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Abstract 

In this paper, we give an analytical approximate solution for an integro- differential 

equation which describes the charged particle motion for certain configurations of 

oscillating magnetic fields is considered. The homotopy analysis method (HAM) is 

used for solving this equation. Several examples are given to reconfirm the 

efficiency of these algorithms. The results of applying this      procedure to the 

integro-differential equation with time-periodic coefficients show the high accuracy, 

simplicity and efficiency of this method. 

Keywords: Homotopy analysis method, Integro-differential equations, approximate-

analytic solution, homotopy-derivative, homotopy perturbation method. 

1.Introduction    

Most scientific problems in engineering are inherently nonlinear. Except a few 

number of them, majority of nonlinear problems do not have analytical solution. 

Therefore, these nonlinear equations should be solved using other methods Such as 

numerical or Perturbation method. In the numerical method, stability and 

convergence should be considered so as to avoid divergence or inappropriate results 

each effective parameter should be solved iteratively [4]. In the perturbation method, 

the small parameter is inserted in the equation. Thus, finding the small parameter and 

exerting it into the equation is one of the deficiencies of this method [11]. One of the 

semi-exact methods for solving nonlinear equation which does not need small/large 

parameters is Homotopy Analysis Method (HAM), first proposed by Liao in 1992 
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[5,7,9] . Since Liao's book [6] for the homotopy analysis method was published in 

2003, more and more researchers have been successfully applying this method to 

various nonlinear problems in science and engineering, such as the viscous flows of 

non-Newtonian fluids [2], the KdV-type equations [1],  finance problems [12], and 

so on. The HAM contains a certain auxiliary parameter h which provides us with a 

simple way to adjust and control the convergence region and rate of convergence of 

the series solution. Moreover, by means of the so-called h-curve, it is easy to 

determine the valid regions of h to gain a convergent series solution. 

The integro-differential equation [10] 
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where )(),( tbta  and  )(tg  are given periodic functions of time may be easily found 

in the charged particle dynamics for some field configurations. Taking for instance 

the three mutually orthogonal magnetic field components  )sin(1 sBB px  , 

0yB  and  )0BBz   the nonrelativistic equations of motion for a particle of mass 

m  and charge q  in this field configuration are  
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By integration of (2) and (4) and replacement of the time first derivatives of  z  and 
x  in (3) one has (1) with 
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In this study, we consider the equation (1) with the following initial conditions 
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The aim of this paper is to use homotopy analysis method for solving integro 

differential equations arising in oscillating magnetic fields. 

2.  Basic idea of HAM 

 To describe the basic ideas of the HAM, we consider the following differential   

   

equation 

 0,  t)][y( N                                                                                                         (10) 

where N is a nonlinear operator that represent the whole equation, t denote inde-

pendent variable, and y(t) is an unknown functions, respectively. For simplicity, we 

ignore all boundary or initial conditions, which can be treated in the similar way. By 

means of generalizing the traditional homotopy method, Liao [5] constructed the so-

called zero-order deformation equation 

 

                );([);([ q)L-(1 0 qttqhtyqt                                   (11)                                     

Where ]1,0[q  is the embedding parameter, 0h  is a non-zero auxiliary parameter, 

 0H(t)  is an auxiliary function, L  is an auxiliary linear operator, )(0 ty is an initial 

guess of )(ty  and );( qt  is a unknown function, respectively. It is important, that one 

has great freedom to choose auxiliary things in HAM. 

Obviously, when 0q  and 1q ,  it holds 

                              tyt 0)0;(      tyt )1;(                                            (12) 

respectively. Thus, as q  increases from 0 to 1, the solution ),( qty  varies from the 

initial guess )(0 ty to the solution )(ty . Expanding ),( qty  in Taylor series with 

respect to q , we have 
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mD  is called the mth-order homotopy-derivative of  . 

If the auxiliary linear operator, the initial guess, the auxiliary parameter h , and the 

auxiliary function are so properly chosen, the series (13) converges at 1q , then we 

have 
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Which must be one of solutions of original nonlinear equation, as proved by Liao [6], 

as h =-1 and H(x, t) = 1, Eq. (11) becomes 
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Which is used mostly in the homotopy perturbation method [3], where as the solution 

obtained directly, without using Taylor series. According to the definition (14), the 

governing equation can be deduced from the zero-order deformation equation (11). 

Define the vector 

                          
)}.(),...,(),({ 10 tytytyy nn   

Differentiating equation (11) m  times with respect to the embedding parameter q  

and then setting 0q  and finally dividing them by !m , we have the so-called mth-

order deformation equation 
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It should be emphasized that )(ty  for 1m  is governed by the linear equation (17) 

under the linear boundary conditions that come from original problem, which can be 

easily solved by symbolic computation software such as Matlab. For the convergence 

of the above method we refer the reader to Liao's work. If Eq. (10) admits unique 

solution, then this method will produce the unique solution. If equation (10) does not 

possess unique solution, the HAM will give a solution among many other (possible) 

solutions. 

3.Applications 

 In this section, to illustrate the description above and to show the efficiency of the 

mentioned method for solving equation (1), we include some examples with known 

analytical solutions.  

Example 1:  Consider equation (1) with 
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and  ,0,1    )cos()sin()( tttty   is the exact solution of this equation. 

Then we have 
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To solve Eq. (20) by means of the HAM, we choose the initial approximations 
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and the linear operator 
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Furthermore, we define the nonlinear operator 
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We have the mth-order deformation equation 
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Now, the solution of the mth-order deformation Eq. (23) for 1m  becomes 

)).
2

1
sin()

2

1
cos(4)

2

3
sin(

9

1

)
2

3
cos(

27

1
)

2

5
sin(

75

1
)

2

7
sin(

147

1
)

2

7
cos(

3087

40
)

2

5
cos(

1125

77

)(sin
2

1

4

1
)sin()cos(

4

1
)sin()cos(2

1157625

2208142
h(-=y 22

1

ttttt

ttttttt

tttttttt







  . 

   . 

   .  

 The absolute errors )()( 6 tty   have been calculated for 1h  in Table 1 and Fig. 

2. Fig. 1 show the graphs of the HAM solutions and exact solution of the problem. 

We can see that the solutions obtained by the proposed method are in excellent 

agreement with the exact solution. Our calculations indicate that the series (13) 

converges if 4.04.1  h , we can investigate the influence of h on the 

convergence of, by plotting the curve of it versus h , as shown in Fig. 3. 
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                      Table 1. The numerical results of the 6th-order HAM ( 1h ).  

 

t 

 

HAM 

 

Exact 

 

Absolute  

Error 0.0 1.0000e+000 1.0000e+000 1.1324e-014 
0.1 1.0050e+000 1.0050e+000 1.1324e-014 

0.2 1.0198e+000 1.0198e+000 1.1324e-014 
0.3 1.0440e+000 1.0440e+000 1.0880e-014 

0.4 1.0768e+000 1.0768e+000 1.1102e-014 
0.5 1.1173e+000 1.1173e+000 1.1324e-014 
0.6 1.1641e+000 1.1641e+000 1.6431e-014 

0.7 1.2158e+000 1.2158e+000 5.4401e-014 
0.8 1.2706e+000 1.2706e+000 2.4936e-013 

0.9 1.3266e+000 1.3266e+000 1.0298e-012 
1.0 1.3818e+000 1.3818e+000 3.5798e-012 

 

 

    Fig. 1. The comparison of the 6th-order HAM and exact solution for example 1. 
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                      Fig. 2. The h-curve of based on the 6
th

-order HAM for example 1,      

 

                       Fig. 3. The absolute error 6
th
-order HAM for example 1. 

 

Example 2: Consider equation (1) with 
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and  ,0,1    )cos()sin()( tttty   is the exact solution of this equation. 

Then we have
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To solve Eq. (24) and by means of the HAM, we choose the initial 
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We construct the zeroth-order and  mth-order deformation equations where 
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Now, the solution of the mth-order deformation Equation for 1m  becomes 
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                 Fig. 4. The h-curve of based on the 6th-order HAM for example 2, 

The absolute errors )()( 6 tty   have been calculated for 1h  in Table 2 and Fig. 

6. Fig. 5 show the graphs of the HAM solutions and exact solution of the problem. 

We can see that the solutions obtained by the proposed method are in excellent 

agreement with the exact solution. Our calculations indicate that the series (13) 

converges if 02  h , we can investigate the influence of h on the convergence of, 

by plotting the curve of it versus h , as shown in Fig. 4. 
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x 

 

HAM 

 

Exact 

 

Absolute  

Error 0.0 2.0000e+000 2.0000e+000 0 
0.1 1.5090e+000 1.5090e+000 0 

0.2 1.0320e+000 1.0320e+000 2.2204e-016 
0.3 5.6300e-001 5.6300e-001 2.2204e-016 

0.4 9.6000e-002 9.6000e-002 1.6653e-016 
0.5 -3.7500e-001 -3.7500e-001 2.2204e-016 

0.6 -8.5600e-001 -8.5600e-001 2.2204e-016 
0.7 -1.3530e+000 -1.3530e+000 2.2204e-016 

0.8 -1.8720e+000 -1.8720e+000 2.2204e-016 
0.9 -2.4190e+000 -2.4190e+000 4.4409e-016 

1.0 -3.0000e+000 -3.0000e+000 4.4409e-016 

                 

                 Table 2. The numerical results of the 6th-order HAM ( 1h ).  

 

Fig. 5. The comparison of the 6th-order HAM and exact solution for example 2. 
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                   Fig. 6. The absolute error 6th-order HAM for example 2. 

  

Example 3: Consider equation (1) with 
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To solve Eq. (27) by means of the HAM, we choose the initial approximations 
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Now, the solution of the mth-order deformation Equation  for 1m  becomes 
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 The absolute errors )()( 6 tty   have been calculated for 1h  in Table 3 and Fig. 

9. Fig. 7 show the graphs of the HAM solutions and exact solution of the problem. 

We can see that the solutions obtained by the proposed method are in excellent 

agreement with the exact solution. Our calculations indicate that the series (13) 

converges if 1.09.1  h , we can investigate the influence of h on the 

convergence of, by plotting the curve of it versus h , as shown in Fig. 8. 
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x 

 

HAM 

 

Exact 

 

Absolute  

Error 0.0 1.0000e+000 1.0000e+000 2.6534e-013 
0.1 1.0672e+000 1.0672e+000 2.6890e-013 
0.2 1.1355e+000 1.1355e+000 2.7245e-013 

0.3 1.2048e+000 1.2048e+000 2.7578e-013 
0.4 1.2752e+000 1.2752e+000 2.7867e-013 

0.5 1.3465e+000 1.3465e+000 2.8155e-013 
0.6 1.4187e+000 1.4187e+000 2.8400e-013 

0.7 1.4919e+000 1.4919e+000 2.8599e-013 
0.8 1.5659e+000 1.5659e+000 2.8755e-013 
0.9 1.6408e+000 1.6408e+000 2.8666e-013 

1.0 1.7165e+000 1.7165e+000 2.7001e-013 

 

Table 3. The numerical results of the 6th-order HAM ( 1h ). 

 

Fig. 7. The comparison of the 6th-order HAM and exact solution for example3. 
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                Fig. 8. The h-curve of based on the 6th-order HAM for example 3, 

 

                    Fig. 9. The absolute error 6th-order HAM for example 3. 

 4.Conclusions 

In this Letter, we have successfully developed homotopy analysis method for solving 

an integro-differential equation with time-periodic coefficients. This technique was 

tested on some examples and was seen to produce satisfactory results. The reliability 

of the method and the reduction in the size of computational domain give this method 

a wider applicability. 

Matlab has been used for computations in this paper. 
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