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                            The Atomic Orbital Search inspiration from the rules of 

quantum mechanics and Firefly Algorithm is a metaheuristic technique 

which is widely used for solving the optimization problems. Both algorithms 

collectively improved the performance of search. This article goals to 

optimize engineering design problems utilizing a new hybrid optimizer; 

AOS-FA (Atomic Orbital Search-Firefly Algorithm). Incorporating the FA 

methodology into the basic AOS framework has successfully addressed the 

issue of local optima trap and significantly enhanced the quality of solutions 

generated by the algorithm. The FA algorithm is work on the combinatorial 

optimization and utilized as application of AOS algorithm. Hence, we merge 

these two algorithms and make a hybrid algorithm. The purpose of the 

suggested hybridization method was to promote the improvement of the 

exploration-exploitation manners of the AOS search. To analyse the viability 

of the suggested hybridized algorithm in real-world usages, it is studied for 

five constrained engineering design issues, and the performance was 

determined with other outstanding metaheuristics extracted from the 

publications. 
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INTRODUCTION 

   Optimization is an essential part of engineering 

design, and hence in numerous real-world 

challenging problems with various frameworks, 

Meta-Heuristics (MHs) have become increasingly 

fascinating as a robust instrument for 

optimization. Engineering regulation can achieve 

stable and efficient mechanisms by using well-

designed optimum models. These models are 

developed based on mathematical theorems and 

approaches. Although optimization methods were 

used by historical figures such as Newton, 

Lagrange, and Cauchyeski for smaller-scale 

issues, modern engineers rely on improved and 

hybrid versions of these algorithms to effectively 

solve more extensive and more complex 

engineering design problems(Ghaemifard & 

Ghannadiasl, 2024c). Over the past two decades, 

the rise of environmental and global phenomena 

due to techno-logical advancements and 

population growth has made complicated 

engineering designs more challenging. As a 

solution, metaheuristic optimization algorithms 

have become a popular choice for achieving 

reasonable solutions in less time (Ghaemifard & 

Ghannadiasl, 2024b; Houssein, Mahdy, Shebl, & 

Mohamed, 2021). Numerous metaheuristic 

optimization algorithms have been developed and 

proven effective in improving optimization 

processes beyond their predecessors, despite their 

unique processes and textures. To tackle global 

optimization problems, meta-heuristic algorithms 

are a frequently employed solution. The optimal 

solution is primarily achieved by simulating of 

both nature and human intelligence. By 

conducting a global search, they can identify an 

approximate solution that closely approximates 

the optimal solution to some degree. Exploration 

and exploitation are the fundamental principles of 

MHs. Exploration is crucial in order to thoroughly 

search the entire space and locate the optimal 

solution, which could potentially be located 

anywhere within it. To maximize the use of 

valuable information, it is essential to engage in 

effective exploitation. Optimal solutions are 

generally correlated in specific ways. Utilize 

these correlations to regulate gradually and search 

slowly from the initial answer to get the optimal 

solution. MHs strive to achieve a harmonious 

balance between exploration and exploitation. 

MHs have gained significant attention from 

scholars in recent years due to their numerous 

advantages, including their simple and intuitive 

operation, as well as their fast-running speed 

(Fazli, Khiabani, & Daneshian, 2022; Ghaemifard 

& Ghannadiasl, 2024c; Ghannadiasl & 

Ghaemifard, 2024a; Shahebrahimi, Lork, 

Shayegan, & Amir). There have been numerous 

proposals for meta-heuristic algorithms, totalling 

in the hundreds. MHs can be categorized into four 

groups based on various design inspirations: 

evolutionary, physical, swarm-based, and human-

based algorithms. Swarm-based algorithms are a 

powerful tool in optimization, and computational 

intelligence has made great strides in recent years. 

These algorithms include Ant Colony 

Optimization (Dorigo, Birattari, & Stutzle, 2007), 

Artificial Bee Colony (Karaboga, 2010), Particle 

Swarm Optimization (Eberhart & Kennedy, 

1995), Remora Optimization Algorithm (Jia, 

Peng, & Lang, 2021), Slap Swarm Algorithm 

(Hussien, 2022), Ant Lion Optimizer (Assiri, 

Hussien, & Amin, 2020), Grey Wolf 

Optimization (Mirjalili, Mirjalili, & Lewis, 

2014), Bat Algorithm (X. S. Yang & Hossein 

Gandomi, 2012), Krill Herd (X. S. Yang & 

Hossein Gandomi, 2012), and Whale 

Optimization Algorithm (Mirjalili & Lewis, 

2016). Each of these algorithms has its strengths 

and weaknesses, and researchers continue to 

explore new variations and combinations to push 

the boundaries of what is possible in optimization. 

Whether you are working in engineering, finance, 

or any other field where optimization is critical, 
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these swarm-based algorithms offer robust 

solutions that can help you achieve your goals. 

There are several types of evolutionary 

algorithms available for use, including Genetic 

Algorithm (GA) (Holland, 1992), Evolution 

Strategy (ES) (Beyer & Schwefel, 2002), Genetic 

Programming (GP) (Banzhaf, Koza, Ryan, 

Spector, & Jacob, 2000), Differential Evolution 

(DE) (Price, 2013), Virulence Optimization 

Algorithm (VOA) (Jaderyan & Khotanlou, 2016), 

Black Hole Algorithm (BH) (Hatamlou, 2013), 

Evolutionary Programming (EP) (Sinha, 

Chakrabarti, & Chattopadhyay, 2003), 

Gravitational Search Algorithm (GSA) (Rashedi, 

Nezamabadi-Pour, & Saryazdi, 2009). Several 

physical-based algorithms have been developed 

to address optimization problems. These include 

Simulated Annealing, Flood algorithm (FLA) 

(Ghasemi et al., 2024), Thermal Exchange 

Optimization (TEO) (Ali Kaveh & Dadras, 2017) 

and Ray Optimization (RO) (A Kaveh & 

Khayatazad, 2012). Harmony Search (HS) 

(Geem, Kim, & Loganathan, 2001), and 

Exchanged Market Algorithm (EMA) (Ghorbani 

& Babaei, 2014) are categorized as human‐ based 

algorithms. MHs can be significantly optimized 

through the use of these algorithms. Researchers 

have proposed various methods to enhance the 

convergence performance and efficiency of 

metaheuristic algorithms. To achieve this goal, 

improved versions such as those developed by 

(Ghannadiasl & Ghaemifard, 2024b; Hakli & 

Ortacay, 2019; Kannan & Kramer, 1994) have 

been expressed, as well as hybrid versions that 

combine multiple algorithms such as those 

developed (Abouhabaga, Gadallah, Kouta, & 

Zaghloul, 2021; Chen & Zheng, 2024; Euchi & 

Sadok, 2021; Fasina, Sawyerr, Abdullahi, & Oke, 

2023; Ghajarnia, Bozorg Haddad, & Mariño, 

2011; Ghannadiasl & Ghaemifard, 2022; 

Hemagowri & Selvan, 2023; Khorram & 

Bahrami, 2020). These approaches have shown 

promise in producing solutions with fewer 

iterations. Fig.1a, displays a comparison graph of 

the number and percentage of studies conducted 

on hybrid optimization algorithms over the years. 

Over the past two decades, there has been a 

significant rise in the utilization of hybrid 

metaheuristic optimization algorithms. Fig.1b 

presents the findings of a study that analysed the 

distribution of hybrid optimization studies across 

various fields using data obtained from the Web 

of Science database. While approximately 50% of 

studies fall outside of the fields represented in the 

Fig.1, it is clear that hybrid optimization 

algorithms are widely utilized in 

multidisciplinary engineering research. The 

purpose of this paper is to introduce an innovative 

algorithm called AOS-FA (Atomic Orbital 

Search-Firefly optimization). The purpose of 

developing this algorithm was to test its 

effectiveness in achieving global optimum 

solutions and enhancing overall performance. In 

Fig.2, the main objective and general process of 

the paper are presented. There are five sections to 

the remainder of the study. We describe the 

procedures in Sect. 2. In Section 3, numerical 

examples are shown, and the effectiveness of 

recommendation algorithms is assessed. 

Conclusions and upcoming projects are discussed 

in Sect. 4. 

 

METHODS 

The proposed AOS-FA method 

A good meta-heuristic algorithm balances its 

exploration and exploitation functions to achieve 

optimal performance (Eiben & Schippers, 1998). 

The Atomic Orbital Search method boasts robust 

global optimization, adaptability, and robustness 

(Mahdi Azizi, 2021). The Firefly algorithm has 

strong local search abilities and fast convergence, 

but it often converges to a local optimum instead 

of a global optimal solution (X.-S. Yang, 2009). 
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(a) 

 

 
(b) 

 
Fig. 1. Web of Science citation report studies: (a) 

Number of published hybrid optimization studies, (b)  

Distribution of hybrid optimization studies according 

to fields 

 

This section presents the proposed algorithm 

hybrid AOS-FA, which combines the benefits of 

two metaheuristic algorithms: AOS and FA. FA 

has strong exploration capabilities, allowing it to 

visit all local and global modes and find suitable 

solutions, while AOS has high exploitation 

capabilities. The AOS-FA algorithm is based on 

three principles. Hybrid algorithms can 

supplement strengths and weaknesses. By 

establishing new populations that share the best 

individuals from both groups, this mixture can 

protect against early convergence while retaining 

helpful qualities from AOS and FA. Ultimately, 

the AOS-FA algorithm uses only the parameters 

from the original AOS and FA algorithms. Fig. 3 

illustrated the pseudo-code of AOS-FA. In this 

hybrid algorithm first the AOS algorithm is run. 

 
Fig.2. General process of the paper 

 

To improve optimization algorithms, in the 

quantum-based atomic model, the AOS algorithm 

suggests using solution candidates (X) as 

electrons. The solution candidates (𝑋𝑖) represent 

each electron, and decision variables (𝑋𝑖,j) are 

used to deter in the search space. In this hybrid 

algorithm first the AOS algorithm is run. To 

improve optimization algorithms, in the quantum-

based atomic model, the AOS algorithm suggests 

using solution candidates (X) as electrons. In the 

search space, solution candidates (𝑋𝑖) represent 

each electron, and decision variables (𝑋𝑖,j) are 

used to determine their positions. 
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To describe the location of solution volunteers within the probe 

zone, the problem dimension is defined via d. Parameter m is the 

presenter of the number of solution candidates. Each electron has 

an energy state, according to the quantum atomic model. The 

objective subordinate is this energy state. 

 

𝐄 =

[
 
 
 
 
 
𝐄𝟏

𝐄𝟐

⋮
𝐄𝐢

⋮
𝐄𝐦]

 
 
 
 
 

             {𝐢 = 𝟏,𝟐,… ,𝐦 (2) 

To determine the objective function values, refer 

to vector E. Energy level 𝐸𝑖 pertains to the ith 

solution volunteers. At the same time, the number 

of electrons in the probe area is represented by m. 

The Probability Density Function is a 

mathematical model utilized to define the station 

of electrons around the nucleus in the quantum 

atomic model. According to probability theory, 

Probability Density Function expresses the 

probability of a variable happening within a 

special scope. The Probability Density Function 

analysis reveals that the solution candidates are 

distributed among the imaginary layers created to 

determine the position of electrons. In the 

following, the vectors of location and objective 

subordinate values of answer volunteers in 

imaginary layers are expressed as Eq3 and Eq4  

respectively. 

 

𝐗𝐊 =

[
 
 
 
 
 
 
𝐗𝟏

𝐤

𝐗𝟐
𝐤

⋮
𝐗𝐢

𝐤

⋮
𝐗𝐩

𝐧]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 𝐗𝟏

𝟏 𝐗𝟏
𝟐 …

𝐗𝟐
𝟏 𝐗𝟐

𝟐 …

𝐗𝟏
𝐣

… 𝐗𝟏
𝐝

𝐗𝟐
𝐣

… 𝐗𝟐
𝐝

⋮ ⋱ ⋮
⋮ ⋮ …

𝐗𝐢
𝟏

⋮
𝐗𝐩

𝟏

𝐗𝐢
𝟐

⋮
𝐗𝐩

𝟐
…

𝐗𝐢
𝐣

… 𝐗𝐢
𝐝

⋮ ⋱ ⋮

𝐗𝐩
𝐣

… 𝐗𝐩
𝐝
]
 
 
 
 
 
 
 

     {

𝐢 = 𝟏,𝟐, … ,𝐩
𝐣 = 𝟏,𝟐, … ,𝐝
𝐊 = 𝟏,𝟐, … ,𝐧

 (3) 

 

𝐄𝐤 =

[
 
 
 
 
 
𝐄𝟏

𝐤

𝐄𝟐
𝐤

⋮
𝐄𝐢

𝐊

⋮
𝐄𝐩

𝐧
]
 
 
 
 
 

        {
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 (4) 

The electrons located near to the nucleus are 

supposed to be in the base mode of energy. The 

mathematical model utilizes the place and 

purpose subordinate amounts of solution 

candidates in each layer to define the binding 

energy essential for drawing an electron from its 

cover. To define the binding condition and 

binding energy of solution candidates in each 

imaginary layer, the situations and purpose 

subordinate amounts of all candidates in the layer 

are averaged. To achieve the intended purpose, 

the following mathematical equations are 

provided: 

 

𝐁𝐒=
∑ 𝐗𝐢

𝐦
𝐢=𝟏

𝐦
          {𝐢 = 𝟏,𝟐, … ,𝐦 (5) 

𝐁𝐄=
∑ 𝐄𝐢

𝐦
𝐢=𝟏

𝐦
         {𝐢 = 𝟏,𝟐, … ,𝐦 (6) 

 

In the kth layer, 𝐵𝑆𝑘 and 𝐵𝐸𝑘 represent the 

condition and energy of binding, respectively. 

The location and objective subordinate amount of 

ith solution candidates are denoted by 𝑋𝑖
𝑘 and 𝐸𝑖

𝑘, 

while m represents the whole number of solution 

candidates in the probe area. To accurately assess 

the state and strength of binding of an atom, one 

must take into account the average positions and 

objective function values of all potential solutions 

in the search space. The location (Xi) and purpose 

subordinate amount (𝐸𝑖) of each solution 

candidate within the atom can be analyzed to 

determine the atom's binding state BS and binding 

energy BE. Use the following mathematical 

equations to update the candidate positions: 

 

𝐗𝐢+𝟏
𝐤 =𝐗𝐢

𝐤 +
𝛂𝐢

𝐤
(𝛃𝐢 × 𝐋𝐄 − 𝛄𝐢 × 𝐁𝐒)              {

𝐢 = 𝟏,𝟐, … ,𝐩

𝐤 = 𝟏,𝟐, … ,𝐧
 (7) 

To determine the amount of emitted energy, 

vectors 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖  are randomly generated 

with a uniform distribution between (0,1). 𝑋𝑖
𝑘  and 

𝑋𝑖+1
𝑘  represent the current and upcoming 

positions, while LE refers to the candidate with 

the lowest energy level in the atom. Additionally, 

BS denotes the binding state of the atom. photon 

absorption happened when the energy level of a 

solution candidate in a special layer is lower than 

the layer's binding energy. This procedure 

involves solution candidates absorbing a photon 
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with energy levels β and γ to efficiently get both 

the binding situation of the layer and the lowest 

energy level condition of the electron within the 

layer. The mathematical equation to update the 

location of solution candidates is (Mahdi Azizi, 

2021): 

 
    𝐗𝐢+𝟏

𝐤 =𝐗𝐢
𝐤 + 𝛂𝐢 × (𝛃𝐢 × 𝐋𝐄𝐤 − 𝛄𝐢 ×

𝐁𝐒𝐤)           , {
𝐢 = 𝟏,𝟐,… ,𝐩
𝐤 = 𝟏,𝟐,… ,𝐧

 

(8) 

After running the AOS algorithm, it is time to run 

FA algorithm so that firstly, rank the population 

in FA algorithm. The attractiveness of a Firefly is 

shown in as Eq 9.  

 

𝐈(𝐫) =
𝐈𝐬
𝐫𝟐 (9) 

Let's consider a scenario with n fireflies, where xi 

represents the solution for each individual Firefly. 

The brightness of a firefly, denoted as i, is closely 

linked to the objective function f(xi). The 

objective function expressed in Eq 10, showed the 

brightness I of a firefly. 

 
𝐈𝐢 = 𝐟(𝐱𝐢) (10) 

 

The dimmer Firefly is absorbed and moves 

towards the shining one, and parameter β 

expressed the specific level of attractiveness of 

each Firefly. β, is related to the spacing between 

Fireflies. The attractiveness function of the 

Firefly is showed as Eq11. 

 
𝛃(𝐫) = 𝛃𝟎𝐞

−𝛄𝐫𝟐
 (11) 

 

𝛽
0
 represents the attractiveness of the Firefly 

when it is at r = 0, while γ represents the light 

absorption coefficient of the media. Firefly at 

location xi moves towards a brighter Firefly at 

location xj using Eq12 (X.-S. Yang, 2009). 

 

𝐗𝐢(𝐭 + 𝟏) = 𝐱𝐢(𝐭) + 𝛃𝟎𝐞
−𝛄𝐫𝟐

(𝐱𝐢 − 𝐱𝐣)𝛂𝛆𝐢 (12) 

 

When the Firefly xj is attracted, 𝛽0𝑒
−𝛾𝑟2

(𝑥𝑖 −

𝑥𝑗)  affects the movement, while 𝛼𝜀𝑖 is a 

randomization parameter. If 𝛽0 = 0, the movement 

is random The algorithm compares the Firefly's 

new location to the past one to define its 

fascination. If the new position seems more 

attractive, the Firefly will move; if not, it will stay 

in its current position. The stopping criteria for the 

FA are set by a pre-defined number of iterations 

or a fitness value deemed appropriate. According 

to Eq13, the Firefly that shines the brightest 

moves in a random pattern. 

 

𝐗𝐢(𝐭 + 𝟏) = 𝐱𝐢(𝐭) + 𝛂𝛆𝐢  (13) 

 

NUMERICAL EXAMPLES 

The results illustrated in this part can be used to 

compare the efficiency of the proposed algorithm 

investigated in this article. An Intel i5 (2.4 GHz) 

system with 8 GB of RAM was utilized for all of 

the simutlations. To validate and compare the 

algorithms detailed in this article with other 

algorithms, these results are compared with the 

results of some studies. In Table 1, the control 

parameters are defined for estimating different 

plans of the suggested algorithm. The control 

parameters have been set to assess the various 

processes of the suggested algorithm based on the 

standard range of each algorithm which stated in 

other articles. 
 

Table 1: Control parameters of algorithms 
Optimization parameters Value 

Gamma parameter of FA 1 

Beta0 parameter of FA 2 

Alpha parameter of FA 0.2 

FotonRate parameter of AOS 0.1 

LayerNumber parameter of AOS  5 

 

In this section, we will delve into a 

comprehensive analysis of the prevailing 

engineering design issues.  It is noteworthy to 

emphasize that the ensuing discussion focuses 
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exclusively on the most renowned engineering 

design problems encountered in practical 

applications. Efficacious resolution of these 

problems typically necessitates a proactive 

methodology aimed at determining the optimal 

parameters for the most ideal design. 

 

 

Procedure Atomic Orbital Search- Firefly Algorithm 

 Objective function 𝑓(𝑥), 𝑥= (𝑥1, 𝑥2, …,𝑥𝑑)𝑇 

Determine initial positions of solution candidates (Xi) in the search space 

with m candidates 

                Evaluate fitness values (Ei) for initial solution candidates 

               Determine the binding state(BS) and binding energy (BE) of the 

atom 

              Determine the candidate with the lowest energy level in the atom 
(LE) 

              While Iteration < Maximum number of iterations 

Generate n as the number of imaginary layers 

                                                Create imaginary layers 

                         Sort solution candidates in an ascending or descending 

order 
                         Distribute solution candidates in the imaginary layers by 

PDF 

                                    For k=1: n 

                   Determine the binding state (BSk) and binding energy (BEk) of 

the kth layer 

                 Determine the candidate with the lowest energy level in the kth 

layer (LEk) 

                                   For i=1: p 

                                                  Generate 𝜑,𝛼,𝛽,𝛾 

                                                  Determine PR 

                                                  If 𝜑 ≥ 𝑃𝑅 

                                                 If 𝐸𝑖
𝐾 ≥ 𝐵𝐸𝑘  

𝑋𝑖+1
𝑘 = 𝑋𝑖

𝑘 +
𝛼𝑖 × (𝛽𝑖 × 𝐿𝐸 − 𝛾𝑖 × 𝐵𝑆)

𝑘
 

                                               Else if 𝐸𝑖
𝐾 < 𝐵𝐸𝑘 

𝑋𝑖+1
𝑘 = 𝑋𝑖

𝑘 + 𝛼𝑖 × (𝛽𝑖 × 𝐿𝐸 − 𝛾𝑖 × 𝐵𝑆𝑘) 

                                              end 

                                              Else if 𝜑 < 𝑃𝑅 

𝑋𝑖+1
𝑘 = 𝑋𝑖

𝑘 + 𝑟𝑖 
                                            End 

                                           End 

                                          End 

Update binding state(BS) and binding energy (BE) OF ATOM 

                                   Update candidate with the lowest energy level in the 
atom (LE) 

End while 

Rank the population 𝐗i, and update the current best. 

Initialize a population of fireflies 𝑋𝑖 (𝑖=1, 2,…,𝑛) 
Calculate the fitness value 𝑓(𝑋𝑖) to determine the light intensity 𝐼𝑖 at 𝑋𝑖 

 Define light absorption coefficient 𝛾 

while (𝑡<𝑀𝑎𝑥𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛_𝐹𝐴) 

        for 𝑖=1:𝑛=1: all n fireflies 

             for 𝑗=1:𝑛=1: all n fireflies 

                  if (𝐼𝑗>𝐼𝑖) 
                       Move firefly i towards j in all d-dimensions via Lévy flight. 
                  end if. 

Attractiveness varies with distance r via −𝑒−𝛾𝑟2. 
                  Evaluate new solutions and update light intensity. 

             end for j 

        end for i 
        Rank the fireflies and find the current best.    

   end while 

   Output the best solution. 

End procedure 

Fig.3. Pseudo-code of AOS-FA Algorithm 

Optimization of truss size 

In this section, the size optimization of a 10-bar 

truss (Fig. 4) is studied. This truss has been 

numerically investigated by several researchers 

like Schmit Jr and Farshi (1974), Farshi and 

Alinia-Ziazi (2010). In analysing the 10-bar plane 

truss, displacement, and stress constraints are 

utilized with each other. The translations of nodes 

5 and 6, located on the left, are constrained in the 

x and y directions. The two free nodes of the 

lower bars (2 and 4) obtain vertical loads (y-

direction).  

 

 
Fig.4. Ten-bar truss 

 

All bars, except number 9, have the same tension 

limit for traction and compression. Nodes 1 

through 4 have the same displacement limit in the 

y-direction. The cross-sectional areas of the ten 

elements are considered as continuous design 

variables. In Table 2, the mechanical properties, 

loading, stresses and displacements, and design 

variables of the truss are presented in Table 3, 

while Table 4 details the decision-making criteria 

and constraints to arrive at the best option. Table 

4 shows that the FA algorithm with an objective 

function value of 2298.77 provided the best 

solution for truss size optimization, 

outperforming AOS and AOS-FA. All 

optimization algorithms had 100 research agents 

and 300 iterations. Fig.6 presents the 
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computational time and standard deviation values 

for the minimum mass obtained after four 

independent executions of each algorithm. Based 

on Table 4 and Fig.5, it is clear that the AOS-FA 

algorithm, despite its shorter runtime, was not 

effective in optimizing the truss size. It is noticed 

that in this problem, numerical method has better 

results against to AOS-FA although it has not 

good results against to other algorithms that 

mentioned. 

 

Table 2: Mechanical properties of the considered truss 

 

 

 

 

Table 3: Nodal loading components and constraints 

for 10 bar plane truss 

 

 

 

 

 

 

 

 

 

 

 
Fig.5. Standard deviation and computational time (s) 

for ten-bar plane truss 

 

 

Design of I-shaped beams 

In the I-beam design problem (Fig. 7), the goal is 

to minimize the vertical deflection, while 

satisfying the cross-sectional area and stress 

constraints under given loads. The variables of 

this problem are the width of the flange b (= x1), 

the height of section h (= x2), the thickness of the 

web tw (= x3), and the thickness of the flange tf (= 

x4). The maximum vertical deflection of the beam 

is 𝑓(𝑥) =
𝑃𝐿3

48𝐸𝐼
. The objective function when the 

modulus of elasticity is 523.104 kN/cm2 and 

L=5200 cm, is formulated as follows:  

Minimize: 

 

Subject to: 

In this problem, the best statistical results were 

achieved after four independent implementations 

using 100 search agents and 300 iterations by 

algorithms mentioned in Tables 5 and 6, 

respectively. From Table 6, it can be understood 

that AOS obtained the shortest computational 

execution time. According to Table 5 can say that 

metaheuristic algorithms that used for this 

problem, has good performances and the obtained 

results against to ARSM method is good. This 

subject shows that metaheuristic algorithms have 

good results than numerical methods. Also, it is 

determined that AOS-FA is top from AOS. 

 

0

10

20

30

40

FA AOS AOS-FA

Std 1.0102 0.00799362 0.00987

Time 34 29.69 11.53

Material Aluminium 

Density, ρ 2767.99 kg/m3 

Young’s modulus, E 68.95×109 N/m 2 

Loading 

No. X-direction Y-direction 

2 and 4 0 -444.82 KN 

Tension restrictions 

Bar Value 

9 ±517.11 MPa 

Displacement 

NO. Value 

1,2,3,4 ±50.8 mm (Y direction) 

The range of design variables 

64.5 mm² ≤ 𝑨𝒊≤ 20000 mm² 

𝐅(𝐗) =  
𝟓𝟎𝟎𝟎

𝟏
𝟏𝟐

𝐱𝟑(𝐱𝟐 − 𝟐𝐱𝟒)
𝟑 + 𝟐𝐛𝐱𝟒(𝐱𝟐 −

𝐱𝟒

𝟐
)𝟐 +

𝟏
𝟔

(𝐱𝟏𝐱𝟒
𝟑)

 

 

(14) 

𝐠𝟏(𝐱) = 𝟐(
𝟏

𝟐
𝐱𝟏𝐱𝟑 + 𝐱𝟐𝐱𝟒 − 𝐱𝟑𝐱𝟒) ≤ 𝟑𝟎𝟎 

 
(15) 

𝐠𝟐(𝐱)

= 𝟏𝟓 × 𝟏𝟎𝟑
𝐱𝟏

𝐱𝟑

𝟏

(𝐱𝟐 − 𝟐𝐱𝟒)𝐱𝟑 + 𝟐𝐱𝟏
𝟑 + 𝟏𝟖

× 𝟏𝟎𝟒
𝐱𝟐

𝐱𝟑

𝟏

(𝟏 − 𝟐𝐱𝟒)
𝟑 + 𝟐𝐱𝟏(𝟒𝐱𝟒

𝟐 − 𝟑𝐱𝟐
𝟐)

≤ 𝟓𝟔 

 

(16) 
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Fig.7. Beam design problem 

Table 4: Optimum design of cross-sections (cm²) for ten-bar plane truss 

Present paper Schmit Jr and Farshi (1974) Borges (2013) 

Ghaemifard and 

Ghannadiasl 

(2024a) 

Member FA AOS AOS-FA Numerical method PSO HS GWO 

1 193.699 164.245 197.142 215.676 180.150 196.180 198.94 

2 0.645 5.673 0.645 0.645 0.645 1.128 0.71 

3 159.320 192.922 164.340 156.5158 151.150 144.560 156.27 

4 93.244 187.862 106.074 91.9998 99.269 103.170 95.80 

5 0.645 0.645 0.645 0.645 0.645 0.645 0.65 

6 3.517 0.645 0.645 0.645 3.726 3.560 0.64 

`7 47.892 61.004 52.977 54.1289 47.710 48.884 54.72 

8 140.162 167.049 139.323 133.8061 139.810 138.040 133.59 

9 134.560 99.228 121.686 127.032 146.780 138.020 134.10 

10 0.645 0.645 0.645 0.645 0.645 0.673 0.74 

Mass (kg) 2298.77 2700.16 2314.5 2308.3315 2301.41 2302.60 2303.41 

Pressure vessel design 

The goal of designing pressure vessels is to meet 

production needs while reducing container costs. 

The key design variables are head thickness (Th), 

shell thickness (Ts), container length (L), and 

inner radius (R). in this problem, Ts and Th are 

integers of 0.625, while R and L are continuous 

variables. Fig.8 shows the optimal structure 

design schematic. 

 

 
            Fig.8. Schematic of the pressure vessel 

Mathematical formulation for this problem is:  

 Consider: 

 

𝐗 = [𝐗𝟏𝐗𝟐𝐗𝟑𝐗𝟒] = [𝐓𝐬𝐓𝐡𝐑  𝐋] (17) 

 

Minimize: 
 

𝐟(𝐗) =0.6224[( 𝐗𝟑𝐗𝟏(𝐗𝟒 +

𝟑𝟏. 𝟖𝟕𝟔𝐗𝟏)) +(2.856𝐗𝟐𝐗𝟑
𝟐 + 𝟓.𝟎𝟖𝟔𝐗𝟏

𝟐𝐗𝟒)] 
(18) 

 

Subject to: 

𝐠𝟏(𝐗) = −[(−
𝟏𝟗𝟑

𝟏𝟎𝟎𝟎𝟎
𝐗𝟑) + 𝐗𝟏] ≤ 𝟎 (19) 

𝐠𝟐(𝐗) =
𝟗𝟓𝟒

𝟏𝟎𝟎𝟎𝟎𝟎
𝐗𝟑 − 𝐗𝟐 ≤ 𝟎 (20) 

𝐠𝟑(𝐗) = −𝛑 𝐗𝟑
𝟐(

𝟒

𝟑
𝐗𝟑 + 𝐗𝟒) + 𝟏𝟐𝟗𝟔𝟎𝟎𝟎

≤ 𝟎 

(21) 

𝐠𝟒(𝐗) = −(−𝐗𝟒 + 𝟐𝟒𝟎) ≤ 𝟎 (22) 

 

Variable Range:  

 

 
𝟎 ≤ 𝐗𝟏 ≤ 𝟗𝟗, 

𝟎 ≤ 𝐗𝟐 ≤ 𝟗𝟗, 

𝟏𝟎 ≤ 𝐗𝟑 ≤ 𝟐𝟎𝟎, 

𝟏𝟎 ≤ 𝐗𝟒 ≤ 𝟐𝟎𝟎 

(23) 
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Table 5: Best results for the optimal design of I-Shaped Beam 

Present work Another research 

 FA AOS 
AOS-

FA 

SOS  

(Cheng & 

Prayogo, 2014) 

SNS 

 (Bayzidi, Talatahari, Saraee, 

& Lamarche, 2021b) 

ARSM 

(Wang, 

2003) 

 

Variables 

 

x1 80 80 80 80 80 80 

x2 50 50 50 50 50 37.05 

x3 0.9 0.9 0.9 0.9 0.9 1.71 

x4 2.32 2.32 2.32 2.3217 2.3217 2.31 

Constraints 

 

g1 0.0766 -21.89 0.07668 -0.000222 0 --- 

g2 4.4285 5.9667 4.4285 -1.57 -1.5702 --- 

FCost 0.0131 0.0130 0.0130 0.0130 0.0130 0.0157 

 

Table 6: The statistical results of each algorithm 

 

 

 

 

 

Table 7, presents the results of pressure vessel 

design issues. AOS-FA is a cost-effective 

algorithm that produces excellent results. The 

statistical results of the Pressure Vessel Design 

problem are presented in Table 8. It shows that the 

AOS-FA has the shortest computational 

execution time. According to the Table, it is 

determined that AOS obtained optimal result 

contrast to AOS-FA and FA and FA has better 

result from AOS-FA. Although AOS-FA 

algorithm has optimal result contrast to NLP 

method which shows hybrid algorithm has good 

performance. 

 

 

Tubular column design 

In this section, the design of a tubular column that 

is uniform in shape and can withstand the pressure 

at minimum cost was presented. The optimization 

variables for this problem are the average 

diameter of the column d (x1) and the thickness of 

the tube t (x2). The object has a yield stress of 500 

kgf/cm2, modulus of elasticity of 0.85 × 106 

kgf/cm2, and density of 0.0025 kgf/cm3. The 

formula for this problem is: 

 

𝐟(𝐗) = 𝐗𝟏(𝟐 + 𝟗. 𝟖𝐗𝟐) (24) 

Table 7: Variables design of problem 

 Algorithm X1 X2 X3 X4 
Optimal 

cost 

Present study 

FA 0.7967 0.3938 41.281408 187.031440 5979.983 

AOS 0.7782 0.3933 40.714312 195.311948 5888.6 

AOS-FA 0.9950 0.4933 51.2635 178.6489 6404.9 

Other 

research 

CS (Amir Hossein Gandomi, Yang, & Alavi, 

2013) 
0.8125 0.4375 42.0984456 176.6365 6059.714 

ABC (Akay & Karaboga, 2012) 0.8125 0.4375 42.098446 176.6365 6059.714 

NLP (Sandgren, 1990) 1.125 0.625 48.97 106.72 7982.5 

 

Method Standard deviation Mean Max Min Time(s) 

FA 11493.9 1.96171 1.96171 1.96171 35.04 

AOS 33.6697 31.5419 80 0.9 0.0009688 

AOS-FA 0 1.9622 1.9622 1.9622 3.0606   

Ghaemifard and 

Ghannadiasl 

(2024a) 

0 1.99466e+16 1.99466e+16 1.99466e+16 11.862 
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Table 8: Statistical results of the Pressure vessel 

design problem 
 FA AOS AOS-FA 

Std 98.8673 17.5656 0 

Min 5917.84 0.493384 6443.12 

Max 6093.99 185.38 6446.12 

Mean 5979.98 62.3957 6443.12 

Time 3.34 1.97 1.32 

 

The constraints on the stresses in the columns 

are: 

𝐠𝟏(𝐗) =
𝐏

𝛑𝛔𝐲

𝟏

𝐗𝟏𝐗𝟐
− 𝟏 ≤ 𝟎 (25) 

𝐠𝟐(𝐗) = −𝟏 +
𝟖𝐏𝐋𝟐

𝛑𝟑𝐄

𝟏

𝐗𝟏
𝟐𝐗𝟐

𝟐(𝐗𝟏 + 𝐗𝟐)
≤ 𝟎 (26) 

𝐠𝟑(𝐗) = −𝟏 + 𝟐
𝟏

𝐗𝟏
≤ 𝟎 (27) 

𝐠𝟒(𝐗) = −𝟏 +
𝟏

𝟏𝟒
𝐗𝟏 ≤ 𝟎 (28) 

𝐠𝟓(𝐗) = −𝟏 +
𝟏

𝟓

𝟏

𝐗𝟐
≤ 𝟎 (29) 

𝐠𝟔(𝐗) = −𝟏 +
𝟏

𝟖
𝐗𝟐 ≤ 𝟎 (30) 

 

 

Where the range of variables is: 
𝟐 ≤ 𝐗𝟏 ≤ 𝟏𝟒 

𝟎. 𝟐 ≤ 𝐗𝟐 ≤ 𝟎. 𝟖 

 

(31) 

 
Fig.9. Model of the tubular column 

We compared the optimal solution obtained by 

AOS-FA with other papers and found that AOS-

FA had good results in this problem. The 

particular information is shown in Table 9 and 10 

respectively. 

Welded beam design 

This is an engineering optimization problem 

involving the design of a welded beam to 

minimize cost, with four variables to 

optimize and seven constraints, as illustrated 

in Fig.10. The formula for this problem is: 

Minimize: 

 

𝐟(𝐗) =
𝟒𝟖𝟏

𝟏𝟎𝟎𝟎𝟎
(𝟏𝟒𝐱𝟑𝐱𝟒 + 𝐱𝟐𝐱𝟑𝐱𝟒

+ 𝟐𝟐. 𝟗𝟔𝟔𝟗 𝐱𝟏
𝟐𝐱𝟐) 

(32) 

𝐠𝟏(𝐱) = −𝟏𝟑𝟔𝟎𝟎 + 𝛕(𝐱) ≤ 𝟎 (33) 

𝐠𝟐(𝐱) = −𝟑𝟎𝟎𝟎𝟎 + 𝛔(𝐱) ≤ 𝟎 (34) 

𝐠𝟑(𝐱) = −𝟎. 𝟐𝟓 + 𝛅(𝐱) ≤ 𝟎 (35) 

𝐠𝟒(𝐱) = −𝐱𝟒 + 𝐱𝟏 ≤ 𝟎 (36) 

𝐠𝟓(𝐱) = 𝟔𝟎𝟎𝟎 − 𝐏𝐜(𝐱) ≤ 𝟎 (37) 

𝐠𝟔(𝐱) = −𝐱𝟏 + 𝟎. 𝟏𝟐𝟓 ≤ 𝟎 (38) 

𝐠𝟕(𝐱) =
𝟒𝟖𝟏

𝟏𝟎𝟎𝟎𝟎
(𝟏𝟒𝐱𝟑𝐱𝟒 + 𝐱𝟐𝐱𝟑𝐱𝟒

+ 𝟐𝟐. 𝟗𝟔𝟔𝟗 𝐱𝟏
𝟐) − 𝟓. 𝟎 ≤ 𝟎 

(39) 

𝐏𝐜(𝐱) =
𝟒. 𝟎𝟏𝟑𝐄

𝟔𝐋𝟐
𝐱𝟑𝐱𝟒

√𝟏 −
𝐱𝟑

𝟐𝐋
√

𝐄

𝟒𝐆
 

(40) 

It was denoting the thickness of the weld, height, 

length, and reinforcement thickness as h, l, t, and 

b showed as x1, x2, x3, and x4, respectively.  

 

 
 

Fig. 10. Welded beam design problem 
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Table 9: Statistical results of the Pressure vessel design problem 

 

 Present work Another research 

Exact 

value 

 (Rao, 

2019) 

FA AOS AOS-FA 

SNS 

(Bayzidi, Talatahari, Saraee, & 

Lamarche, 2021a) 

ISA 

(Amir H Gandomi & 

Roke, 2014) 

Variables 
x1 5.44 5.4521 5.4520 5.4526 5.4513 5.4511 

x2 0.293 0.2916 0.2916 0.2916 0.2919 0.2919 

Constraints 

g1 --- 
-9.9747e-

09 

-2.0701e-

04 

-1.2823e-

04 
-0.024 -2.5e-10 

g2 --- 
-3.2983e-

07 
-0.0041 -0.0121 -0.109 -1.8e-10 

g3 --- -0.6332 -0.6332 -0.6332 -0.633 -0.633 

g4 --- -0.6106 -0.6106 -0.6105 -0.610 -0.6106 

g5 --- -0.6332 -0.6332 -0.6332 -0.315 -0.3149 

g6 --- -0.3185 -0.3185 -0.3184 -0.635 -0.635 

FCost 26.53 26.4864 26.4882 26.4886 26.532 26.4994 

 

Table 10: The statistical results of each algorithm 
 Method Standard deviation Mean Max Min Time(s) 

FA 2.66919e-05 26.4864 26.4864 26.4864 35.154 

AOS 3.64895 2.87187 5.45206 0.291671 7.2689   

AOS-FA 0 26.4886 26.4886 26.4886 27.618   

 

Table 11 shows the best results achieved after 

four independent implementations, using 100 

search agents and 300 iterations with the 

mentioned algorithms. According to the Table 11 

can say that performance of the AOS-FA 

algorithm is better than the FA algorithm and that 

is better than the AOS algorithm. Also, it is 

funded that metaheuristic algorithms have good 

result against to exact value which is showed the 

robust of these algorithms. Figure 11 displays the 

statistical results from four independent algorithm 

executions and their corresponding computational 

times. The problem is evaluated using the studied 

algorithms in Table 11 and compared to other 

literature. For instance, Sadollah, Bahreininejad, 

Eskandar, and Hamdi (2013) achieved the best 

cost value of 1.724853 when investigating MBA 

for this problem. In previous studies, different 

algorithms were evaluated for welded beam 

optimization. Kamalinejad, Arzani, and Kaveh 

(2019) and Mezura-Montes and Coello (2008) 

obtained 1.742706 and 1.737300 values for QEA 

and ES algorithms, respectively. Mirjalili, 

Mirjalili, and Hatamlou (2016) used MVO and 

achieved a result of 1.72645. The best cost values 

were obtained by ICO (A Kaveh & S Talatahari, 

2010), CSS (A Kaveh & Siamak Talatahari, 

2010), CSA (Askarzadeh, 2016), and MCSS (A 

Kaveh, Motie Share, & Moslehi, 2013)  

algorithms, which resulted in 1.724918, 

1.724866, 1.7248523, and 1.724855, 

respectively. Additionally, FA algorithm 

achieved a low standard deviation value, and 

AOS was the fastest algorithm in computational 

execution time, as shown in Fig.11. 
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Table 11: The best result of algorithms 

 
Exact value 

(Rao, 2019) 
FA AOS AOS-FA 

Variables 

 

1x 0.2455 0.20572 0.18364 0.20157 

2x 6.1960 3.47049 4.00818 3.54910 

3x 8.2730 9.03662 9.06541 9.07004 

4x 0.2455 0.20572 0.205644 0.20557 

Constraints 

 

1g --- -0.0081 -7.6980 0 

2g ---   -0.0038 -0 0 

3g --- -9.2473e-08 -0.0220 0 

4g --- -3.4330 -3.3813 -3.4121 

5g --- -0.0807 -0.0586 -0.0717 

6g --- -0.2355 -0.2357 -0.2356 

7g --- -0.0072 -5.0511 0 

CostF 2.386 1.7249 1.7645 1.7212 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig.11. The statistical results of each algorithm (a) Std, (b) Mean, (c) Max-Min, (d) best value and time 
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CONCLUSION 

The AOS algorithm outperforms other alternative 

meta-heuristics in converging to the global best 

for various mathematical test functions. It also 

excels in generating superior results with fewer 

function evaluations, showcasing its efficiency in 

addressing computational complexity issues. To 

boost the algorithm's performance, several 

researchers have introduced various 

enhancements (M. Azizi, Talatahari, Khodadadi, 

& Sareh, 2022; Elaziz et al., 2021). Additionally, 

the Firefly algorithm, inspired by the flashing 

behavior and bioluminescent communication of 

fireflies, is susceptible to premature convergence. 

Studies recommend adjusting constant 

parameters to alleviate this issue. This paper 

introduces a hybrid algorithm called AOS-FA for 

optimal engineering design, combining Atomic 

Orbital Search and the Firefly Algorithm based on 

quantum mechanics principles. The algorithm is 

evaluated on five well-known constrained design  

problems across different engineering fields, 

demonstrating that AOS-FA surpasses most 

recent meta-heuristic algorithms in the literature 

in terms of performance. Furthermore, the 

suggested AOSFA might be very useful in 

resolving additional challenging optimization 

issues like feature selection, picture 

segmentation, path planning, traveling salesman 

issues, and flow shop scheduling issues. 
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