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Abstract  

In the first part of the paper we survey some far reaching applications of the basis 

facts of linear programming to the combinatorial theory of simple polytopes. In 

the second part we discuss some recent developments concurring the simplex 

algorithm. We describe sub-exponential randomized pivot roles and upper bounds 

on the diameter of graphs of polytopes. 

Keywords: Simplex algorithm, Randomized Pivot rule complexity combinational 

theory of simple polytopes. 

 

 

1. Introduction 

A convex polyhedron is the intersection S of a finite number of closed half 

spaces in R
d
. S is a d – dimensional polyhedron (briefly a d – polyhedron) If 

the points in S affinely span R
d
 a convex d-dimensional polytopes. (briefly, a 

d – polytope) is a bounded convex d – polyhedron. Alternatively a convex d – 

polytopes is the convex hull of a finite set of points which affinely spans R
d
. 

A (non – trivial) face F of a d-polyhedron S is the intersection of S with a 

supporting hyper plane. F it self is polyhedron of some lower dimension.  If 

the dimension of F is K we call F a K face of S. The empty set and S itself are 
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regarded as trivial faces. o-faces of S are called vertices, I–faces are called 

edges and (d-1)-faces are called facets. For material on convex polytopes and 

for many references see Ziegler’s recent book [32]. The set of vertices and 

(bounded) edges of S can be regarded as an abstract graph called the graph of 

S and denoted by G(S). 

We will denote by fK (S) the number of K-faces of S. The vector (f0(S), 

f1(S)….. fd(S)) is called the f-vector of S. Euler’s fame formula V-E+F=2 

given a connection between the number V, E, F of vertices, edges and 2-faces 

of every 3-polytope. 

A convex d-polytopes (or polyhedron) is called simple if every vertex of S 

belongs to precisely d edges. Simple polyhedron correspond to non generate 

linear programming problems. When you cut a simple polytopes S near a 

vertex V with a hyper plane H which intersect the interior of S, the 

intersection S∩H is a (d-1) dimensional simplex S. The vertices of S are the 

intersections of edges of S which contain V with H and the (K-1) dimensional 

faces of S are the intersection of K faces of S with H. The following basic 

property of simple polytopes follows. 

Let S be a simple d-polytopes and let V be a vertex of S Every set of K edges 

adjacent to v determines a K-dimensional faces of S which contains the vertex 

V. In Particular there’re precisely 








k

d
K – faces in S containing V and 

altogether 2
nd

 faces (of all dimensions) which contain V. 

Linear programming and the simplex algorithm linear programming is the 

problems of maximizing a linear objective function   subject to a finite set of 

linear inequalities. The relevance of convex polyhedral to linear programming 

problem is clear. The set S of feasible solution for a linear programming 

problem is a polyhedron. There are two fundamental facts concurring linear 

programming the reader should keep in mind.  

 If  is bounded from above on S then the maximum of  on S   is 

attained at a face of S, in particular there is a vertex V for which the 

maximum is attained. If  is not bounded from above on S then there is 

an edge of S on which  is not bounded from above.  

 A sufficient condition for V to be a vertex of S on which   is maximal 

is that V is a local maximum namely  (V) is bigger or equal than 

(W) for every vertex W which is a neighbour of V. 

The simplex algorithm is a method to solve a linear programming problem by 

repeatedly from one vertex V to an adjacent vertex W of the feasible 

polyhedron so that in each step the value of the objective function is increased. 

The specific way to choose W given V is called the pivot rule. 
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The d-dimensional simplex and the d-dimensional cube .The d-dimensional 

simplex Sd is the convex hull of d+1 affinely independent points in R
d
. The 

faces of Sd are themselves simplices. In fact, the convex hull of every subset 

of vertices of a simplex face and therefore fk(Sd) = 












1

1

k

d
. The graph of Sd is 

the complete graph on d+1 vertices. The d-dimensional cube Cd is the set of 

all points (x1, x2, x3…….. xd) in Rd such that for every i, 0≤xi≤ 1; The vertices 

of (cd) are all the (0,1) vectors of length d and two vertices are adjacent (in the 

graph of (cd) if they agree in all but one coordinates , fK ((Cd) = 








k

d
kd2   

2. Applications of the fundamental properties of linear programming to the 

combinatorial theory of simple polytopes 

 Let S be a simple d-polytopes, and  be linear objective function which 

attains different values on different vertices of S. Call such a linear objective 

function generic.  (Actually it will be enough to assume only that  is not 

constant on any edges of S. The fundamental fact concerning linear 

programming is that the maximum of  on S is attained at a vertex V and that 

a sufficient condition for V to be the vertex of S on which   is maximal is that 

v is a local maximum, namely (V) is strictly bigger than (w) for every 

vertex W which is a neighborhood of V). 

Every face F of S is itself a polytope and  attains different values on distinct 

vertices of F. Among the vertices of F there is a vertex on which  is maximal 

and again this vertex  is the only vertex in F which is a local maximum of   in 

the face F. These considerations have far reaching applications on the 

understanding of the combinatorial structures of simple polytopes. We refer 

the reader to Ziegler’s Books [32] for historical notes and for reference to the 

original papers. Our presentation is also quite close to that in [26]. We hope 

that the theory of h-numbers described below will reflect back on linear 

programming but this is left to be seen. 

3. Degrees and h-numbers 

  Let S be a simple d-polytopes and let  be a generic linear objective function. 

For a vertex V of S define the degree V denoted by deg (v) to be the number 

of its neighboring vertices with smaller value of objective function . Clearly 

0≤ deg(v) ≤ d.   Define now hK (S) to be the number of vertices of S of degree 

K. This number as we define it depends on the objective function  but we 

will soon see that it  is actually independent form . We can see one sign for 

this already nomatter what  is there will always be precisely one vertex of 

degree d (on which  attains the maximum) and one vertex of degree 0 ( on 

which  attains the minimum). This follows at once from the fact that local 

maximum = global maximum. 
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To continue will count pairs of the form (F, V) where F is a K face of S and V 

is vertex of F which is local maximum ( hence a global  maximum) of  in F. 

on the other hand, let us compute how many pairs  contain a given vertex V of 

S. This depends only on the degree of V. Assume that deg(v) = r and consider 

the set of edges of S. 

T ={[V, W] :  (v)> (w)} 

Thus |T| =r. As we mentioned above every set B of K edges containing V 

determines a K-face F(B) containing V. In this face the set of edges containing 

V is precisely B. In order for V to be a local maximum in this face it is 

necessary and sufficient that for every edge [v,w] in B, (v) > (w). This 

occurs if and only if B  T. Therefore, the number of K faces containing  V 

for which V is a local maximum is precisely the number of subsets of T of size 

K,  namely 








k

r
summing over all vertices  V of S and recalling that hK(S) 

denote the number of vertices of degree K we obtain. 

(*) dKSf
k

r
Sh k

d

r

r .............2,1,0),()(
0












 

Note that this formula describe the f-vector of S (f0(S), f1,(S), 

………………..fd(S)) as an upper triangular matrix (with ones on the 

diagonal) times the vector of S(h0(S), h1(S)….hd(S)). Therefore the h numbers 

are in fact linear combinations of the face numbers and in particular they do 

not depend on the linear objective function . 

Put 
k

d

k

kp

k
d

k

kp xShxHxSfxF )()(,)()(
00




  

Relation  (*) given 

r
d

r

rp xShxH )1)(()1(
0

 


 

k
d

k

d

r

r x
k

r
Sh ))((

0 0








 

 

 





d

k

p

k

k xFxSf
0

)()(  

Therefore HP(x) = Fp (x -1) and  
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













k

r
SfSh r

d

r

kr

k )()1()(
0

 

In particular 

h0(S) = f0(S) – f1(S) +f2(S) …………..+ (-1)
d
fd(S) 

h 1(S) = f1(S) –2f2(S) +3f3(S) …………..+(-1)
d-1

dfd(S) 

h 2(S) = f2(S) –3f3(S) +6f4(S) …………..+(-1)
d-2










2

d
fd(S) 

h d(S) = fd(S) -1, hd-1(S) = fd-1(S) -d 

h d-2(S) = fd-2(S) –(d-1)fd-1(S) + 








2

d
 

For the simplex Bd, hK =1 for every K. The graph of Bd is the complex graph 

on d+ 1 vertices and for every generic objective function there will be 

precisely one vertex of degree K for 1≤ k ≤ d. For the cube Cd, hk = 








k

d
. To 

see this consider the objective functions  which is the sum of the co – 

ordinates . (This is nota generic objective function but it is not count on the 

edges of the polytopes and this is sufficient for our purposes). The vertices of 

degree K are precisely those having (V) = K and there are 








k

d
 such vertices. 

4. Euler formula and the Dehn-Sommerville relations 

For a generic linear objective function there is a unique maximal vertex. 

Therefore, h0(S) =hd(S) and  by the formulas above we obtain. 

f0(S)–f1(S)+f2(S)……………….+(-1)
d
fd (S) =1 which is Euler formula usually 

written. 

f0(S) – f1(S) +f2(S)………………..+ (1)
d-1

 fd-1 (S) =1 –(-1)
d
 

More generally, if  is a generic linear objective function then so is -, 

However, if V is a vertex of a simple Polytope S and V has degree K w.r. to  

then V has degree d-k w.r.t -. This given the Dehn – Sommerville relation 

hK(S) =hd-K(S) 

The Dehn-Sommerville relations are the only linear equalities among face 

number of simple d-Polytopes. 
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Defination ( Cyclic Polytopes) . 

The cyclic d-Polytopes with n vertices denoted by C (d,n) is the convex hull of 

n distinct point on the moment curve x(t) =(t, t
2
…….. t

d
)  R

d
. This is a 

remarkable class of polytopes and the reader should consult (10, 26, 32 ) for 

their properties . C* (d,n) will denote a polar polytopes to C(d,n). (For the 

defination of polarity see [10, 26, 32] C* (d,n) is a simple d-polytope with n 

facets. 

5. The upper bound theorem 

Motzkin conjectured that the maximal number of vertices (and more generally 

of K – dimensional faces) for d-polytopes with n facets. This conjecture was 

proved by Mc mullen [23]. It is easy to reduce this conjecture to simple 

polytopes and to calculate the h-number of C* (d,n) see [32,26]. This gives 

hk (C* (d,n)) =hd-k (C*(d,n)) = 






 

k

kdn 1
 

For 1≤ K ≤ [d/2] 

Since the face numbers are linear combination of h numbers with non –

negative coefficients in upper bound theorem follows from the following 

relations (and the Dehnsomerville relation) 

 















 


2
1,

1
)(

d
k

k

kdn
Sh kd

 

Proof. Consider a generic linear objective function  which gives higher 

values to verities  in a facets F than to all other vertices. (To construct such an 

objective function start with objective function whose maximum is attained 

precisely on the facet F and then make a slight perturbations to make it 

generic) Every vertex V of degree k -1 in F has precisely one neighborhood 

not in F and therefore the degree of V in k. This gives (*) hK-1 (F) ≤ hK(S) 

Next, (* *)  )( fhk =(k+1)hk+1 (S) + (d-k) hk(S) 

Where the sum is over all facets F of S 

To prove (* *) consider a vertex V of degree k in S. The vertex V is adjacent 

to d edges and every subset of (d-1) out of them determine a facet. The degree 

of V is (k-1) in every facets determined by d-1 edges adjacent to V where one 

of the k edges pointing down (w.r.t ) is deleted and there are K such facets. 

The degree of V is k in the remaining d-k facets (*) and (* *) gives the upper 

bound relations. 
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hd-k (S) 






 


k

kdn 1
  By induction on k. 

For k=1 we have equality hd-1 = n-d. For k ≥ 1 we obtain  

(d-k+1)hd-k+1(S) Further, assuming the upper bound relation to k-1 we obtain 

for k. 

hd-k (S) ≤ 






 














k

kdn

k

kdn

k

kdn 1

1

1
 

 

Abstract objective functions and telling the polytope form its graph consider 

an ordering  of the vertices of a simple d-polytope S for a non empty face F 

we say that a vertex V of F is a local maximum in F if V is larger w.r.t. the 

ordering  than all its neighboring vertices in F. An abstract objective function 

(AoF) of a simple d-polytpe and  is a linear ordering of the vertices we 

define, as if  S is a simple d-poytope and  is a linear ordering of the vertices 

we define as before, the degree of a vertex V w.r.t the ordering as the number 

of adjacent vertices to V that are smaller than V w.r.t. . Thus the degree of a 

vertex is a non negative number between 0 and d. Let 


kh be the number of 

vertices of degree k. Finally, Put F(S) to be the total number of non empty 

faces of S. 

Claim 1: 





d

r

k

k SFh
0

)(2 
 

And equality holds if and only if the ordering   is an AoF . 

Proof. Count pair (F,v ) were F is a non empty face of S (of any dimension) 

and v is a vertex which is local maximum is in F w.r.t the ordering . On the 

one hand every vertex v of degree k contributes precisely 2
K
 pairs (F,v) 

corresponding to all subsets of edges from v leading to smaller vertices w.r.t. 

. Therefore the number of pairs is precisely  

d

r k

k h
0
2 

 on the other hand the 

number of such pair is atleast F(S) (every face has atleast one local maximum) 

and it is equal to F(S) if every face has exactly one local maximum i.e if the 

ordering is an AoF. 

Claim 2: A connected k-regular sub graph H of G(S) is the graph of a k-face, 

if and only if there is an AoF in which all vertices in H are smaller than all 

vertices not in H. 
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Proof. It H is the graph of a k-face F of S then consider a linear objective 

function  which attains its minimum precisely at the point in F. (By 

definition for every non trivial face such a linear objective function exists) 

Now perturb  a little to get a generic linear objective function  in which all 

vertices of H have smaller values than all other vertices. On the other hand if 

there is an AoF,  in X which all vertices in H smaller than all vertices not in H, 

consider the vertex  v of H which the largest w.r.t.  There is a face F of S 

determined by the k edges in H adjacent to v and v is a local maximum in this 

face. Since the ordering is an AoF, v must be larger than all vertices of F 

hence the vertices of F are contained in H and the graph of F is a sub graph of 

H. But the only k-regular sub graph of a connected k-regular graph is the 

graph itself and therefore k is the graph of F. 

Claims-1 . and 2: provide a proof to a theorem of Blind and Mari [3]  

Theorem 2.1.: The combinatorial structure of a simple polytope is determined 

by its graph. 

Indeed, claim 1 allows us to determine just form the graph all the ordering 

which are AoF’s using this claim 2 allows to determine which sets of vertices 

form the vertices of some k-dimensional face. Let us mention that the proof 

gives a very poor algorithm (exponential in the number of vertices) and it is an 

open problems to find better algorithms. 

 Further facts without such simple geometric proofs one of the most 

important developments in the theory of convex polytopes is the complete 

descriptions of h-vertices of simple d-polytopes, conjectured by McMullen 

and proved by Stanley and Billena and Lee see.[2,30,24]. 

Crucial part of this characterization is the following. For every simple d-

polytopes h1(S) ≤h2(S) ≤ ………..≤h[d/2]
(S)

 

In words the number of vertices of degree k is smaller or equal than the 

number of vertices of degree k+1, when k≤ [d/2]. It is a challenging problem 

to find  a direct geometrical proof for this inequality. (The existing proofs 

have algebraic ingredients and are very difficult). 

 One possible measure for the progress of a certain pivot rule of the 

simplex algorithm would be via the degree of the vertices. Unfortunately, it 

seems difficult to predict how the degree of vertices will behave in a path of 

vertices given by some  pivot rule. Starting with a random vertex of a simple 

polytope it is possible to say what will be the effect on the degree in a single 

random pivot step. By a random pivot step we mean the following. Starting 

with a vertex v we choose at random one of the d neighboring vertices W. It  

(w) >   (v) . We move to w and otherwise we stay at v. The average degree 

Eo(S) of vertices in a simple d-polytopes (which is the excepted degree of a 
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random vertex) is by the Dehn-Sommerville relations d/2. The average degree 

E1(s) of a vertex of s obtained by a single random pivot step (as described 

above) starting from a random vertex v is 1+2f2(s)/f1(s). For example, for the 

d-cube = 1/2d+1/2. (Simian formulas exist it we choose at random an r-

containing v and move from v to its higest vertex. The above formula for E1(s) 

note that the probability that after one random pivot step we reach a (specific) 

vertex w of degree k is 
d

k

sf

2

)(

1

0









.  Indeed, if we start at w (this occurs with 

probability 








)(

1

0 sf
then with probability 

d

k
we stay at w. If we start with one 

of the k lower neighbors of w (altogether this occur with probability 








)(0 sf

k
. 

then we reach w after one step with probability 
d

1
. It follows that  

E1(s) = )(
2

)(

1

0

2

0

sh
d

k

sf
k

d

k












 

Which equals 
)(

)(2
1

1

2

sf

sf
 by the formulas above . Note that E1(S) does not 

depend on the objective function. This is no longer true if we are interested in 

E2(s) the average degree after two random pivot steps. The following problem 

(of independent interest ) naturally arises.  

Problem 2.1 Let S be a simple d-polytopes and  be generic linear objective 

function. Let hij be the numbers of pair of adjacent vertices v,w such that (v) 

< (w) and deg (v) = i, deg (w)=j What can be said about the collection of 

numbers (hij 1≤i , j≤d ) . This array of numbers depends on the objective 

function and not only on the polytopes. It will be interesting to describe the 

possible hij numbers even for the special case when the Polytopes is 

combinatorialy isomorphic to the d-dimensional cube (The question is 

interesting also for abstract objective function) 

6. Arrangements 

We would like to close this section with the following remarks. Consider an 

arrangement of n hyper planes in general position in R
d
, and a generic linear 

objective function  . This arrangement divides R
d
 into simple d- polyhedral. 

The average value of hk(s) over all these polyhedra is 








k

d
. To see this just 

note that every vertex v in the arrangement belongs to 2
d 
, d-polyhedra and has 
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degree k in 








k

d
 of these polyhedra. Similarly, the average h-vector over r 

dimensional faces of the arrangement is the h-vector of the r-dimensional 

cube. 

7. Hirsch conjecture and sub exponential randomized pivot also for the 

simplex algorithm 

 In this section we describe recent developments concerning the simplex 

algorithm. We describe sub exponential randomized pivot rules and recent 

upper bounds for the diameter of graphs of polytopes. The algorithm we 

consider should be regarded in the general context of LP algorithms 

discovered by Megiddo [25] Clarkson [5] seidel [28]. Dyer and Frieze [7] and 

many others . But we will not attempt to prove this, but we give this general 

picture here. For the use of randomized algorithm in computational geometry 

the reader is referred to Mulmuley books [26]. Another word of warning is 

that the language we use is quite different than the usual LP terminology and 

we leave it to the interested reader to make the translation. 

8. The Complexity of linear Programming 

  Given a linear program max (b,x) subject to Ax ≤ c with n inequalities in d          

variables, we denote L as the total input size of the problem when the co-

efficient are described in binary. We denote CA(d,n,L) as the number of 

arithmetic operations needed in the worst case by an algorithm A to solve a 

linear programming problem with d variables , n inequalities and input size L . 

The (worst case) complexity of linear programming is (roughly) the function 

C(d,n, L) which described for every value of d,n, L the smallest possible value 

of CA(d,n,L) over all possible algorithms. 

Khachiyan’s breakthrough result [12] was that the complexity of the ellipsoid 

method E is a polynomial function of d,n and L namely CE (d,n, L ) ≤ S(d,n) 

L. Other algorithms which improve on Khachiyan’s original bound (and also 

had immense practical impact on the subject) were found by Karmarkar and 

many others. By considering solutions to all subsets of d from the n 

inequalities we can easily see that C(d,n, L) ≤ f(d,n) i.e. linear programming 

can be solved by a number of arithmetic operation which is a function of d and 

n and independent of the input size L It is an outstanding open problem to find 

a strongly polynomial algorithm for linear programming, that is to find an 

algorithm which requires a polynomial number in d and n of arithmetic 

operations which is independent from L. Denote C(d,n) = maxLC(d,n,L) Klee 

and Minty [18] and subsequently others have shown that several common 

pivot rules for the simplex algorithm are exponential in the worst case. 

Explaining the excellent performance of the simplex algorithm in practice 

(especially in view of the exponential worst case  behavior on various Pivot 

rules) is a major challenge of the simplex algorithm. The result on the average 

case behaviour provide one such explanation. (see Borgwardt’s book [4] for a 



 

 

      Iranian Journal of Optimization, Vol  6, Issue 1,winter  2014                                  712 

 

description of his work and for references to otherworks in [29]. The fact that 

the complexity of linear programming is a polynomial (by Khachiyan’s result) 

even if not via the simplex algorithm provide another practical explanation. 

Of course, finding a pivot rule which requires a polynomial number of steps in 

the worst case  or even proving that there are always a polynomial number of 

Pivot steps leading to the optimal vertex (without prescribing an algorithm to 

find these steps) are very desirable. 

9. Using randomness for Pivot Rules 

We will consider now randomized algorithms. Namely, algorithm which 

depend on internal random choices .Given such a randomized algorithm A we 

denote by R

AC (d, n) the excepted number of arithmetic operation needed – in 

the worst case – by A on a LP-Problem will d variables and n inequalities. 

C
R
(d,n)≤C(d,n). (Note we are interested in a worst case analysis of the average 

running time where the randomization is internal to the algorithm. This is in 

contrast with average case analysis where the LP problem itself is random. 

Perhaps the simplest random pivot rule is to choose at each step at random 

with equal probabilities a neighboring vertex with a higher value of the 

objective function. Unfortunately it seems very difficult to analyses this rule 

for general problem. Recently Gartner, Henk and Ziegler [9] managed to 

analyze the behavior of random pivoting on the Klee – Minty cube. 

10. Hirsch Conjecture  

Let  (d,n ) denote the maximal diameter of the graphs of  d-polyhedra S with 

n facets and Let  b(d,n) denote the maximal diameter of the graphs of d-

polytopes with n-vertices. Given a d-polyhedron S, a linear objective function 

 which is bounded from above on S and a vertex v of S, denote by m(v) the 

minimal length of a monotone path in G(S) from v to a vertex of S on which  

attains its maximum. Let H(d,n) be  the maximum of m(v) overall d-

polyhedral S with n facets, all linear  functionals  on R
d
 and all vertices v of 

S (A monotone path is a path in G(S) on which  is increasing). Let M(d, n) be 

the maximal number of vertices in a monotone path in G(S) over all d-

polyhedra  S with n facets and all linear functional  on R
d
. Clearly. 

 (d, n) ≤ H (d,n) ≤ M(d,n) 

Here H (d,n) can be regarded as the number of pivot steps needed by the 

simplex algorithm when the pivots are chosen by an oracle in the best possible 

way. M(d,n ) can be regarded as the number of pivot steps needed when pivots 

are chosen by an adversary in the worst possible way. In 1957 Hirsch 

conjecture is false for unbounded polyhedra. The Hirsch conjecture for 

polytopes is still open. The special case asserting that b(d,2d) = d is called the 
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d-step conjecture and it was shown by Klee and walkup to imply the general 

case. 

Theorm 3.1 (Klee and walkup [19], 1967) 

 (d,n) ≥ n-d +min {[d/4],[(n-d)/4]} 

Theorem 3.2 (Holt and Klee [11], 1997) for all d ≥14 and n>d  

b (d,n) ≥ n-d  

Theorem 3.3 (Larman [20], 1970) 

 (d,n) ≤ n2
d-3

  

Theorem 3.4 (Kalai and Kleitmann [17], 1992 

(d,n) 1log

log

log








 
 dn

n

dn
n   

Klee and Minty [18] considered a certain geometric realization of the d-cube 

(called now the Klee – Minty cube) to show that Klee and Minty [18] 

considered a certain geometric realization of the d-cube (called now the “Klee 

– Minty cube”) to shown that Theorem 3.5  

Theorem 3.5 (Klee and Minty [18], 1972, M(d,2d) ≥2
d
. 

Subex potential randomized pivot rules. 

We will assume (and thre is no loss of generality assuming this ) that the LP 

problem is non-degenerate (i.e the feasible polyhedron is simple ) and that a 

vertex v of the feasible polyhedron is given with a slight change of 

terminology all the algorithms and results we describe apply to the degenerate  

case. Several years ago the author [16] and independently Matousek, Shanier 

and Welzel [22] found a randomized sub exponential pivot rule for LP thus 

proving that C
R
(d,n)  ≤ exp(K nd log ). Slightly sharper bounds are described 

below ). In my paper various variants of the algorithm were presented and we 

will see here two variants. The first and simplest variant is one of our originals 

and is equivalent (in a dual – setting) to the sharier – Welzel algorithm (27) on 

which (22) is based. The second variant presented here is a joint work with 

Martin Dyer and Nimrod Negiddo. It is a better and simplified version of other 

variants from [16]. All these algorithms apply to abstract objective functions 

and even more general’s settings see also Gantner’s paper [8]. Consider an LP 

problem of optimizing a linear objective function   over a d-polyhedron S 

and a vertex v of S. our aim is to reach top (S) which is a vertex of S on which 

the objective function is maximal or an edge of S on which the objective 

functions is unbounded  from above. 



 

 

      Iranian Journal of Optimization, Vol  6, Issue 1,winter  2014                                  714 

 

Algorithm -1 

Given a vertex v  S choose a facets F containing v at random. 

Apply the algorithm on F until reaching w=top (F)  

Repeat the algorithm from w 

Remark : The algorithm terminates if v = top (S). It v = top (F
/
) for some facet 

F containing v (in which case v has only one improving edge ) we choose F at 

random from the other d-1 facets containing F. 

(Unless v= tops (S) there is at must one such facets F
/
)  

Algorithm –II Chose at random an ordering of the facets F(1), F(2) …… F(n). 

Phase – 1 Apply the algorithm until you reach  a vertex  in F(1) (on reach Top 

(S)). 

Phase –II : Apply the algorithm recursively inside F until reaching 

w=top(F(1)) 

Phase –III Delete the facts F(1) from the ordering and continue  turn the 

algorithm from w. 

Phase I and phase –III are performed w.r.t. initial random order of the n 

inequalities but in phase II you have to find again a new random a ordering of 

the facets. 

11. Analysis of the rules 

We say that a facet F of S is active w.r.t v if  (v) < max {(x);x F}. We will 

study the number of pivot steps as a functions of the number of variables d 

and the number of active facet. The number of pivot step avail not depend  on 

the total number of facets n. However, we do not assume that we know while 

running the algorithms which facts are active and the number of arithmetic 

operations  per pivot step depends therefore (poly nominally) also on N note 

that in Algorithm  II only the ordering of the active facets matters. 

For a linear programming problems U with d variables and N inequalities and 

a feasible vertex  v of U such that there are n  active facets v, we denote by 

f(U,v) the  excepted number of pivot steps needs by algorithm I  on the 

problem U starting with the vertex v. f(d,n) denote the maximal value of 

f(U,v) over all problems U and vertices v. The function f(d,n) is not 

decreasing with n. Similarly, g(d,n) will be the average number of pivot steps 

in the worst case problem for Algorithm – II 
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Analysis of Algorithm 1 we start with a situation where there are n active 

facets let F1, F2, F3…………. Fd be the facets containing v, ordered such that  

(top (F1) ≤  ((top (F2)) ≤ ……..  (top (Fd).Note that (unless v = top (S) at 

most one namely only F1) of there facets can be non – active. The average 

number of steps needed to reach top (F) from v is at most f(d-1, n-1) 

If F1 is active then with probability 1/d the chosen random facet F equals Fi for 

i = 1, 2, 3 ………….. d and then after reaching w = top (F) there are at most n-

I active facts remaining and the average number of steps needed to reach top 

(S) from w is at most f(d,n-i+1). Aver aging over i we get that the average 

number of steps needed to reach top (S) from w is at most  


d

i
indf

d 1
),(

1
  

If F1 is not active the F = Fi with probability 
1

1

d
 for i = 2, 3…d and by the 

same taken the average number of steps needed to reach top (S) from w is at 

most 







1

1
),(

1

1 d

i
indf

d
. This is (slightly) higher than the previous 

expression by the montonicity  of f(d,n) as a function of n. In sum 

F(d,n) ),(
1

1
)1,1(

1

1










d

i

indf
d

ndf  

This given f(d,n) )logexp( dnK  see [22] 

Analysis of Algorithm – II 

For phase –II we need at most G(d-1), n-1) steps on the average. For phase III 

we can repeat the argument of the previous algorithm with probability 1/n 

there are (at most ) n-I active facets let after reaching top (F(i)) for i = 1, 2, …. 

n  so the average number of pivot step for this phase is at most 



n

i

idg
n 1

),1(
1

 

. We claim now that the average number of pivot steps for phase 1 is also at 

most 



n

i

idg
n 1

),1(
1

 To see this note. 

As long as we run the algorithm from v meeting only vertices in r active facets 

we can regard our self running the algorithm from v in the LP problem 

obtained by deleting the inequalities corresponding to the other active facets. 

This LP problem has only r active facets. Since the average number of pivot 

steps needed for this problem is at most g(d,r ) we conclude that after an 

average number of g(d,r) pivot steps teaking running the algorithm while 

meeting vertices on  r active facets. 
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The pivot steps taken running the algorithm white meeting vertices on r active 

facets do not depend on the ordering of the remaining active facets. Therefore 

the identity of the active facets to be the next we meet. (which is a probability 

distribution on the remaining active facets) does not depend on the ordering of 

the remaining n-r active facets. It follows that with probability 1/n the facts 

F(i). will be the ith active facet to be met i= 1,2,……….. 

So we get g(d,n) 



n

i

indg
n

ndg
1

),(
2

)1,1(  

This relation implies the following. 

1. g(d,n) ≤ exp )log( nk  

2. If d and n are comparable we get a better estimate g(d,Td) ≤ exp [k(T) d] 

[K(T) is a constant depending on T] 

3. The following estimates are useful when t =n-d is small w.r.t n  

g(d, d+t) ≤ K( 












d

t
1

, g(d,d+1)≤ k(logd)
t-1

  These bounds apply to f(d, 

d+t) as well 

4. The following estimates are useful when d is small w.r.t n  

g(d,n) ≤ K
k 












 12
n

d

 for every  >0 and g(d, n) ≤ k(logn)
d-1

n 

It is possible to use generating function techniques to get a precise 

asymptotic for f(d,n ) and g(d,n). It follows from the recession that n! 

g(d,n) is bounded above by t(d,n) – the number of permutations of {1,2, 

….n} such that each cycle  in the permutation (considered as a product of 

disjoint cycles ) is decorated by a nonnegative integer an by a plus or 

minus sign such that the sum of the integers is  d. For t(d,n) there is the 

closed formula. 

t(d,n) =  












1

1
),(2

k

kd
knCk  

When C(n,k) is the number of permutation of  {1, 2..n} with k cycles. 

(C(n,k) is the absolute value of the stirling number of first  kind ) 

However, for the asymptotic facts describe above (without getting the 

precise constants) the simplest proofs are by direct estimations. 
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Remark.  matousek [21] found remarkable classes of abstract objective 

functions on the d-dimensional cube for which the except number of pivot 

steps for Algorithm I described above is indeed exp (cd). Further 

understanding of similar examples may give impression on some of the 

problems described in this section. 

Lp duality to LP duality allows us to move form a problem with d 

variables and n inequalities to the dual problems with n-d variable and n 

inequalities. 

 

     12.Conclusion 

The situation develop due to Hirsch conjecture and the complexity of the 

simplex algorithm is rather frustrating. Again we are short of Polynomial 

bounds for the diameter and despite the simplicity of the proofs for the 

known bounds we can not modify them any further. For n=2d we can not 

find a randomized pivot rule which will require exp(d
1/2-

) pivot steps for 

some >0, even if the feasible polytope is combinatorially equivalent to to 

a d – dimensional cube. And we can not find a deterministic pivot rule 

(without randomization) which is not exponential. We leave these tasks for 

the reader. 
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