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Abstract 

The most urgent public health problem today is to devise effective strategies 

to minimize the destruction caused by the AIDS epidemic. Mathematical 

models based on the underlying transmission mechanisms of the AIDS virus 

can help the medical/scientific community understand and anticipate its spread 

in different populations and evaluate the potential effectiveness of different 

approaches for bringing the epidemic under control. In this paper, we present 

the framework of conventional compartmental models for the spread of HIV 

infection to investigate the effect of various types of growths of host 

population. The model presented has been studied qualitatively using stability 

theory of differential equations. The equilibrium and stability analysis have 

been carried out by establishing local and global stability results and some 

inferences have been drawn to understand the spread of the disease. A 

numerical study in each case is also performed to see the influence of certain 

parameters on the disease spread and to support the analytical results. The 

model analysis has also been applied to compare the theoretical results with 

the known Indian HIV data. 

Key words: HIV/AIDS epidemic, immigration, reproductive number, 

bifurcation, logistic growth. 
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1. Introduction 

The AIDS epidemic has stimulated a large amount of research on the structure 

and variability of the Human Immuno-deficiency Virus (HIV) and on the natural 

history and epidemiology of AIDS.  Recently, a growing effort in modeling the 

transmission of HIV and control strategies has emerged. Only models that are 

founded on the transmission mechanisms of HIV can show how the early 

infection of high-risk groups, behavioral changes, and future medical advances 

such as treatments and vaccine will affect the future courses of this epidemic. In 

developing the mathematical models, we are creating a logical structure that 

organizes existing information on AIDS into a coherent framework. Models can 

provide qualitative insights, even when data are lacking, and can help prioritize 

data collection.    

 Essentially all conventional mathematical models for epidemic or endemic 

infections of humans assume that the host population is constant in size, with 

births exactly balancing deaths. Several epidemiological models with varying 

population size are analyzed mathematically in Bailey [3], Busenberg and Hadeler 

[8], Busenberg and Van den Driessche [9], and Mena-Lorca and Hethcote [19]. 

Many models for AIDS have varying population size (Fan et al. [10], Hyman and 

Stanley [12], Jacquez et al. [13], Massad [15], May and Anderson [17], May et al. 

[18], Naresh et al. [21] and Tripathi et al. [25]). Naresh et al. [20] presented a 

model for vertical transmission of HIV/AIDS in a population with constant inflow 

of susceptibles. Naresh and Tripathi [22] developed a model for HIV-TB co-

infection in a variable size population with constant immigration.   

The assumption that the population is closed and fixed is often a reasonable 

approximation when modeling epidemics where the disease spreads quickly in the 

population and dies out within a short time. However, if the population growth or 

decrease is significant or the disease causes enough deaths to influence the 

population size, then it is not reasonable to assume that the population size is 

constant [19].  

 An approach used by Anderson and May [1] for laboratory population of mice is 

constant immigration at rate A and deaths proportional to the population size with 

a  

rate constant d. Then,  

          dNA
dt

dN
  ,      N(0) = N0                                                             (1.1) 
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In this case the population size approaches A/d as t goes to infinity. This form is 

called constant immigration with exponential deaths. 

  Some models assume a more natural demographic process where the birth and 

death rates are proportional to the population size. Anderson et al. [2] and May 

and Anderson [16] proposed a variety of models for infectious diseases with 

varying total population sizes. A disadvantage of the models with birth and death 

rates proportional to the population size are that the population size decreases or 

grows exponentially except in the special case where births exactly balance deaths 

[11]. 

If N(t) is the total population size as function of time t, b is the birth rate constant 

and d is the death rate constant, then  

           Ndb
dt

dN
)(         ,              N(0) = N0                                               (1.2) 

If the net growth rate r = b – d, so that the population size N(t) grows 

exponentially for r > 0, is constant if r = 0 and decays exponentially if r < 0.        

 Extinction of the population by exponential decay is demographically unlikely, 

also exponential growth to infinity is unrealistic in human and animal populations 

since finite resources always eventually limit the growth. Models with restricted 

growth due to density dependence have been considered by Anderson et al. [2], 

Brauer [5], Bremermann and Thieme [7], Gao and Hethcote [11] and Pugliese 

[24].  

 A demographic structure with density-dependent restricted population growth is 

given by the logistic equation. 

          N
K

N
r

dt

dN








                                                                                   (1.3) 

where N(t) is total population size as a function of time t, r is the positive growth 

rate constant and K is the carrying capacity of the environment. 

 In this paper, we propose a nonlinear deterministic mathematical model for AIDS 

epidemic and analyze for different population growth rates as described above. A 

numerical simulation of the model system is also performed to investigate the 

results. The model is applied to compare the theoretical results with Indian HIV 

data. 

2. Mathematical model 

We propose a simple nonlinear model for a population of total size N(t) with 

growth rate function Q(N), dependent on population size N. The total population 

is divided into three classes that is susceptibles S(t), Infectives or HIV positives 

I(t) and that of AIDS patients A(t). It is assumed that the susceptibles become HIV 
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infective via sexual contacts with infectives with transmission coefficient β. The 

transfer diagram is given below, 

   

 

 

Fig.1 Transfer diagram of the model 

In view of the above, the model equations are given by a set of nonlinear ordinary 

differential equations, 

 

 

          dS
N

cSIβ
NQ

dt

dS
 )(                                                                      (2.1) 

           Idδ
N

cSIβ

dt

dI
                                                                             (2.2) 

           AdαIδ
dt

dA
                                                                                 (2.3) 

           S(0) = S0 > 0, I(0) = I0 0 and A(0) = A0  0 

where c is the number of sexual partners in a unit time, d is the natural mortality 

rate in all the classes, δ is the movement rate of  infectives to the AIDS class and α 

is the disease related death rate constant.  

Continuity of right hand side of system (2.1)-(2.3) and its derivative imply that the 

model is well posed for  dc    and N > 0. As N tends to zero S, I and A also 

tend to zero. Hence, each of these terms tends to zero as N does. It is, therefore, 

natural to interpret these terms as zero at N=0. It is also assumed that all the 

dependent variables and parameters of the model are non-negative. 

SI 

S 

SS

SS 

I A Q(N) disease related death(α) 

dS dI dA 

βcSI/N δ 
s 
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Since N(t)   S(t) + I(t) + A(t), therefore the model (2.1)-(2.3) can be rewritten as 

(using βc = β1), 

          AαdNNQ
dt

dN
 )(                                                                        (2.4) 

            Idδ
N

IAINβ

dt

dI



  )(

                                                      (2.5) 

            AdαIδ
dt

dA
                                                                             (2.6) 

In the following, we consider different forms of growth function Q(N) to study the 

model dynamics. First we consider that all immigrants are susceptible with a 

constant inflow rate. In the next, we assume that some of the immigrants are 

infective followed by a model with density-dependent birth and death rate. 

 

3. When all the immigrants are susceptible 

In this case, we consider that there is a constant inflow at a rate Q of new 

susceptible members into the population. The model (2.4)-(2.6), can be written as,                            

           AαdNQ
dt

dN
                                                                           (3.1) 

             Idδ
N

IAINβ

dt

dI



  )(

                                                    (3.2) 

            AdαIδ
dt

dA
                                                                            (3.3) 

It is also assumed that the AIDS patients are sexually inactive as they are isolated 

and hence do not contribute to viral transmission. 

From the model, it is noted that in the absence of infection, population size 

approaches the steady state value Q0/d. During the early stage of epidemic, if it is 

assumed that  S   N 
d

Q  then the growth of infectious people I(t) can be 

approximately governed by the following equation, 

            Idδβ
dt

dI
                                                                                 (3.4) 
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which gives    t
T

R
ItI 







 
 

 exp ,  

where
 dδ

β
R


 

 , the basic reproduction number, and 
 dδ

T



  the time 

during which people remain infective. The doubling time dt of the epidemic can 

be obtained as, 

           
 






R

T
td

ln
                                                                                           (3.5) 

Thus if R0 > 1, the infection triggers an epidemic otherwise for R0 < 1  its 

prevalence is zero. From the solution I(t), it is noted that with an increase in R0 the 

number of infectives increases which in turn increases the AIDS patients 

population.  

3.1 Positivity of solutions 

Lemma 1. Let the initial data be N(0)= N0>0, I (0)= I00 and A(0)= A0>0 for all t 

 0. Then, the solution (N (t), I(t), A(t)) of the model remain positive for all time t 

 0. 

Proof.  From equation (3.2), we have 

)()()(' tIdδtI   and by applying a theorem on differential inequalities [4] we 

obtain  

  }{)( tdδectI 

  > 0. Here c1 is a constant of integration. A similar reasoning on 

the remaining equations shows that they are always positive in Ω1 for t > 0. 

3.2 Boundedness of solutions 

The invariant region where solution exists is obtained as follows: 

         






)( dα

Q
 lim inf N(t)   lim Sup N (t) 

d

Q  (as t→∞) 

Since N(t) > 0 for all t  0. Therefore, from (3.1), total population cannot blow up 

to infinity in finite time and consequently, the model system is dissipative 

(solutions are bounded). Thus, the solution exist globally for all t > 0 in the 

invariant and compact set. 

            Ω1 = {(N, I, A); 0 < N ≤ N ; 0 ≤ I ≤ I ; 0 ≤ A ≤ A } 

which is a region of attraction for any arbitrary small ε >0 starting in the region [0 

≤ I, A and N  I + A]. 



 

 

Iranian Journal of Optimization, Vol  7, Issue 1,winter  2015                                    791 

 

where N = ε
d

Q
 ,  







 






Rd

Q
I  and A = 

 dα

Iδ


                                                             

3.3 The effect of R0 and bifurcation behavior of the model 

In epidemiological modeling the basic reproduction number, a fundamental 

parameter governing the spread of the disease, is the most crucial threshold 

quantity. 

Bifurcation, in general, is a set of parameter values at which equilibrium values or 

fixed point of the system being considered changes stability and/or appears. In 

epidemiology, bifurcation phenomenon is associated with threshold parameter. 

 

 

Fig.3.1. The bifurcation diagram showing forward bifurcation 

From Fig. 3.1, we observe that the reproduction number R0 = 1 is the bifurcation 

point which changes the stability behavior between disease free equilibrium and 

endemic equilibrium. It is noted that the disease- free equilibrium is always stable 

for R0<1 and in this case there is no possibility for endemic equilibrium to exist 

and thus the disease is eradicated from the population. The system shows a 

forward bifurcation if reproduction number R0 slightly exceeds one and disease-

free equilibrium becomes unstable and an endemic equilibrium appears. Thus, it is 

observed that the HIV infection can be eradicated from the population if we 

reduce the reproduction number R0 below one successfully and in that case the 

endemic equilibrium does not exist for R0<1.  
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The behavior of reproduction number is also described comprehensively in the 

Figs. (3.2-3.4). From the Fig. 3.2, it is observed that when the reproduction 

number is less than one, the susceptible population increases tremendously. The 

level of susceptible population in this case is very high while it decreases when 

the reproduction number is greater than one. From Figs. (3.3-3.4), we see the 

effect of basic reproduction number R0 on the different epidemiological classes. It 

is noted that the number of infectives increases for all values of R0 > 1 which in 

turn reduces the susceptible population (see Fig. 3.3). It can also be seen that for 

R0<1, the infective population tends to zero in the long run showing that the 

disease can not set off in the population. Similar phenomenon is observed for 

AIDS population (see Fig. 3.4) 

. 

 

Fig.3.2. Variation of susceptibles for different values of reproduction number (R0) 

(Here  for R0 = 0.99,  for R0 = 1.5,  for R0 = 2.5, for R0 = 

(10)    

 

Thus, the HIV infective population and the AIDS population become stable and 

reach their endemic level with time for reproduction number greater than one 

otherwise they will be unstable.  
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Fig.3.3 Variation of infectives for different values of reproduction number (R0) 

(Here  for R0 = 0.99,  for R0 = 1.5,  for R0 = 2.5, for R0 = 

10)     

 

 

Fig.3.4. Variation of AIDS population for different values of reproduction number(R0) 
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(Here  for R0 = 0.99,  for R0 = 1.5,  for R0 = 2.5, for R0 = 

10)     

3.4. Stability analysis 

The model (3.1)-(3.3) has two non-negative equilibria namely,  

(i) E0 (Q0/d, 0, 0), the disease free equilibrium. 

(ii) ),,,( **** AINE  the endemic equilibrium.  

where 

             
)()(

)(*










RαδdδαdR

dδαRQ
N  

               
)()(

))((*










RαδdδαdR

dαRQ
I  

               
)()(

)(*










RαδdδαdR

δRQ
A  

It is noted that the endemic equilibrium *E exist only when, R . It is found that 

equilibrium level of infectives I* increases as Q0 increases leading to increase in 

A*. The equilibrium level of AIDS patients A* decreases as the disease induced 

death rate α  increases. It is also noted that when the disease remain endemic, the 

disease-induced deaths reduce the equilibrium population size from Q0/d to N*.  

Now to determine the local stability of E , the following variational matrix is 

computed corresponding to equilibrium point E , 

                                    























 

)(

)]([

dαδ

dδβ

αd

M  

From M0, it is clear that E  is locally asymptotically stable provided  dδβ   

i.e. for R0 < 1, the disease dies out and under this condition the equilibrium E* 

does not exists as expected. If R0 > 1 then *E exists and the infection is 

maintained in the population. 

The variational matrix about the equilibrium point *E  is given by, 
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






















 


)(

)]([
*

*

*

*

*

*
*

dαδ
N

Iβ

N

Iβ

N

I
dδβ

αd

M  

The characteristic equation corresponding to *M is obtained as,  

              





  aλaλaλλf = 0                                                          (3.6) 

where 
*

*

N

Iβ
dαa 

   

            
*

*

)()(
N

Iβ
δdαdαda 

    

            
*

*

)}]({)([
N

I
dδβαδδdαdβa    

It can seen easily that ai>0 (i =1, 2, 3) and   aaa > 0. Thus, *E  is locally 

asymptotically stable.  

Now to show that *E  is globally asymptotically stable, we propose the 

following theorem.. 

Theorem 1. The endemic equilibrium *E  is globally asymptotically stable 

provided the following condition is satisfied in Ω1, 

         )( dαdδα                                                                                 (3.7) 

Proof. Consider the following positive definite function about *E , 

               





















 *

*

*** ln AAk
I

I
IIIkNNV                (3.8) 

The derivative of V along the solutions can be written as, 

  
 

  

















 
  Iδd

N

IAINcβ

I

II
kAαdNQNN

dt

dV *
*

  

           +     AαdIδAAk  

*         

which can be further written as, 

     




 ))(()( **

*

*** AAdαkII
N

ckβ
AANNαNNd

dt

dV
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             ))(())()(( **

*

**

*
AAII

N

ckβ
δkAAIIAI

NN

ckβ









 


  

Now for dV/dt to be negative definite, the following conditions must be satisfied: 

            dk
N

AI

N

cβ








 




*
                                                                       (3.9) 

             

  kdαdα )(                                                                           (3.10) 

             





 








 kk

N

ckβ
dα

N

ckβ
δk

**
)(                                               (3.11) 

After maximizing the LHS and minimizing the RHS of above inequalities (3.9)-

(3.11), the stability condition can be obtained as follows: 

          )( dαdδα    

where the constant ki (i =1, 2) > 0 can be chosen such that 

            










 β

dN
k

dαdβ

Nδα **

)(
 and 

*Nδ

ckβ
k 
   

Hence, V is a Liapunov function with respect to E* whose domain contains Ω1, 

proving the theorem. 

 

Remark 1. It is noted that the system (3.1)–(3.3) is bounded by the system (3.1)–

(3.3) when α = 0, which implies that the solution of (3.1)–(3.3) is bounded by the 

solution of the latter. If α = 0, the system is globally stable without any condition. 

Hence, we speculate that the endemic equilibrium of system (3.1)–(3.3) may be 

globally asymptotically stable as given in the theorem. 

4. When some of the immigrants are infected 

In this case, we consider that some of the immigrants are infected which directly 

increases the infective population. Thus, infected individuals are introduced into 

the population by the arrival of infectives from outside the population. For 

example, travelers may return home from a foreign trip with an infection acquired 

abroad, individuals who are HIV positive may migrate to other habitat, or 

infective truck drivers may enter into the city. Truck drivers are at an increased 

risk of infection due to the migratory nature of their job and their prolonged 

absence from home. As a result, such individuals are more likely to have sexual 

interactions with commercial sex workers, who often provide them with 

affordable food and lodging during their journeys. The spread of AIDS is further 
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exacerbated by the highly sexually active lifestyles of both the truck drivers and 

the prostitutes they visit [6, 14]. This is the more realistic situation than the 

previous case where all immigrants are taken to be susceptible. Thus, the model 

(2.1)-(2.3) can be written as follows,  

           dS
N

SIβ
Q

dt

dS
 

                                                                          (4.1) 

            Id
N

SI
Q

dt

dI
 

1
1                                                                 (4.2) 

            AdαIδ
dt

dA
                                                                              (4.3) 

As before, we can rewrite the above system (4.1)-(4.3) as follows, 

          
AαdNQQ

dt

dN
                                                                      (4.4) 

            
 Idδ

N

IAINβ
Q

dt

dI



 



)(
                                               (4.5) 

            
 AdαIδ

dt

dA
                                                                              (4.6) 

If β1 = 0, so that the infectives are only those who enter the population from 

outside. This reduces the equation (4.5) to, 

             IdδQ
dt

dI
                                                                                 (4.7) 

For which every solution approaches,  

             












 

dα

Iαδ
QQ

d
N




,  
dδ

Q
I


 


 and 

dα

Iδ
A







 

It is observed from system (4.1)-(4.3) that if immigration of infective 

individuals tends to zero, the endemicity of the infection is reduced. This can 

simply be shown by comparing QN  and QN  using a crude assumption, 

(H1) Let only I(t) be zero at equilibrium in equation (4.1), then, 

















QQ

Q

N

N

Q

Q
, this implies that the introduction of infective immigrants 

reduces S0 and increases I(t). 
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4.1. Stability analysis 

The model has only one non-negative endemic equilibrium )ˆ,ˆ,ˆ(ˆ AINE for β1>0 

due to direct inflow of infectives. Here IN ˆ,ˆ and Â  are positive solutions of the 

equations obtained by putting right hand side of system (4.4)-(4.6) equal to zero 

and are given by,   

          













 









 












 










α

NdQQ

δ
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α

NdQQ
A
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To show the existence of Ê  we write )ˆ(NF  from eq.(4.8) as, 
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         It would be sufficient if we show that )ˆ(NF  = 0 has a unique positive root. 

To prove this, we have, 
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Also  
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                                                (4.14) 

It is noted that )ˆ(' NF  > 0 if  

δα
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dδβ
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)]([
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  

 Thus, )ˆ(NF = 0 has exactly one root (say N̂ ) between 0 and 
d

QQ   . 

Using N̂ , the values of Î  and Â  can be found easily. 

Remark 2. It is observed from system (4.4)-(4.6) that if immigration of infectives 

tends to zero then endemic equilibrium Ê → *E . Thus, the endemicity of the 

infection is reduced when immigration of infectives is restricted i.e. Q1 = 0.  

 The characteristic equation corresponding to the variational matrix with respect 

to Ê  is obtained as, 

          
  





  bλbλbλλg = 0                                                             (4.15) 
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ˆ
)(  

Here again ib > 0 (i =1, 2, 3) and  bbb > 0 holds. Thus, Ê  is locally 

asymptotically stable without any condition.  

Lemma 2.The region of attraction in this case is given as, 

         Ω2 = {(N, I, A); 0 < N ≤ N ; 0 ≤ I ≤ I ; 0 ≤A ≤ A } is a region of attraction. 

where 

       d

QQ
N   , 
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dβ
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and 
 dα

Iδ
A


   

Theorem 2. The endemic equilibrium Ê  is globally asymptotically stable if the 

following inequality is satisfied in Ω2, 

           







 


N

β

II
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Ndαdδαβ

ˆˆ
ˆ)(                                                 (4.16) 

It can be proved by using the following positive definite function about Ê  

             221

2 ˆ
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1
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IIImNNV 


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where the constant 
1

2
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






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N

β

II

Q
ξ

ˆˆ
 

Remark 3. It is also noted that if Q1 = 0 then condition (4.16) for global stability 

reduces to the condition (3.7).  

 

5. When population grows logistically 

In order to investigate disease dynamics for the model with more demographic 

effects, it should be assumed that birth and death rates are density dependent. In 

this case, the epidemiological model formulated has population dynamics 

corresponding to the logistic equation where the restricted growth is due to 

density dependence in both the birth and death rates. The birth rate decreases and 

the death rate increases as the population size increases towards its carrying 

capacity.           

          

S
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rN
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SIβ
N
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  )(                              (5.1) 
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A
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rN
adαIδ

dt

dA








 )(                                                       (5.3) 

           S(0)> 0, I(0) ≥0, A(0) ≥0 

where b and d are natural birth and death rates, r = b - d >0 is the growth rate 

constant, K > 0 is the carrying capacity of the human population density in the 

natural environment. For 0<a<1, the birth rate decreases and the death rate 

increases as N increases to its carrying capacity K. When a = 1, the model could 

be called simply a logistic birth model as all of the restricted growth is due to a 

decreasing birth rate and the death rate is constant. Similarly, when a = 0, it could 

be called a logistic death model as all of the restricted growth is due to an 

increasing death rate and the birth rate is constant. The birth rate is density 

independent when a = 0 and the death rate is density independent when a = 1. 

These are consistent with the limited resources associated with density 

dependence.  

Since N(t) = S(t) + I(t) + A(t); therefore, we can write above system as following,             

          

Aα
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                              (5.5) 
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







 )(                                                      (5.6) 

            N(0)> 0, I(0) ≥0, A(0) ≥0 

 

Also r = (b-d) is the growth rate constant. If we consider the case where r > 0 so 

the logistic equation really does describe restricted growth. If r = 0 and there is no 

disease, then the population size remains constant. If r < 0 and there is no disease, 

then the population size decreases to zero. 

 

Lemma 3.  The region of attraction in this case is given by,  

               Ω3 = {(N, I, A); 0 < N ≤ K; 0 ≤ I ≤ I ; 0 ≤A ≤ A }  

    

 where  
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As in Section 3, it is easy to note that the solution of model system (5.4)-(5.6) 

remains positive for all t>0. 

5.1 Stability analysis 

The model (5.4)-(5.6) has two non-negative equilibria namely,  

(i) W0 (K, 0, 0), the disease-free equilibrium. 

(ii) ),,,( AINE


the endemic equilibrium.  

where 
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and N


is given by the quadratic equation, 
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It would be sufficient if to show that )(NG


= 0 has a unique positive root. 

To prove this we have, 
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(                                      (5.8) 

It is noted that G(0) < 0 provided the following condition is satisfied 
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And 

          )(KG  KRradδ  ])([                                              (5.10)   

        Thus, if R > 1 then )(KG  > 0, where 
)( ardδ

β
R


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  is defined in 

(5.13). 
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which is  positive  if 

            ))(()( rβαδadδαβ                                                      (5.12) 

Thus, )(NG


= 0 has exactly one root (say N


) between 0 and K under condition 

(5.12). Using N


, the values of I


 and A


can be found easily.  

         We find that the equilibrium W0 is locally asymptotically stable if 

β < )]([ ardδ  , the disease dies out and under this condition the 

equilibrium E


 does not exist. If β > )]([ ardδ  , then W0 is unstable and 

there exists unique endemic equilibrium E


 and the infection is maintained in the 

population. 

We define the basic reproduction number in this case as, 
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β
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

                         

                                               (5.13) 

and note that if R < 1the infection dies out and for R > 1it always persists in the 

population.                       

The characteristic equation corresponding to the variational matrix with respect 

to E


 is given by, 
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Thus by Routh-Hurwitz criteria, E


is locally asymptotically stable as it can be 

shown that c > 0, c > 0, c > 0 and   ccc > 0.    

Theorem 3. Let the following inequality hold, the endemic equilibrium E


 is 

globally asymptotically stable in Ω3. 
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    where 






 
 

K

Arak

N

α
η

)(
 , 








 

N

α

K

r

N

β
ε  , 







 



 

K

ra

N

β
τ

)(
  and   

(1 )
( ) .

a rN
p d

K


 
   
 

 

Proof: Consider the following positive definite function about E

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where the constant  





τ

ε
k

pε

δη
and 

Nδ

kβ
k 
   

It can be shown easily, as before, that E


is globally asymptotically stable. 

Remark 4. If the movement rate of HIV infectives to AIDS class tends to zero i.e. 

δ = 0, then the condition for global stability is automatically satisfied showing that 

this parameter has destabilizing effect on the system. 

6. Numerical Simulations 

We give here numerical simulation of the models for different epidemiological 

situations. First we see the nonlinear behavior of the system (3.1)-(3.3) and (4.4)-

(4.6) numerically. It is noted that, on considering Q1 = 0, we get the reduced 

model (3.1)-(3.3). We integrate the system (4.4)-(4.6) by fourth order Runge-

Kutta method using the following set of parameter values:  

            Q0 = 2000, Q1 = 400, d = 0.02, β1 = 0.4, α =1, δ = 0.1, p = 0.2 
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with initial values N(0) = 10000, I(0) = 4000 and A(0) = 1000, the equilibrium 

values are computed as 

            N̂ = 22686, Î = 15772, Â = 1546 

and equilibrium values for Q1 = 0 and keeping the value of  all other parameters 

same we get,  

             
*N = 24242, *I = 15455, *A = 1515. 

The results are displayed graphically in Figs. 6.1 - 6.2. In these figures, the 

infective population is plotted against the AIDS population. We see from these 

figures that the solution curves tend to the endemic equilibrium E* and Ê  . Hence, 

we infer that the systems (3.1)-(3.3) and (4.4)-(4.6) are globally stable about the 

endemic equilibrium E* and Ê  for the above set of parameter values. 

 

 

Fig. 6.1. Variation of  infective population (I) and AIDS population (A) when all the immigrants 

are susceptible i.e.Q1= 0 
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Fig. 6.2. Variation of infective population (I) and AIDS population (A) when some of the 

immigrants are infected i.e. Q1≠ 0 

Now we integrate the system (5.4)-(5.6) by fourth order Runge-Kutta method 

using the following set of parameter values: 

             r = 0.2, d = 0.02, β1 = 0.4, α =1, δ = 0.1, K = 20000, a = 0.7 

and initial values N(0) = 10000, I(0) = 4000 and A(0) = 1000. The equilibrium 

values are computed as 

             N


= 14953 I


, = 8036 and A


= 755. 

In the Fig. 6.3, the infective population is plotted against the AIDS population for 

logistically growing population. We see from the figure that the solution curve 

converges to the endemic equilibrium E


. Hence, we infer that the system (5.4)-

(5.6) is also globally stable about this endemic equilibrium for the above set of 

parameter values. In Figs. 6.4 and 6.5 we plot the total  population and infective 

population  respectively for different demographic states with time. It is seen that 

the level of total population and infective population is higher in the case when 

some of the immigrants are infectives. Thus, the endemicity of infection is higher 

if the direct inflow of infectives is allowed in the population whereas the 

endemicity of infection is low if the population undergoes logistic growth.  
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Fig. 6.3. Variation of infective population and AIDS population when population grows 

logistically 

 

Fig.6.4. Variation of population with time for different demographic states 
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(Here  when all the immigrants are susceptibles,  when some of the 

immigrants are infected and for logistically growing population) 

 

 

Fig.6.5. Variation of infective population with time for different demographic states 

 

(Here  when all the immigrants are susceptibles,  when some of the 

immigrants are infected and for logistically growing population) 

 

7.  Model application to the Indian HIV data 

 To estimate and validate the models (3.1)-(3.3) and (5.4)-(5.6) by comparison 

with reported values for the HIV positive cases in India, we use the following 

parameter values. 
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Table 7.1. Parameter values for validation of model (3.1)-(3.3) 

Parameter Symbol Values 

Natural mortality rate of individuals per year 

Movement rate of HIV infective individuals 

AIDS related death rate 

Contact rate of susceptibles with HIV infectives  

d 

δ 

α 

β1 

0.02 

        0.1 

           1 

        0.4 

 

Most of the parameter values used in simulation are adopted from previously 

published articles while others are estimated intuitively. The unit of parameters is 

in per year. We also use initial values for simulation [12, 15, 17, 18, 23]  

N(0) =100000000, adult population that were found in 1990, as initial population 

size, 

I(0)= 200000, number of reported HIV positives at the end of 1990, 

A(0)= 57, number of AIDS cases reported HIV positives at the end of 1990, 

Q0 = 2000000, yearly immigrated adult persons (estimated from N d = Q0 [15]) 

Table 7.2.Reported HIV positive cases (Approx.) in millions by year: 1990-2005 

[23] 

 

Year 1990 1994 1998 1999 2000 2001 2002 2003 2005 

HIV+ 0.2 1.75 3.5 3.7 3.86 3.97 4.58 5.1 5.7 
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Fig. 7.1. HIV positive cases in India 

 

In the Fig.7.1, the result of the simulation are displayed where we can see that the 

trend of  data as reported in Table 7.2 and the curve representing estimated values 

given by the model for HIV infected persons using the above parameter values. 

From the Fig.7.1, it is seen that approximately 28 millions people would be living 

with HIV/AIDS by 2010.  

Now to validate the model (5.4)-(5.6) we use same parameter values, given in the 

Table 7.1 and convex constant (a) = 0.7, growth rate constant (r) = 0.2 and 

carrying capacity (K) = 600000000.  
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Fig. 7.2. HIV positive cases in India 
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From the Fig.7.2, it is seen that the number of HIV infected persons estimated by 

the model, for the same set of parameter values that are given in the Table 7.1, are 

closer to the reported Indian HIV data. From the Fig.7.2, it is observed that up to 

25 millions people would live with HIV/AIDS by 2010. This result match with the 

National AIDS Control Organization (2002) [23] which also suggested that in 

India approximately 25 million people will live with HIV/AIDS by 2010. 

8. Conclusion 

In this paper we have proposed a nonlinear mathematical model which has been 

analyzed to encompass various well known growth forms describing different 

demographic states. These states denote the population growth when all the 

immigrants are susceptible, when some of the immigrants are infected and when 

the population has density dependent structure. We found a threshold quantity in 

terms of basic reproduction number for the models with different demographics. If 

the basic reproduction number is less than or equal to one, the disease-free 

equilibrium is locally asymptotically stable. If it is greater than one, a unique 

endemic equilibrium exists which is globally asymptotically stable in the interior 

of the feasible region, so that the disease persists in the population if it is initially 

present. 

The model application for Indian HIV data is also given and it seems that for  

logistically growing population model, the future prediction of HIV in India gives 

nearly closer result to the NACO prediction [23].  
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