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Abstract 

In this paper, a five–dimensional mathematical model is proposed for the 

transmission dynamics of HIV/AIDS within a population of varying size.  In 

writing the model, we have divided the population under consideration into five 

sub classes of susceptible, infective, pre-AIDS, AIDS related complex and that of 

AIDS patients.  The model has two non- negative equilibria namely, a disease free 

and the endemic equilibrium.  The model has been studied using stability theory.  

It is shown that the positive non-trivial equilibrium is always locally stable but it 

may become globally stable under certain condition showing that the disease 

becomes endemic due to constant migration of the population  into the habitat.  

The effect of various parameters on the spread of the disease has also been 

discussed. 
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1. Introduction 

AIDS, the acquired immunodeficiency syndrome is a fatal disease caused by a 

retrovirus known as the human immunodeficiency virus (HIV) which breaks 

down the body's immune system, leaving the victim vulnerable to a host of life-

threatening opportunistic infections, neurological disorders or unusual 

malignancies.  It causes mortality of millions of people and expenditure of 

enormous amount of money in healthcare and disease control.  Thus, the most 

urgent public health problem today is to device effective strategies to minimize 

the destruction caused by the AIDS epidemic.  It is, therefore, essential that 

adequate attention must be paid to the study and control of this disease. 
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The study is helpful in determining the demographic and economic impact of 

epidemic which is turn help us to develop reasonable, scientifically and socially 

sound intervention plans in order to reduce the spread of disease. 

It is important to mathematically analyze these epidemiological models with 

different infectious stages so that they can be used effectively. Now we 

describe staged progression of HIV infection as follows. 

(i) Asymptomatic carriers (Pre AIDS) – only 1%-2% of those newly 

infected have mononucleosis – like symptoms that may include fever, 

chills, aches, swollen lymphglands and an itchy rash. These symptoms 

disappear and there are no other symptoms for nine months or longer. 

Although the individual exhibits no symptoms during this stage, he or 

she is highly infectious. The standard HIV blood test for the presence of 

antibody becomes positive during this stage. 

(ii) AIDS Related Complex (ARC) – The most common symptom of ARC 

is swollen lymphglands in the neck, armpits, or groin that persist for 3 

months or more. There is severe fatigue unrelated to exercise or 

druguse; unexplained persistent or recurrent fevers, often with night 

sweats persistent cough not associated with smoking, a cold or the flu; 

and persistent diarrhoea, also possible are signs of nervous system 

impairment, including loss of memory, inability to think clearly, loss of 

judgment, and/or depression. 

When the individual develops non-life threatening and recurrent 

infections such as thrush or herpes simplex, it is a signal that full-blown 

AIDS will occur shortly. 

(iii) Full Blown AIDS – In this final stage, there is severe weight loss and 

weakness due to persistent diarrhoea and usually one of several 

opportunistic infections is present. These infections are called 

opportunistic because the body can usually prevent them, only an 

impaired immune system gives them the opportunity to get started. 

A few modelling efforts have been made to study the transmission of                      

HIV/AIDS by considering staged progression of infection to AIDS, Bailey 

(1986), Jacquez et al. (1989), Bailey (1989), Massad (1989), Lin (1991), 

Hyman et al. (1999). In view of the above in this chapter, we formulate a 

model that takes into different clinical stages and other demographic and 

epidemiological considerations. 

2. Mathematical Model 

 Consider a population of size N(t) at time t with constant immigration rate Q0. 

The Population size N(t) is divided into five subclasses of HIV negatives but 

susceptibles S(t), HIV positives or infectives I(t) (also assumed to be 

infectious), pre-AIDS P(t), AIDS related complex (ARC) W(t) and ‘full 

blown’ AIDS A(t) with natural mortality rate d. It  is assumed that susceptibles 

become infected via sexual contact with infectives. Depending on the level of 

infection, a fraction δ1I of infectives moves to join pre-AIDS class and δ2I 
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moves to develop ‘full blown’ AIDS directly while the remaining part of 

infectives i.e. δ3I go to ARC. It is further assumed that patients in pre-AIDS 

class and ARC class will ultimately develop ‘full blown’ AIDS as shown in the 

transfer diagram below, 

 

 

 

 

 

 

 

 

     

 

 

 

 

 

 

With these considerations, the spread of disease is assumed to be governed by the 

following system of differential equations, 

 dS
N

SI
Q

dt

dS 1
0 


  S(0) = S0             (1) 

  Id
N

SI

dt

dI 1 


  I(0) = I0                     (2) 

  PdI
dt

dP
11   P(0) = P0                   (3) 

  WdI
dt

dW
3   W(0) = W0               (4) 

  AdWPI
dt

dA
12   A(0) = A0                 (5) 

 

where Q0 is the constant inflow of susceptibles, d is the natural mortality 

rate constant assumed same in all the classes, δ is the rate of movement 

from infectious class, so that (1/δ) denotes the average incubation period, 

α is the disease-induced death rate constant and β1 is the transmission 
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coefficient.  

Since N = S+I+P+W+A and δ δ1+δ2+δ3, the above equations,It is noted 

that in the absence of infection, the population size approaches the steady 

state value Q0/d. During the early stages of the epidemic, if it is assumed 

that S  N  Q0/d then the growth of infectious people I(t) can be 

approximately governed by the following equation,  

   Id
dt

dI
1   I(0) = I0                    (6) 

which gives I(t) = I0 exp[(R0-1)/T ]t where 
 d

R 1
0




 , the basic 

reproduction rate, 
 d

1
T


 , the time during which people remain 

infective and I0 is the initial infective population at time t = 0. The 

doubling time td of the epidemic is given by  

 
 

1R

T2ln
t

0
d


                           (7) 

Thus if R0>1, the infection triggers an epidemic otherwise for R0<1, the 

epidemic dies out. 

3. Stability Analysis 

The model has two non-negative equilibria namely E0 (Q0/d, 0, 0, 0, 0), 

the disease free and E*(N*, I*, P*, W*, A*) the endemic equilibrium, 

where (N*, I*, P*, W*, A*) are positive solutions of the equations,  

Solving the above equations, we get  
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 It is noted that E* is positive only when 
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It is found that equilibrium level of infectives I* increases as Q 0 or β1 

increases or δ decreases leading to increase in P*, W* and A*. Further, the 

equilibrium level of AIDS patients A* decreases as disease-induced death 

rate α increases or as  decreases and that of P* and W* increases when α1 

and θ decreases and it decreases when δ1 and δ3 decreases. Also 

equilibrium population size is a linear function of Q0 with positive 

intercept. It is noted that when the disease remain endemic, the disease-

induced deaths reduce the equilibrium population size from Q 0/d to N*. 

Now we propose a theorem for local stability of the above equilibrium 

points. 

 Theorem 1- 

(i) The equilibrium point E0(Q0/d, 0, 0, 0, 0) is locally asymptotically stable if 

R0<1 otherwise it is unstable and then second equilibrium E*(N*, I*, P*, 

W*, A*) exists. 

(ii) The second equilibrium E*(N*, I*, P*, W*, A*), if it exists, is locally 

asymptotically stable. 

Proof: To determine the local stability of E0 and E*, we compute variational 

matrices M(E0)and M(E*), 

                     From M(E0), it is clear that E0 is locally asymptotically stable (LAS) 

providedβ1<(δ+d) i.e. R0<1, the disease dies out but under this condition the 

equilibrium E* does not exist as expected. However, if R0>1 the equilibrium point 

E0 is a saddle point which is stable in N-P-W-A manifold and unstable in I-

direction. In such a case E* exists and the infection is maintained in the 

population. The characteristic equation corresponding to M(E*) is given by 

   54
2

3
3

2
4

1
5 aaaaaf  =0 

The conditions for local stability of the system are 

 a1>0, a2>0, a3>0, a4>0, a5>0, 0
a1

aa

2

31
 , 0

aa0

aa1

0aa

31

42

31

 , 

0

aa10

aaa0

0aa1

0aaa

42

531

42

531

  and 0

a0a00

0aa10

0aaa0

00aa1

00aaa

51

42

531

42

531

 . 

which can be seen by some tedious calculations. 

Thus the equilibrium E* is locally asymptotically stable under the condition 

mentioned in the theorem. We can also prove that the equilibrium E*(N*, I*, P*, 

W*, A*), if it exists, is globally asymptotically stable. A lemma can easily proved 

first. 
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Lemma 1- The region 
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1

max1
max

0

 

is a region of attraction for β1>(δ+d), where 
 














1

0
max

d
1

d

Q
I . 

 

Theorem 2- If the endemic equilibrium E* exists, then it is globally 

asymptotically stable provided the following conditions are satisfied in , 
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       , 
2

d

d


























  (8) 

 

Proof: Consider the following positive definite function about E*, 
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















 

 

where the constant k1, k2, k3 and k4 can be chosen suitably. 

The derivative of V along the solutions of the system (6.6-6.10) can be written as, 
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 

 

         

    AdWPI*AAk

WdI*WWkPdI*PPk

d
N

AWPIN
*IIkAdNQ*NN

dt

dV

124

33112

1
10


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












 

After some algebraic manipulations it  can be written as the sum of the 

quadratics as, 

 

      
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where  
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Thus a sufficient condition for 
dt

dV
 to be negative definite is that, 
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The condition (10i-10vii) gives 
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Where k1 is found as 
1

1
2

*dN
k


 .    Hence V is a Liapunov function with respect 

to E* whose domain     contains . 

 

4. NUMERICAL ANALYSIS AND DISCUSSION  
We choose the following values of the various parameters in model   (1-5) and 

compute the equilibrium values N*, I*, P*, W*, A*. 

 Q0 = 1333.3, d =1/50, β1 = 1.344, δ1 = 0.3, δ2 = 0.5, δ3 = 0.2, δ = 1,  α = 1, 

α1 = 0.4, θ = 0.5. 

N* = 14574.17254, I* = 1159.608, P* = 839.71655, W* = 450.9588, A* = 

1125.097. 

Simulation is performed for initial starts I(0) = 200, P(0) = 200, W(0) = 200, A(0) 

= 200 as shown in figures (1-7). The variation of infective population and pre-

AIDS patients, AIDS Related Complex Population and ‘full blown’ AIDS patient 

is shown for different incubation periods δ, δ δ2and δ3 0, 

transmission coefficient β1 and disease-induced death rate α. 

In fig. (1) the variation of infective population is shown with time for different 

values of δ i.e. rate of movement from infective class to other classes. It is seen 

that as the rate of movement from infective class increases, the infective 

population decreases. Fig. (2) shows the variation of AIDS patients with time for 

different values of δ2 and it is found that with the increase in δ2, the AIDS patients 

population also increases. The variation of patients is ARC with time in depicted 

in fig. (3) for different values of δ3 and it is noted that as the value of δ3 increases 

the ARC population also increases. Similar trend is observed for patients in pre-

AIDS class as shown in fig. (4). The effect of disease-induced deaths on AIDS 

patients is shown in fig. (5). It is observed that as the value of α increases, the 

AIDS patients population decreases. Infig. (6) the role of migration is shown on 

AIDS patients population and it is noted that as the rate of migration increases 

into the community, the population of AIDS patients also increases. Fig. (7) 

shows the variation of AIDS population with time for different transmission 

coefficients and it is noted that with the increase in transmission coefficient, the 

AIDS population also increases.  
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5. Conclusion 

 In this chapter, a staged progression model is proposed to study the 

transmission of the dreaded diseases AIDS in a population of varying size 

by incorporating demographic and other epidemiological considerations. It 

is assumed that susceptibles become infected via sexual contact with 

infectives and follow one of the three stages pre-AIDS, ARC and AIDS 

and then to death. It is also assumed that infectives in pre-AIDS and ARC 

will ultimately develop AIDS to join AIDS class. The model has been 

analyzed using stability theory and some local and global stability results 

are established. As usual, we have found a threshold parameter R 0 which 

if exceeds one, the disease persists. The model has two non-negative 

equilibria namely E0(Q0/d, 0, 0, 0, 0), the disease free and E*(N, I*, P*, 

W*, A*), the endemic equilibrium. It is found that the equilibrium state E 0 

is locally asymptotically stable if R0<1 and for R0>1 it is unstable and the 

infection is maintained in the population. The endemic equilibrium E* 

which exists only when R0>1 is always locally asymptotically stable. This 

equilibrium is also found to be globally asymptotically stable if the 

conditions of the theorem are satisfied. It is noted that when disease 

remain endemic, the disease-induced deaths reduce the equilibrium 

population size for Q0/d to N*. It is shown that equilibrium level of 

infectives I* increases as Q0 or β1 increases or as δ decreases which leads 

to increase in P*, W* and A*. Further, the equilibrium level of A* 

decreases as disease induced death rate α increases and that of P* and W* 

increases when α1 and θ decreases and it decreases with decrease in δ1 and 

δ3. Thus the decrease in equilibrium of infective population leads to an 

increase in the population of pre-AIDS, ARC and AIDS class.  
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