functions as a 
transducer or mediator for elicitor signaling 
pathways, leading to the accumulation of 
secondary metabolites in plants (Mueller et al. 
1993). Application of methyl-jasmonate (0.5 mM) 
significantly increased the quantity of 
monoterpenes in basil (Ocimum basilicum) via 
increasing the number of transcripts of the 
enzymes linked to metabolic pathways of 
monoterpenes (Kim et al. 2003).  It should be 
mentioned that, terpenoids, phenolics and 
alkaloids are the three major groups of secondary 
plant metabolites used for pharmacological and 
therapeutical purposes (Ghorbanpour et al. 
2015). Biosynthesis of terpenoids depends on the 
primary metabolism, e.g., photosynthesis, and 
oxidative pathways for carbon and energy supply 
(Singh et al. 1990). Accordingly, Copetta et al. 
(2006) suggested that increases in total essential 
oils yield of basil (O. basilicum) in response to 
inoculation were not merely due to increased 
biomass, and might have resulted from increased 
biosynthesis of terpenes. Some of the PGPRs 
proved to be biotic elicitors for the production of 
secondary metabolites in medicinal and aromatic 
plants are presented in Table 2.  

According to Table 2, infection by 
microorganisms as well as physiological and 
genetic factors and environmental conditions are 
the main agents affecting the accumulation and 
composition of secondary metabolites in plants. 
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As an environmentally friendly strategy, PGPRs 
should be considered to achieve sustainable high 
yields of industrially important secondary 
metabolites in plants using minimum chemical 
inputs (Ghorbanpour and  Hatami, 2014). 

 

Conclusion 

The trade and cultivation of medicinal 
and aromatic plants is an important sector in 
agriculture in many countries. Medicinal and 
aromatic plants are the main source of the well-
known drugs. Increases in the prices of chemical 
fertilizers, avoidance of soil pollution, and the 

need for finding methods for increasing essential 
oil contents, led scientists to use bio-fertilizers 
like plant growth promoting rhizobacteria which 
would be an environmentally friendly approach. 
This paper by reviewing the necessity of PGPR 
application also indicated that PGPRs such as N 
fixation bacteria, Phosphorus Solubilizing Bacteria 
(PSB), Vesicular Arbuscular Mycorrhiza (VAM) and 
siderophores could improve essential oil of 
medicinal plant contents compared to chemical 
fertilizers or non-inoculated plants. This paper 
also concluded that the soil type, environmental 
variables, soil management practices, microbial 
interactions, and plant species could affect 

Table 2 
Efficient biotic elicitors used for the production of secondary metabolites in different plant species (Adapted from 
Egamberdieva et al., 2015) 
 

PGPRs as elicitors Plant species 
Elicitation of secondary 

metabolites 
Reference 

Pseudomonas putida 

and fluorescens 
Hyoscyamus niger L. 

Hyoscyamine and 

scopolamine 

(Ghorbanpour 

et al., 2013) 

Pseudomonas putida 

and fluorescens 
Salvia officinalis L. 

Cis-thujone, camphor, 

1,8-cineole 

(Ghorbanpour 

et al., 2014) 

Bacillus polymyxa, 

Pseudomonas putida, 

Azotobacter 

chroococcum, and Glomus 

intraradices 

Stevia rebaudiana Stevioside 
(Vafadar 

et al., 2013) 

Arbuscular mycorrhizal 

and phosphatesolubilizing 

bacteria 

Rose-scented geranium 

(Pelargonium sp.) 

Citronellol, geraniol, 

geraniol, and 

10-epi-γ eudesmol 

(Prasad 

et al., 2012) 

Pseudomonas 

fluorescens and 

Azospirillum brasilense 

Tagetes minuta 
Monoterpenes and 

phenolic compounds 

(Cappellari 

et al., 2013)  

Pseudomonas 

aeruginosa and 

Pseudomonas 

fluorescens 

Pisum sativum 

Phenolic compounds 

(gallic, cinnamic, and 

ferulic acid) 

(Bahadur 

et al., 2007) 

Hormonema ssp. 

homogenates 
Brugmansia candida 

Hyoscyamine and 

scopolamine 

(Pitta-Alvarez 

et al., 2000) 

Bacillus cereus 
Salvia miltiorrhiza 

Bunge 
Tanshinone (Zhao et al., 2010) 
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bacterial diversity and composition of the 
rhizosphere. 
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