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The Atomic Orbital Search inspiration from the rules of
quantum mechanics and Firefly Algorithm is a metaheuristic technique
which is widely used for solving the optimization problems. Both algorithms
collectively improved the performance of search. This article goals to
optimize engineering design problems utilizing a new hybrid optimizer;
AOS-FA (Atomic Orbital Search-Firefly Algorithm). Incorporating the FA
methodology into the basic AOS framework has successfully addressed the
issue of local optima trap and significantly enhanced the quality of solutions
generated by the algorithm. The FA algorithm is work on the combinatorial
optimization and utilized as application of AOS algorithm. Hence, we merge
these two algorithms and make a hybrid algorithm. The purpose of the
suggested hybridization method was to promote the improvement of the
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%briq agobr_itthlrré h exploration-exploitation manners of the AOS search. To analyse the viability
I Om.'tﬁ rortal Searc of the suggested hybridized algorithm in real-world usages, it is studied for
algorithm five constrained engineering design issues, and the performance was

engineering optimization

. . determined with other outstanding metaheuristics extracted from the
firefly algorithm

publications.
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INTRODUCTION
Optimization is an essential part of engineering

design, and hence in numerous real-world
challenging problems with various frameworks,
Meta-Heuristics (MHs) have become increasingly
fascinating as a robust instrument for
optimization. Engineering regulation can achieve
stable and efficient mechanisms by using well-
designed optimum models. These models are
developed based on mathematical theorems and
approaches. Although optimization methods were
used by historical figures such as Newton,
Lagrange, and Cauchyeski for smaller-scale
issues, modern engineers rely on improved and
hybrid versions of these algorithms to effectively
solve more extensive and more complex
engineering design problems(Ghaemifard &
Ghannadiasl, 2024c). Over the past two decades,
the rise of environmental and global phenomena
due to techno-logical advancements and
population growth has made complicated
engineering designs more challenging. As a
solution, metaheuristic optimization algorithms
have become a popular choice for achieving
reasonable solutions in less time (Ghaemifard &
Ghannadiasl, 2024b; Houssein, Mahdy, Shebl, &
Mohamed, 2021). Numerous metaheuristic
optimization algorithms have been developed and
proven effective in improving optimization
processes beyond their predecessors, despite their
unique processes and textures. To tackle global
optimization problems, meta-heuristic algorithms
are a frequently employed solution. The optimal
solution is primarily achieved by simulating of
both nature and human intelligence. By
conducting a global search, they can identify an
approximate solution that closely approximates
the optimal solution to some degree. Exploration
and exploitation are the fundamental principles of
MHs. Exploration is crucial in order to thoroughly
search the entire space and locate the optimal
solution, which could potentially be located
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anywhere within it. To maximize the use of
valuable information, it is essential to engage in
effective exploitation. Optimal solutions are
generally correlated in specific ways. Utilize
these correlations to regulate gradually and search
slowly from the initial answer to get the optimal
solution. MHs strive to achieve a harmonious
balance between exploration and exploitation.
MHs have gained significant attention from
scholars in recent years due to their numerous
advantages, including their simple and intuitive
operation, as well as their fast-running speed
(Fazli, Khiabani, & Daneshian, 2022; Ghaemifard
& Ghannadiasl, 2024c; Ghannadiasl &
Ghaemifard, 2024a; Shahebrahimi, Lork,
Shayegan, & Amir). There have been numerous
proposals for meta-heuristic algorithms, totalling
in the hundreds. MHs can be categorized into four
groups based on various design inspirations:
evolutionary, physical, swarm-based, and human-
based algorithms. Swarm-based algorithms are a
powerful tool in optimization, and computational
intelligence has made great strides in recent years.
These algorithms include Ant  Colony
Optimization (Dorigo, Birattari, & Stutzle, 2007),
Artificial Bee Colony (Karaboga, 2010), Particle
Swarm Optimization (Eberhart & Kennedy,
1995), Remora Optimization Algorithm (Jia,
Peng, & Lang, 2021), Slap Swarm Algorithm
(Hussien, 2022), Ant Lion Optimizer (Assiri,
Hussien, & Amin, 2020), Grey Wolf
Optimization (Mirjalili, Mirjalili, & Lewis,
2014), Bat Algorithm (X. S. Yang & Hossein
Gandomi, 2012), Krill Herd (X. S. Yang &
Hossein ~ Gandomi, 2012), and Whale
Optimization Algorithm (Mirjalili & Lewis,
2016). Each of these algorithms has its strengths
and weaknesses, and researchers continue to
explore new variations and combinations to push
the boundaries of what is possible in optimization.
Whether you are working in engineering, finance,
or any other field where optimization is critical,
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these swarm-based algorithms offer robust
solutions that can help you achieve your goals.
There are several types of evolutionary
algorithms available for use, including Genetic
Algorithm (GA) (Holland, 1992), Evolution
Strategy (ES) (Beyer & Schwefel, 2002), Genetic
Programming (GP) (Banzhaf, Koza, Ryan,
Spector, & Jacob, 2000), Differential Evolution
(DE) (Price, 2013), Virulence Optimization
Algorithm (VOA) (Jaderyan & Khotanlou, 2016),
Black Hole Algorithm (BH) (Hatamlou, 2013),
Evolutionary ~ Programming (EP)  (Sinha,
Chakrabarti, &  Chattopadhyay,  2003),
Gravitational Search Algorithm (GSA) (Rashedi,
Nezamabadi-Pour, & Saryazdi, 2009). Several
physical-based algorithms have been developed
to address optimization problems. These include
Simulated Annealing, Flood algorithm (FLA)
(Ghasemi et al., 2024), Thermal Exchange
Optimization (TEO) (Ali Kaveh & Dadras, 2017)
and Ray Optimization (RO) (A Kaveh &
Khayatazad, 2012). Harmony Search (HS)
(Geem, Kim, & Loganathan, 2001), and
Exchanged Market Algorithm (EMA) (Ghorbani
& Babaei, 2014) are categorized as human- based
algorithms. MHs can be significantly optimized
through the use of these algorithms. Researchers
have proposed various methods to enhance the
convergence performance and efficiency of
metaheuristic algorithms. To achieve this goal,
improved versions such as those developed by
(Ghannadiasl & Ghaemifard, 2024b; Hakli &
Ortacay, 2019; Kannan & Kramer, 1994) have
been expressed, as well as hybrid versions that
combine multiple algorithms such as those
developed (Abouhabaga, Gadallah, Kouta, &
Zaghloul, 2021; Chen & Zheng, 2024; Euchi &
Sadok, 2021; Fasina, Sawyerr, Abdullahi, & Oke,
2023; Ghajarnia, Bozorg Haddad, & Marifio,
2011; Ghannadiasl & Ghaemifard, 2022;
Hemagowri & Selvan, 2023; Khorram &
Bahrami, 2020). These approaches have shown

promise in producing solutions with fewer
iterations. Fig.1a, displays a comparison graph of
the number and percentage of studies conducted
on hybrid optimization algorithms over the years.
Over the past two decades, there has been a
significant rise in the utilization of hybrid
metaheuristic optimization algorithms. Fig.1b
presents the findings of a study that analysed the
distribution of hybrid optimization studies across
various fields using data obtained from the Web
of Science database. While approximately 50% of
studies fall outside of the fields represented in the
Fig.1, it is clear that hybrid optimization
algorithms are widely utilized in
multidisciplinary engineering research. The
purpose of this paper is to introduce an innovative
algorithm called AOS-FA (Atomic Orbital
Search-Firefly optimization). The purpose of
developing this algorithm was to test its
effectiveness in achieving global optimum
solutions and enhancing overall performance. In
Fig.2, the main objective and general process of
the paper are presented. There are five sections to
the remainder of the study. We describe the
procedures in Sect. 2. In Section 3, numerical
examples are shown, and the effectiveness of
recommendation  algorithms is  assessed.
Conclusions and upcoming projects are discussed
in Sect. 4.

METHODS
The proposed AOS-FA method

A good meta-heuristic algorithm balances its
exploration and exploitation functions to achieve
optimal performance (Eiben & Schippers, 1998).
The Atomic Orbital Search method boasts robust
global optimization, adaptability, and robustness
(Mahdi Azizi, 2021). The Firefly algorithm has
strong local search abilities and fast convergence,
but it often converges to a local optimum instead
of a global optimal solution (X.-S. Yang, 2009).
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Fig. 1. Web of Science citation report studies: (a)
Number of published hybrid optimization studies, (b)
Distribution of hybrid optimization studies according

to fields

This section presents the proposed algorithm
hybrid AOS-FA, which combines the benefits of
two metaheuristic algorithms: AOS and FA. FA
has strong exploration capabilities, allowing it to
visit all local and global modes and find suitable
solutions, while AOS has high exploitation
capabilities. The AOS-FA algorithm is based on
three principles. Hybrid algorithms can
supplement strengths and weaknesses. By
establishing new populations that share the best
individuals from both groups, this mixture can
protect against early convergence while retaining
helpful qualities from AOS and FA. Ultimately,
the AOS-FA algorithm uses only the parameters
from the original AOS and FA algorithms. Fig. 3
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Mathematics interdisciplinary

illustrated the pseudo-code of AOS-FA. In this
hybrid algorithm first the AOS algorithm is run.

(" Proposed method ] ----------
(AOSF4)

Coucluzion:
L AOS-FA has good performance in J
«contrast other algorithms.

Fig.2. General process of the paper

To improve optimization algorithms, in the
guantum-based atomic model, the AOS algorithm
suggests using solution candidates (X) as
electrons. The solution candidates (X;) represent
each electron, and decision variables (X;;) are
used to deter in the search space. In this hybrid
algorithm first the AOS algorithm is run. To
improve optimization algorithms, in the quantum-
based atomic model, the AOS algorithm suggests
using solution candidates (X) as electrons. In the
search space, solution candidates (X;) represent
each electron, and decision variables (X;;) are
used to determine their positions.
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To describe the location of solution volunteers within the probe
zone, the problem dimension is defined via d. Parameter m is the
presenter of the number of solution candidates. Each electron has
an energy state, according to the quantum atomic model. The
objective subordinate is this energy state.

cover. To define the binding condition and
binding energy of solution candidates in each
imaginary layer, the situations and purpose
subordinate amounts of all candidates in the layer

H
E= éi {i=12,...m @
En

To determine the objective function values, refer
to vector E. Energy level E; pertains to the ith
solution volunteers. At the same time, the number
of electrons in the probe area is represented by m.
The Probability Density Function is a
mathematical model utilized to define the station
of electrons around the nucleus in the quantum
atomic model. According to probability theory,
Probability Density Function expresses the
probability of a variable happening within a
special scope. The Probability Density Function
analysis reveals that the solution candidates are
distributed among the imaginary layers created to
determine the position of electrons. In the
following, the vectors of location and objective
subordinate values of answer volunteers in
imaginary layers are expressed as Eq3 and Eq4
respectively.

j d
xk1 |xt x2 . Xil XZ
Xkl [xi xz2 .. Xz - X% i=12,..p
. H *, H - 9" iR)
XK=|:[=f: r ) j=12,...d (3
« T 4 iy
X:i X! x? X - X k=12,.n
Xl lxt g2 7 %, L xd

p Ap P

Ef
E¥
k_|: i=12,...p
Ef = EX {k: 1,2,...n @)

(e

The electrons located near to the nucleus are
supposed to be in the base mode of energy. The
mathematical model utilizes the place and
purpose subordinate amounts of solution
candidates in each layer to define the binding
energy essential for drawing an electron from its

are averaged. To achieve the intended purpose,
the following mathematical equations are
provided:

_ZiZ1Xi .
BS= m {l = 1,2, .., (5)

_2it1Ei P
BE= m {l = 1,2, ., (6)

In the kth layer, BS® and BE* represent the
condition and energy of binding, respectively.
The location and objective subordinate amount of
ith solution candidates are denoted by X¥ and E¥,
while m represents the whole number of solution
candidates in the probe area. To accurately assess
the state and strength of binding of an atom, one
must take into account the average positions and
objective function values of all potential solutions
in the search space. The location (X;) and purpose
subordinate amount (E;) of each solution
candidate within the atom can be analyzed to
determine the atom’s binding state BS and binding
energy BE. Use the following mathematical
equations to update the candidate positions:

i=12,..p
a;
Xfs1=X{ + (B X LE— v; X BS) ™
k=12,..,n

To determine the amount of emitted energy,
vectors a;, B;, and y; are randomly generated
with a uniform distribution between (0,1). X} and
Xk, represent the current and upcoming
positions, while LE refers to the candidate with
the lowest energy level in the atom. Additionally,
BS denotes the binding state of the atom. photon
absorption happened when the energy level of a
solution candidate in a special layer is lower than
the layer's binding energy. This procedure
involves solution candidates absorbing a photon
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with energy levels § and vy to efficiently get both
the binding situation of the layer and the lowest
energy level condition of the electron within the
layer. The mathematical equation to update the
location of solution candidates is (Mahdi Azizi,
2021):

XE1=XF + o x (B; X LEX —y; X

i=12..,p ®

BS") ’{k =12,..n
After running the AOS algorithm, it is time to run
FA algorithm so that firstly, rank the population
in FA algorithm. The attractiveness of a Firefly is
shown in as Eq 9.

1 = ©)
Let's consider a scenario with n fireflies, where xi
represents the solution for each individual Firefly.
The brightness of a firefly, denoted as i, is closely
linked to the objective function f(xi). The
objective function expressed in Eq 10, showed the

brightness I of a firefly.
I; = f(x;) (10)

The dimmer Firefly is absorbed and moves
towards the shining one, and parameter [
expressed the specific level of attractiveness of
each Firefly. B, is related to the spacing between
Fireflies. The attractiveness function of the
Firefly is showed as Eql1.

B(r) = Boe ™’ (11

B, represents the attractiveness of the Firefly
when it is at r = 0, while y represents the light
absorption coefficient of the media. Firefly at
location xi moves towards a brighter Firefly at
location xj using Eq12 (X.-S. Yang, 2009).

X;(t+1) = x,(t) + Boe " (xi — X)) t; (12)
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When the Firefly xj is attracted, ﬁoe‘yrz (x; —
x;) affects the movement, while ag; is a
randomization parameter. If 8, = 0, the movement
is random The algorithm compares the Firefly's
new location to the past one to define its
fascination. If the new position seems more
attractive, the Firefly will move; if not, it will stay
in its current position. The stopping criteria for the
FA are set by a pre-defined number of iterations
or a fitness value deemed appropriate. According
to Eql3, the Firefly that shines the brightest
moves in a random pattern.

Xl(t + 1) = Xi(t) + aE; (13)

NUMERICAL EXAMPLES

The results illustrated in this part can be used to
compare the efficiency of the proposed algorithm
investigated in this article. An Intel i5 (2.4 GHz)
system with 8 GB of RAM was utilized for all of
the simutlations. To validate and compare the
algorithms detailed in this article with other
algorithms, these results are compared with the
results of some studies. In Table 1, the control
parameters are defined for estimating different
plans of the suggested algorithm. The control
parameters have been set to assess the various
processes of the suggested algorithm based on the
standard range of each algorithm which stated in
other articles.

Table 1: Control parameters of algorithms

Optimization parameters Value
Gamma parameter of FA 1
Betay parameter of FA 2
Alpha parameter of FA 0.2
FotonRate parameter of AOS 0.1
LayerNumber parameter of AOS 5

In this section, we will delve into a
comprehensive analysis of the prevailing
engineering design issues. It is noteworthy to
emphasize that the ensuing discussion focuses
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exclusively on the most renowned engineering
design problems encountered in practical
applications. Efficacious resolution of these
problems typically necessitates a proactive

Procedure Atomic Orbital Search- Firefly Algorithm
Objective function A1), 1= (1, 1, .., xd)”
Determine initial positions of solution candidates (X;) in the search space
with m candidates
Evaluate fitness values (E;) for initial solution candidates
Determine the binding state(BS) and binding energy (BE) of the
atom
Determine the candidate with the lowest energy level in the atom
(LE)
While Iteration < Maximum number of iterations
Generate n as the number of imaginary layers
Create imaginary layers
Sort solution candidates in an ascending or descending
order
Distribute solution candidates in the imaginary layers by
PDF
Fork=1:n
Determine the binding state (BS¥) and binding energy (BEX) of
the kth layer
Determine the candidate with the lowest energy level in the kth
layer (LE¥)
Fori=1:p
Generate ¢p,a,5,y
Determine PR
If o > PR
If EX > BE¥
XK, :Xik"‘aiX(BiXL]f_YiXBS)
Else if EX < BEX
Xkq = X+ a; x (B; X LE —y; x BS¥)
end
Elseif ¢ < PR
Xik+1 = Xik +7
End
End
End
Update binding state(BS) and binding energy (BE) OF ATOM
Update candidate with the lowest energy level in the

atom (LE)
End while
Rank the population X, and update the current best.
Initialize a population of fireflies X; (=1, 2,...,7)
Calculate the fitness value /{.¥2) to determine the light intensity Zat X7
Define light absorption coefficient p
while (i< MaxGeneration FA)
for /=1:7=1: all n fireflies
for /=1:77=1: all n fireflies
if (/>7)
Move firefly i towards j in all d-dimensions via Lévy flight.
end if.
Attractiveness varies with distance r via —e—72.
Evaluate new solutions and update light intensity.
end for j
end for i
Rank the fireflies and find the current best.
end while
Output the best solution.
End procedure

Fig.3. Pseudo-code of AOS-FA Algorithm

Optimization of truss size

methodology aimed at determining the optimal
parameters for the most ideal design.

In this section, the size optimization of a 10-bar
truss (Fig. 4) is studied. This truss has been
numerically investigated by several researchers
like Schmit Jr and Farshi (1974), Farshi and
Alinia-Ziazi (2010). In analysing the 10-bar plane
truss, displacement, and stress constraints are
utilized with each other. The translations of nodes
5 and 6, located on the left, are constrained in the
x and y directions. The two free nodes of the
lower bars (2 and 4) obtain vertical loads (y-
direction).

(5) (3) (1)

2044 m

3 4
[E:j 0,144 m {-j” 9.144 m tE]

Fig.4. Ten-bar truss

All bars, except number 9, have the same tension
limit for traction and compression. Nodes 1
through 4 have the same displacement limit in the
y-direction. The cross-sectional areas of the ten
elements are considered as continuous design
variables. In Table 2, the mechanical properties,
loading, stresses and displacements, and design
variables of the truss are presented in Table 3,
while Table 4 details the decision-making criteria
and constraints to arrive at the best option. Table
4 shows that the FA algorithm with an objective
function value of 2298.77 provided the best
solution  for  truss size  optimization,
outperforming AOS and AOS-FA. All
optimization algorithms had 100 research agents
and 300 iterations. Fig.6 presents the

Iranian Journal of Optimization, 16(2), 115-131, Junae 2024 121
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computational time and standard deviation values
for the minimum mass obtained after four
independent executions of each algorithm. Based
on Table 4 and Fig.5, it is clear that the AOS-FA
algorithm, despite its shorter runtime, was not
effective in optimizing the truss size. It is noticed
that in this problem, numerical method has better
results against to AOS-FA although it has not
good results against to other algorithms that
mentioned.

Table 2: Mechanical properties of the considered truss

Aluminium
2767.99 kg/m3
68.95%109 N/m 2

Material
Density, p

Young’s modulus, E

Table 3: Nodal loading components and constraints
for 10 bar plane truss

Loading
No. X-direction

Y-direction

2and 4 0 -444.82 KN
Tension restrictions
Bar Value
9 +517.11 MPa
Displacement
NO. Value
1,234 +50.8 mm (Y direction)
The range of design variables
64.5 mm? < A4;. 20000 mm?

@

40
30
20
10 |
0 ; |
FA AOS AOS-FA
Std 1.0102 0.00799362 0.00987
Time 34 29.69 11.53

Fig.5. Standard deviation and computational time (S)
for ten-bar plane truss
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Design of I-shaped beams
In the I-beam design problem (Fig. 7), the goal is
to minimize the vertical deflection, while
satisfying the cross-sectional area and stress
constraints under given loads. The variables of
this problem are the width of the flange b (= x1),
the height of section h (= x2), the thickness of the
web tw (= x3), and the thickness of the flange tf (=
X4). The maximum vertical deflection of the beam

3
is f(x) = 2 The objective function when the
48E1

modulus of elasticity is 523.104 kN/cm? and
L=5200 cm, is formulated as follows:

Minimize:
FX) = . 5000 _ .
EVAS (x2 — 2x4)% + 2bx,(x; — 74)2 +% (x1x3)
Subject to:

1
g1(x) = Z(Ex1x3 + XX, — X3X4) < 300 (15)
g2(x) (16)

X 1
=15x1032 ———
X3 (Xp — 2X4)X3 + 2X7

x 10422 1
X3 (1 — 2x4)3 + 2x4 (4x2 — 3x2

+18

<56
)

In this problem, the best statistical results were
achieved after four independent implementations
using 100 search agents and 300 iterations by
algorithms mentioned in Tables 5 and 6,
respectively. From Table 6, it can be understood
that AOS obtained the shortest computational
execution time. According to Table 5 can say that
metaheuristic algorithms that used for this
problem, has good performances and the obtained
results against to ARSM method is good. This
subject shows that metaheuristic algorithms have
good results than numerical methods. Also, it is
determined that AOS-FA is top from AQOS.

(14)
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X1

[

LX4

F

ig.7. Beam design problem

Table 4: Optimum design of cross-sections (cm2) for ten-bar plane truss

Ghaemifard and
Present paper Schmit Jr and Farshi (1974) Borges (2013) Ghannadiasl
(2024a)
Member FA AOS AOS-FA Numerical method PSO HS GWO
1 193.699 | 164.245 | 197.142 215.676 180.150 | 196.180 198.94
2 0.645 5.673 0.645 0.645 0.645 1.128 0.71
3 159.320 | 192.922 | 164.340 156.5158 151.150 | 144.560 156.27
4 93.244 | 187.862 | 106.074 91.9998 99.269 103.170 95.80
5 0.645 0.645 0.645 0.645 0.645 0.645 0.65
6 3.517 0.645 0.645 0.645 3.726 3.560 0.64
7 47.892 | 61.004 52.977 54,1289 47.710 48.884 54.72
8 140.162 | 167.049 | 139.323 133.8061 139.810 | 138.040 133.59
9 134.560 | 99.228 121.686 127.032 146.780 | 138.020 134.10
10 0.645 0.645 0.645 0.645 0.645 0.673 0.74
Mass (kg) | 2298.77 | 2700.16 | 23145 2308.3315 2301.41 | 2302.60 2303.41

Pressure vessel design

The goal of designing pressure vessels is to meet
production needs while reducing container costs.
The key design variables are head thickness (Tn),
shell thickness (Ts), container length (L), and
inner radius (R). in this problem, Ts and Ty are
integers of 0.625, while R and L are continuous

variables. Fig.8 shows the optimal structure

design schematic.

Mathematical formulation for this problem is:

Consider:

X = [X;1X;X3X,y] = [T;T,R L]

Minimize:

31.876X,)) +(2.856X,X% + 5.086X3X,)]

Subject to:
800 = [~ 1pe0

- <
1oooox3) tX]<0

Fig.8. Schematic of the pressure vessel

= 4
gsX)=-n x§(§x3 +X,) + 1296000

17 <0
g.X) =—(-X4+240)<0
Variable Range:
(18)
0<X;<99,
0<X, <99,
10 < X3 < 200,
(19) 10 < X, <200

Iranian Journal of Optimization, 16(2), 115-131, Junae 2024

g8:X) =

954 X
100000

(20)

1)

(22)

(23)
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Table 5: Best results for the optimal design of I-Shaped Beam

Present work | Another research
AOS- SOS - SNS ARSM
FA AOS EA (Cheng & (Bayzidi, Talatahari, Saraee, (Wang,
Prayogo, 2014) & Lamarche, 2021b) 2003)
X1 80 80 80 80 80 80
Variables |2 50 50 50 50 50 37.05
X3 | 0.9 0.9 0.9 0.9 0.9 1.71
Xs | 2.32 2.32 2.32 2.3217 2.3217 2.31
Constraints | g1 | 0.0766 | -21.89 | 0.07668 -0.000222 0
g2 | 4.4285 | 5.9667 | 4.4285 -1.57 -1.5702
Fcost 0.0131 | 0.0130 | 0.0130 0.0130 0.0130 0.0157
Table 6: The statistical results of each algorithm
Method Standard deviation Mean Max Min Time(s)
FA 11493.9 1.96171 1.96171 1.96171 35.04
AOS 33.6697 31.5419 80 0.9 0.0009688
AOS-FA 0 1.9622 1.9622 1.9622 3.0606
Ghaemifard and
Ghannadiasl 0 1.99466e+16 | 1.99466e+16 | 1.99466e+16 | 11.862
(2024a)

Table 7, presents the results of pressure vessel
design issues. AOS-FA is a cost-effective
algorithm that produces excellent results. The
statistical results of the Pressure Vessel Design
problem are presented in Table 8. It shows that the
AOS-FA has the shortest computational
execution time. According to the Table, it is
determined that AOS obtained optimal result
contrast to AOS-FA and FA and FA has better
result from AOS-FA. Although AOS-FA
algorithm has optimal result contrast to NLP
method which shows hybrid algorithm has good

Tubular column design

In this section, the design of a tubular column that
is uniform in shape and can withstand the pressure
at minimum cost was presented. The optimization
variables for this problem are the average
diameter of the column d (x1) and the thickness of
the tube t (x2). The object has a yield stress of 500
kgf/cm?, modulus of elasticity of 0.85 x 106
kgf/cm?, and density of 0.0025 kgf/cm®. The
formula for this problem is:

£(X) = X, (2 + 9.8X 24
performance. & 2 =
Table 7: Variables design of problem
Algorithm x| x Xs X4 Optimal
cost
FA 0.7967 | 0.3938 | 41.281408 | 187.031440 | 5979.983
Present study AOS 0.7782 | 0.3933 | 40.714312 | 195311948 | 5888.6
AOS-FA 0.9950 | 0.4933 | 51.2635 178.6489 6404.9
CS (Amir Hossein Gandomi, Yang, & Alavi, | ¢ 15 | 04375 | 42.0984456 | 176.6365 | 6059.714
Other 2013)
research ABC (Akay & Karaboga, 2012) 0.8125 | 0.4375 | 42.098446 | 176.6365 | 6059.714
NLP (Sandgren, 1990) 1.125 | 0.625 48.97 106.72 79825
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Table 8: Statistical results of the Pressure vessel

design problem

FA AOS AOS-FA
Std | 98.8673 | 17.5656 0
Min | 5917.84 | 0.493384 | 6443.12
Max | 6093.99 | 18538 | 6446.12
Mean | 5979.98 | 62.3957 | 6443.12
Time 3.34 1.97 1.32

The constraints on the stresses in the columns

are:
X) = P 1<0
8:1(X) = no, XX, L (25)
8PL? 1
X)=-1+ <0 26
g2(X) T X2X2(X; + X2) (20)
1
g3X)=-1+2-<0 (27)
X1
1
g =-1+,X; <0 (28)
X)=-1+ 11 29
8s = 5%, (29)
1
gs(X) = —1+5X; <0 (30)
Where the range of variables is:
2<X;<14
0.2<X,<0.8 (31)

il

Fig.9. Model of the tubular column

We compared the optimal solution obtained by
AOS-FA with other papers and found that AOS-
FA had good results in this problem. The
particular information is shown in Table 9 and 10

respectively.

Welded beam design

This is an engineering optimization problem
involving the design of a welded beam to
minimize cost, with four variables to
optimize and seven constraints, as illustrated
in Fig.10. The formula for this problem is:
Minimize:

481
f(X) =T (14X3X4 + X2X3X4

10000 (32)
+22.9669 x5x,)

g1(x) = -13600+t(x) <0 (33)

g,(x) =-30000+0(x) <0 (34)

g3(x) =-0.25+8(x) <0 (35)

84(%) = X4 +x%, <0 (36)

g5(x) =6000—-P.(x) <0 (37)

ge(x) = —x4 +0.125<0 (38)

g,(x) = % (14x3x4 + XpX3Xq4 (39)
+22.9669x%)-5.0<0

(40)

It was denoting the thickness of the weld, height,
length, and reinforcement thickness as h, 1, t, and
b showed as X1, X2, X3, and Xa, respectively.

Fig. 10. Welded beam design problem
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Table 9: Statistical results of the Pressure vessel design problem

Present work Another research
Pxact SNS ISA
\(/Relllo FA AOS AOS-FA | (Bayzidi, Talatahari, Sarace, & | (Amir H Gandomi &
2019) Lamarche, 2021a) Roke, 2014)
Variables |-X! 5.44 5.4521 5.4520 5.4526 5.4513 5.4511
x> | 0.293 0.2916 0.2916 0.2916 0.2919 0.2919
-9.9747¢- | -2.0701e- | -1.2823¢-
g --- 09 04 04 -0.024 -2.5¢-10
o} --- _3'23;336_ -0.0041 -0.0121 -0.109 -1.8e-10
Constraints = =" 16330 | 06332 | -0.6332 20.633 20.633
g4 - -0.6106 -0.6106 -0.6105 -0.610 -0.6106
gs - -0.6332 -0.6332 -0.6332 -0.315 -0.3149
26 --- -0.3185 -0.3185 -0.3184 -0.635 -0.635
Feost 26.53 | 26.4864 26.4882 26.4886 26.532 26.4994

Table 10: The statistical results of each algorithm

Method | Standard deviation | Mean Max Min Time(s)

FA 2.66919¢-05 26.4864 | 26.4864 | 26.4864 | 35.154
AOS 3.64895 2.87187 | 5.45206 | 0.291671 | 7.2689
AOS-FA 0 26.4886 | 26.4886 | 26.4886 | 27.618

Table 11 shows the best results achieved after
four independent implementations, using 100
search agents and 300 iterations with the
mentioned algorithms. According to the Table 11
can say that performance of the AOS-FA
algorithm is better than the FA algorithm and that
is better than the AOS algorithm. Also, it is
funded that metaheuristic algorithms have good
result against to exact value which is showed the
robust of these algorithms. Figure 11 displays the
statistical results from four independent algorithm
executions and their corresponding computational
times. The problem is evaluated using the studied
algorithms in Table 11 and compared to other
literature. For instance, Sadollah, Bahreininejad,
Eskandar, and Hamdi (2013) achieved the best
cost value of 1.724853 when investigating MBA
for this problem. In previous studies, different
algorithms were evaluated for welded beam
optimization. Kamalinejad, Arzani, and Kaveh
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(2019) and Mezura-Montes and Coello (2008)
obtained 1.742706 and 1.737300 values for QEA
and ES algorithms, respectively. Mirjalili,
Mirjalili, and Hatamlou (2016) used MVO and
achieved a result of 1.72645. The best cost values
were obtained by ICO (A Kaveh & S Talatahari,
2010), CSS (A Kaveh & Siamak Talatahari,
2010), CSA (Askarzadeh, 2016), and MCSS (A

Kaveh, Motie Share, & Moslehi, 2013)
algorithms, which resulted in 1.724918,
1.724866, 1.7248523, and 1.724855,
respectively.  Additionally, FA  algorithm

achieved a low standard deviation value, and
AOS was the fastest algorithm in computational
execution time, as shown in Fig.11.
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Table 11: The best result of algorithms

Exact value
(Rao, 2019) FA AOS | AOS-FA
x| | 0.2455 0.20572 | 0.18364 | 0.20157
Variables | x2 | 6.1960 3.47049 | 4.00818 | 3.54910
X3 | 8.2730 9.03662 | 9.06541 | 9.07004
xs | 0.2455 0.20572 | 0.205644 | 0.20557
g -0.0081 -7.6980 0
o -0.0038 0 0
Constraints & 29.2473e-08 | -0.0220 0
onstramts 1=, | 34330 | -3.3813 | 34121
gs -0.0807 20.0586 | -0.0717
2 20.2355 20.2357 | -0.2356
2 -0.0072 5.0511 0
Feost 2.386 1.7249 1.7645 | 1.7212
Std 3.36572
5
4
3 3
s
2
1
0 = —
FA AOS AOS-FA AOS AOS-FA
Std  0.0001609  4.20361  0.0830799
Mean
(a)
(b)
10 40
35
8
30
gz 6 3 25
= ©
S S 20
15
)l 1 .
° ° E
FA AOS AOS-FA
Min 1.72485 0.183643 1.73355 0 A AOS AOS-FA
Max| 172514 9.06542 185105 Time(s) 35.83287 8.1954 33.951
Best 1.7249 1.7645 1.7412
(c)
(d)

Fig.11. The statistical results of each algorithm (a) Std, (b) Mean, (c) Max-Min, (d) best value and time
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CONCLUSION

The AOS algorithm outperforms other alternative
meta-heuristics in converging to the global best
for various mathematical test functions. It also
excels in generating superior results with fewer
function evaluations, showcasing its efficiency in
addressing computational complexity issues. To
boost the algorithm's performance, several
researchers have introduced various
enhancements (M. Azizi, Talatahari, Khodadadi,
& Sareh, 2022; Elaziz et al., 2021). Additionally,
the Firefly algorithm, inspired by the flashing
behavior and bioluminescent communication of
fireflies, is susceptible to premature convergence.
Studies  recommend  adjusting  constant
parameters to alleviate this issue. This paper
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