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Abstract

In this article, by using Chebyshev’s polynomials and Chebyshev’s expansion,
we obtain the best uniform polynomial approximation out of P, to a class of

rational functions of theform (ax2 +c)_lon any non symmetric interval [d,e].
Using the obtained approximation, we provide the best uniform polynomial
approximation to a class of rational functions of the form (ax2 +bx+c)_1 for
both cases b? —4ac(0 and b® —4ac)0.

Key words: Chebyshev’s polynomials, Chebyshev’s expansion, uniform norm,
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1. Introduction

ST _1-t" cos(pd)—t™" cos(pn@)+t"™" cos(pnd)cos(pd)+t™" sin(pnd)sin(ph) |n
®) ,—Z:O:t T )= 1+t% —2tP cos(pé) '
section 2, we characterize the best On of the important and applicable subjects in
applied mathematics is the best approximation for functions. A large number of
paper and books have considered this problem in various points of view.
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Definition 1. [19] Suppose P, denotes the space of polynomials of degree at most
n, then for given feC[d e], there exists a unique polynomial p; e P, such that:

It -p

) <|f-p|,, VpeP,.
We call p; the best polynomial approximation out of P, to f on [d,e].

In other words, p; P, is the best uniform approximation for function f on

[d.e]if E, (f,[d,e])= max f(x)- py(x) <max| f(x)- p(x}, VpeP,.

d<x<e

The main questions of this problem are existence, uniqueness and characterization
of the solution. The existence and uniqueness of the solution for the best
approximation problem have been proved in [15,19].

In resent years, some researches investigated in order to characterize the best
uniform approximation for special classes of functions. Several of these
researches were focused on classes of functions possessing a certain expansion by
Chebyshev’s polynomials. For example Jokar and Mehri in [8] studied

(x—a)*(a)l) and (x+1)". Also Achieser in [1,2] studied(x—a)™". Lorentz in
[10] obtained the best uniform  approximation for  complex
function(z—a)™,(z,a €C). In the sequel, Lubinesky in [11] showed that
Lagrange interpolants at the Chebyshev zeros yield the best relevant polynomial

approximation of (1+ (ax)z)flon [11]. Eslahchi and Dehghan in [6] characterized
the best uniform polynomials approximation to a class of functions (a2 + xz)_lon
[-11] and [-c,c]. They also in [5] obtained the best uniform approximation to a
class of (T,(a)+T,(x)J. Also Elliott in [9] used the generalized form of

Chebyshev’s polynomials in a specific series to obtain the best approximation.

At first some definitions and theorems that will be used throughout this article are
introduced.

Theorem 1. (Chebyshev’s alternation theorem)[15]

Let f be inC[d,e]. Let the polynomial p be inP, and e(x)= f(x)— p,(x). Then
p is the best uniform approximation p; to f on[d,e] if and only if there exist at
least n+2 points x,(X,(---(X,, in [d,e], for which:[14]

|e(xi ] = maX| f (Xi )_ Py (Xi ] , with e(xi+1) - _e(xi )

d<x<e
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Definition 2. [4,16] The Chebyshev’s polynomial in[-11] of degree nis denoted
by T, and is defined by T,(x)=cos(nd) where cosd=x.

iy

Note that T, is a polynomial of degree n with leading coefficient 2",

n

Definition 3. [12] The Chebyshev’s polynomial in[d,e] of degree nis denoted by
T, and is defined by T, (x)=cos(n&) where

Lemma 1. [8] For x = cosé,|t|(1 and natural number p we have:

= 1-t° cos(po)
tPT_(x)= ,
@) ,Z:.; (%) 1+t%° —2t" cos(pd)

uniform approximation to the class of (ax2 +c)7l on[d,e] and in section 3, using
the results from section 2, we obtain the best uniform approximation for the class

of (ax® +bx-+c) on[-11].

2. Best Approximation of (ax? +c) " on[d,e]
In this section, we determine the best uniform polynomial approximation out of

Pzn to (ax2 +C)—l on [d,e], when %)0 or %(0_

Now, we prove the following lemmas to verify Chebyshev’s expansion in two
mentioned cases.

Lemma 2. Suppose that x € [d, e], %(0 and _T%)(e —d ). Then, we have:

&)

1 -1 ~16t* 32° N, o
- = 17T, (X);
ax’ +c a(—C_ij ale—d ) (t* —1)+a(e—d)2(t4 —1)%.; ()

a
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1 -C —4c 2
where t:(e—d)(z\/?_\/?_(e_d) ] ([t|<1)
@)

and T, (x) = cos(n@) where cosé = Z—Xd :

(1) on[-11] we have [17]:

. : 1
Proof: In the expansion of the function ———,
a” —X

1 42 8t? &y
= - E t T, (X),
ad—x -1t -1 %)

)

where, X e cosd and o =

2 —
tz:_l and t =a —+a®—1. Suppose thata = ]/?c' then

we have

o0

1 4° 8t .
2 T4 4 14 ZtZKTzk (X).
(tZ +1J 00320 -1 t _1k=0
2t

©)

According to (2) we can write:

i He-df

1 1 )
_C 2 2 2 B 2 2 2.
_~_x t°+1 —COSZH 4(e—d)2 t°+1 _(X_d‘i‘EJ

2 2 2

a
(7)
Combining (6) and(7) we obtain:
2 2 )
4 16t A Sy

e_dy +1) (. d+eY e-dP(t* -1 (e-df(t' -D&
o

2
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Suppose that t = (e 1d) (2‘/— —\/——(e d)? j consequently|t |(1.( Note
2a++/4a° —(e—d)?

that for t = , the condition|t|(1 is not true.)

(e—d)
Thus we have:
4 16t2 322 .
- X).
2

©

where with T, (x) = cos(ng), cosé = ez—xd’ so relation(3) is proved. 0

LLemma 3. Suppose that x < [d,e] and %)O. Then we have:

2 2 0
1 1 e 3 S O, (0

ax® +c a(xz +Cj ale—dp(t-1) ale—df(t*-1)&z
10

where

gl e 4fZ)
w

and T, (x) = cos(nd) where cosd = ez—xd :

Proof: In the expansion of the function — on [—11] we have[6]:

P +X

1 4t° 8t* & .
F+x -1 [t —1)%;(_1)kt2kT2k (x)

12)

2
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1-t* . L
- |c
\With suppose S = A ,the rest of proof is similar to

the proof of lemma 2. Thus we omit it.C]

where X =co0sé, =

Theorem 2. The best uniform polynomial approximation out of P,

for (ax® +¢) ' where §<O, on[d,e] and _TA'C>(e —dY), is as follows:

. _16t? 322 o, Y
2n = 2(, 4 2(, 4 t2kT2k B 5 T2n )
Par () ale—d)(t _1)+ ale—d )t —1);; ¥ a(e—dy(t* —1f *

13)

2n+4
and EZn (f ) = H f- p;n 3

" lalle—dy* -1f

1 ([-c [~4c ) _
(14) where t = —d)(z\/;— T—(e—d) j,([t|(1), T (x) = cos(né)

(e—-
where cosé = = .
e—d
Proof: Noting to Chebyshev’s alternation theorem we should prove that the
function e, (X) = ———— P5,(X)
X" +C

(15)

has2n +2 alternating points in [d,e]. From (3) and (13) we have:

32t2 N, ok 3222 _
2n = 2 (o4 t2kT2k 2 2 T2n '
€ (X) a(e—d) (t _1); (X)+a(e—d) <t4 _1) (X)
(16)

By replacing p =2 in lemma 1 and subtracting both sides of (b) from (a) we
obtain:

i 2T, (x) <t cos(2n 49)—t2(cos(2r411 9)0(;3(2(9)+sin(2n 6)sin(29))
P 1+t* — 2t cos(26)

17)

By replacing (17) in(L6), we obtain:
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" 32042 (l—t2 COS(ZQ)Xt4 _]_)+ (1+t4 —2t? COS(ZH)) cos(2n
g b e
o D) | o)

(18)

2 2
Noting to (4), we have ?C = (%tﬂ)j . Then we can rewrite (18) in the

form of:

e, (x)= 32t°m* ; {(e ~4) (;Cj ) XZ(_aSC 2_ (e—d )2) cos(2n6)

2\/4c Cle—d) X

. Va - (aC_X j sm(2n6’)}
19)

Now if we define:

. (e—d)z(::j—xz(_:c—(e—d)zj,

@_dy(;f_xf

&3+ZC(_dy]

- 2x(
Then we have:  F/(x)= a_a

e-ap(x]

(22)
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It is easy to conclude that if O¢ [d,e], then F,(x) is a monotonic function and if
Oc[d,e] then F,(x) is a monotonic function on each interval [d0] , De]. Also we
have: F2(x)+F2(x)=1  xe(d,e}

(23)

Therefore, according to (22) and definition of T, forx < [d,e], we have:

—1< F(x) £1. Hence according to mean value theorem for every x € [d,e], there
existsa 7eQz)suchthat cosp=F(x), xeld,e]

(24)

Therefore, from (23) we can write:  sinz = F,(x).

(25)

Replacing (24) and (25) in (19) we obtain:

32t 2n+4
eZn ( ) =

ae—d)(t* -1)
(26)

Now, if x varies fromd to e, then cos(2n@+7) varies fromcos(n+1)z to
cos(—x) and consequently cos(2n6?+77) possesses at least 2n+2 extermal points,
where it assumes alternately the values+1. Therefore p,, is the best
approximation out of P,,, and (14) will be proved with considering (26).ci

—cos(n +2n0).

Theorem 3. The best uniform polynomial approximation out of P,

for (ax® + ¢) ' where 2)0, on[d,e] will be:

1) RN . W S 0 11 AR e LSAE YY)

Tale-df{-1) ale-df(t-)& ale—d Pt -1f "

32th+4

" falle—d P -1f

(28) where t:@%d)( ey _z@,m <1), T. (% = cos(n0)
2X

where cos@ = ——.
e—d

and E2n(f):Hf _p;n
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Proof: The proof is similar to the proof of theorem 2.0

1
25—X
[-3,3] by using theorem 2, with n=3, p;(x) we will see that this result is
similar to the best uniform polynomial approximation obtained in [6]. If we obtain
251 7 on [-55] by
using theorem 3, with n =2, p; (x) we will see that this result is similar to the best
uniform polynomial approximation obtained in [6].

If we obtain the best uniform polynomial approximation for f(x)= on

2

the best uniform polynomial approximation for f(x)=

Example 1. In figure 1, the function f(x)=ﬁ has been drawn. The
-2xX° +

dashed points show the best uniform polynomial approximation of degree 8
(%), to (-2 +19)* on[-12].
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I I I I I
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Figure 1: The best approximation of (-2us) .

Example 2. In figure 2, both the function and its best uniform polynomial

approximation, pfe(x), (the dashed point ) of degree 16 to (5+ xz)_1 on bZ] has
been shown.
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Figure 2: The best approximation of (s::2) .

3. Best Approximation of (ax2 +bx+c)71

In this section, by using the previous theorems, we obtained the best polynomial
. . 2 -1
approximation for (ax? +bx+c)" on[-11].

Theorem 4. The best uniform polynomial approximation out of P,

for (ax® +bx+c) on[~11] is as follows:

) 1] —at? 8t2 ot " ( bj g8t2"+2 [ bj
1 2T 0 T — 1|, 29
(a) Pon (X) a|:(t4 —l)+ (t4 —l)é x| X+ % _(t4 _1)2 on| X+ o ( )
where,
2 2
t= Pt P (b s a0t 0) (30)

TR I S - S T b, 8-t b
(b) pzn(X)_a|:(t4—1) (t4—)k=0t (1) TZK(X+2aj+ <t4—1)2 TZ"[XJFZaﬂ’ (31)

2
t= T+l—\/ﬂ, b2 —dac (0, ft|(L. (32)

Proof; We can write the function (ax2 +bx+ c)ﬁ1 in the form of:
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(33)

1 1

ax® +bx+c . (X+bj2 b’ —4ac .
2a 43’

Since x e [-11] therefore

(34) x +£e{—1+£,1+£}=[d e].
2a 2a  2a

Now, by changing x to x+ % in theorems 2 and 3, we have:

_ b . 2(X +b Za) _ b’ )=
T,, (x + Z—aj = cos[Zn arccoglJr 5 L %a = COS(Zn arcc05(X + 2a)) =Ty, (x + Z_a}

— 2 f—
Casel : (b® —4ac>0) In this case, replacing ?C by %, according to(34),
a

the defined t in theorem 2, changes to(30) where b? —4ac >4a?. Therefore, we
can prove (a) by using theorem 2.

_h?
Case2 : (b? —4ac(0) In this case, replacing %by %, according to(34),
a

the defined t in theorem 3, changes to(32). Therefore, we can prove (b) by using
theorem 3.

Example 3. In figure 3, we have drawn the function f(x):%. Also,
X“+2x-15

the dashed points show the best uniform polynomial approximation of degree 6
po(x) . to (x2 +2x—15) " on[-14].
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Figure 3: The best approximation of (x2:2x-1s) .

Example 4. In figure 4, both the function and its best uniform polynomial

approximation , p;;(x), ( the dashed point ) of degree 16 to (x2 —2X +6)71
on[-11] are shown.

02 . ‘ . ‘ . — —
0.19} -~ .
018} ~ .
017} o -
0.6} v .
015} y .
014} ~ -

013F b
0.12F b
— f

011p < 7
tp

01 1 L 1 L 1 1 1 1 1
-1 08 -06 -0D4 -02 0 02 04 06 08 1

Figure 4: The best approximation of (x2-2xss) .

4. Conclusion

As seen in this article, in the sequel of previous researches, the best uniform

approximation for (ax2 J_rc)_1 was achieved. In this case, we applied the interval
[d,e] as general in place of [-11].
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Also, by characterizing the best uniform approximation for(ax2+bx+c)_1 on
[—11], a more general form than previous approximation in [6,8] was obtained.
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