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Abstract 

In this work 
G

G


 expansion method has been employed to solve (2+1)-dimensional 

dispersive long wave equation. It is shown that 
G

G


 expansion method, with the 

help of symbolic computation, provides a very effective and powerful mathematical 

tool, for solving this equation. 
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1. Introduction 

Mathematical modeling of many real phenomena lead to a non-linear ordinary or 

partial differential equations in various fields of physics and engineering. There 

are some methods to obtain approximate or exact solutions of these kinds of 

equations, such as the tanh method [1-2], sine–cosine method [3], homotopy 

perturbation method [4-5], vibrational iteration method [6-7], Adomian 

decomposition method [8], Exp-function method [9-11], and many others [12-13]. 

Most recently, a novel approach called 
G

G


 expansion method [14-15] has been 

developed to obtain solutions of various nonlinear equations. The solution 
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procedure of this method, by the help of any mathematical packages, say Matlab 

or Maple, is of utter simplicity.  

In this paper, we will consider the (2 + 1)-dimension nonlinear dispersive long 

wave equation, in the following form, to illustrate the 
G

G


 expansion method. 

          

21
( ) 0,

2

( ) 0.

ty xx xy

t x x xxy

u v u

v u uv u

  

   
                                                                      (1) 

 

If we let x be equal to y, the (2 + 1)-dimension nonlinear dispersive long wave 

equation can be reduced to the (1 + 1)-dimension nonlinear dispersive long wave 

equation that describes the travel of the shallow water wave. The DLWE were 

first obtained by Boiti et al. [16] as a compatibility condition for a ‘‘weak’’ Lax 

pair. Recently considerable effort has been devoted to the study of this system. 

For more detail about results about this system, the reader is advised to see the 

remarkable achievements in Refs. [17–22]. 

 

2. The 
G

G


 expansion method 

Consider a nonlinear partial equation, in two independent variables say x and t , 

in the form  

     ( , , , , , ) 0.t x xx ttp u u u u u                                                                                 (2) 

Where ( , )u u x t  is an unknown function, p is a polynomial in ( , )u u x t  and 

its various partial derivatives, in which the highest order derivatives and nonlinear 

terms are involved.  

Step 1. Using the transformation 

           ,x ct                                                                                                        

(3) 

where c is constant ,we can rewrite Eq. (2) as the following nonlinear ODE: 

            ( , , , , ) 0.Q u u u u                                                                                     

(4) 

Where the superscripts denote the derivatives with respect to  . 

Step 2. Suppose that the solution of ODE (4) can be expressed by a polynomial in 

G

G


 as follows: 

           
0

( )

im

i

i

G
u

G
 



 
  

 
                                                                                     (5)                                                                                                                         
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where  ( )G G  satisfies the second order LODE in the form 

            0,G G G                                                                                       (6)                                                                                                        

,i  and   are constants to be determined later with 0m  . The positive 

integer m  can be determined by considering the homogeneous balance the 

highest order derivatives and highest order nonlinear appearing in ODE (4). 

Step 3.  Substituting Eq. (5) into Eq. (4) and using the second order LODE, Eq. 

(6) yields an algebraic equation involving powers of
G

G


. Equating the coefficient 

of each power of 
G

G


 to zero gives a set of algebraic equations for 

determining , ,i c  ,  and  . 

Step 4. Assuming that the constants , ,i c  , and   can be obtained by solving 

the algebraic equations in Step 3. Since the general solutions of the second order 

LODE (6), depending on the sign of 2 4 ,     are well known for us, by 

substituting ,i c and the general solutions of Eq. (6) into Eq. (5), solutions of the 

nonlinear evolution Eq. (2) can be obtained. 

 

3. Application to the DLWE 

To apply 
G

G


 expansion method on Eq. (1), let’s introduce a complex variable , 

defined as                                                                       

 

          .x ky wt                                                                                                 

(7) 

  

So, Eq. (1) turns to the following system of ordinary different equation,  

        

21
( ) 0,

2

( ) 0.

kwu v k u

wv u uv ku

     

       

                                                                 (8) 

 

Where k  and   are constants to be determined. By taking twofold integral from 

the first equation, to derive a simple form of the solution, let’s take the integral 

constant zero, we obtain        

             
21
.

2
v kwu ku                                                                                   (9) 

By integrating the second equation we derive 
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       1,wv u uv ku c                                                                           (10) 

where 1c  is an integration constant that is to be determined later. 

Substituting Eq. (9) into Eq. (10), leads to the following 

 

        2 3

1(1 ) .
2 2

kw k
kw u u u ku c                                                          (11) 

 

Suppose that the solution of ODE Eq. (11) can be expressed by a polynomial in 

G

G


 as follows: 

         
0

( ) ,

im

i

i

G
u

G
 



 
  

 
                                                                                     

(12) 

where ( )G G  satisfies the second order LODE (6). To determine ,m  we 

construct some terms of the Eq. (11), which leads to higher order involving .m  

Using (12) and (6) 

         
3

3 3 ...

m

m

G
u

G


 
  

 
                                                                                    (13) 

         

2

( 1) ....

m

m

G
u m m

G



 

    
 

                                                               (14) 

Considering the homogeneous balance between u and 
3u in Eq. (11), based on 

(13) and (14) we required that 1m  , so we can write (12) as the following simple 

form 

        
1 0 1( ) , 0,

G
u

G
   

 
   

 
                                                                      (15) 

By substituting (15) into Eq. (11) and collecting all terms with the same power of 

G

G


  together, the left-hand side of Eq. (11) is converted into another polynomial 

in 
G

G


 . Equating each coefficient of this polynomial to zero yields a set of 

simultaneous algebraic equations for 1 0 1, , , , ,c k w    and  as follows: 
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0

3 2

1 1 0 1 0 0

1

2 2 2

1 1 1 0 1 1 1

2

2

1 0 1 1

3

3

1 1

1 1
: 0,

2 2

1 3
: 2 0,

2 2

1 3
: 3 0,

2 2

1
: 2 0.

2

G
k w k c k k w

G

G
kw kw k k k

G

G
kw k k

G

G
k k

G

       

         

    

 

 
       

 

 
      

 

 
    

 

 
   

 

    (16) 

Solving this algebraic equations above, yields to 

First solution set: 

3 2 2

0 0 0 0
1 0 12 2 2 2

0 0 0 0

2(4 4 3 2 )2
2, , 6 6 , .

75 150 76 4 75 150 76 4
k w c

     
  

       

   
     

     

    (17) 

Second solution set: 

3 2 2

0 0 0 0
1 0 12 2 2 2

0 0 0 0

2(4 4 3 2 )2
2, , 6 6 , .

75 150 76 4 75 150 76 4
k w c

     
  

       

   
     

     

    (18) 

Where ,   and 0 are arbitrary constants. 

By substituting (17) and (18) into (15), we drive 

          
0( ) 2

G
u

G
 

 
   

 
                                                                               (19) 

Where  

      02 2

0 0

2
( 6 6 ) .

75 150 76 4
x y t  

   
   

 
                  (20) 

Substituting the general solutions of Eq. (6) into (19) we would have three types 

of traveling wave solutions of the DLWE as follows: 

When 2 4 0,    

          

2 2

2

1,2 0
2 2

1 1
sinh 4 cosh 4

2 2( ) 4 .
1 1

cosh 4 sinh 4
2 2

A B
u

A B

     
    

     

 
   

    
   
 

  (21) 

When 2 4 0,    
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2 2

2

3,4 0
2 2

1 1
sin 4 cos 4

2 2( ) 4 .
1 1

cos 4 sin 4
2 2

A B
u

A B

     
    

     

 
    

    
   
 

      (22) 

When 2 4 0,    

         
5,6 0

2
( ) .

B
u

A B
  




 


                                                                              

(23) 

Where A  and B are arbitrary constants and 

 

       02 2

0 0

2
( 6 6 ) .

75 150 76 4
x y t  

   
   

 
                        (24) 

 

 

4. Conclusion 

    In this article, we have been looking the exact solution of the (2 + 1)-

dimensional dispersive long wave equation. We achieved the solution by 

applying
G

G


-expansion method. The free parameters can be determined using any 

related to initial or boundary conditions. The result shows that 
G

G


-expansion 

method is a powerful tool for obtaining exact solution. Applications of 
G

G


-

expansion method for other kinds of nonlinear equations are under study in our 

research group. The computations associated in this work were performed by 

using Maple 11. 
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