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Abstract 

 In this paper, the concept of canonical representation is proposed to find fuzzy 

roots of fuzzy polynomial equations. We transform fuzzy polynomial equations to 

system of crisp polynomial equations, this transformation is perform by using 

canonical representation based on three parameters Value, Ambiguity and 

Fuzziness.  
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representation; Polynomial equations 

 

1. Introduction 

Polynomials play a major role in various areas such as mathematics, engineering 

and social sciences. The real solution of fuzzy polynomial equation and Dual 

fuzzy polynomial equation is investigated by Abbasbandy and Otadi [1-2]. 

In this paper, we are interested in finding fuzzy roots of fuzzy polynomial 

equation like A1x+A2x
2
+…+Anx

n
=A0 

Where   A0 , A1,…An and x are fuzzy numbers . 
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In this paper, we propose a new method for solving fuzzy polynomial equation 

based on canonical representation which is introduced by Delgado et.al [4-5] they 

introduced three real indices called Value, Ambiguity and Fuzziness to obtain 

simple fuzzy numbers that could be used to represent more arbitrary fuzzy 

numbers. Therefore, we use these parameters and transform fuzzy polynomial by 

three crisp polynomial .Then by solving this crisp system, we can find fuzzy roots 

of fuzzy polynomial. 

 

2. Basic Concepts 

Definition 2.1: A fuzzy number is a fuzzy set such as 

U : R→I = [0,1] that satisfies : 

1- u is upper semi-continuous , 

2- u(x) =0 outside some interval [a,d]; 

3- There are real numbers b, c such that a ≤ b ≤ c ≤ d and 

(a) u(x) is monotonically increasing on [a,b], 

(b) u(x) is monotonically decreasing on [c,d], 

(c) u(x) =1 , b ≤ x ≤ c 

The membership function u can be expressed as: 

otherwise

dxc
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where uL :[a,b] → [0,1] and uR:[c,d] → [0,1] are left and right membership 

functions of a fuzzy number u. 

An equivalent parametric form is also given in [6] as follows. 

 

Definition 2.2: A fuzzy number u in parametric form is a pair (u , )u  of functions 

u (r) , u (r) , 0 ≤ r ≤1, 

That satisfies the following requirement: 

1- u (r) is a bounded monotonically increasing left continuous function. 
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2 - u (r) is a bounded monotonically decreasing left continuous function, 

3- u (r) ≤ u (r) , 0 ≤ r ≤ 1. 

Definition 2.3.[4]: The increasing function s:[0,1] → [0,1] with property that 

s(0)=0 and s(1)=1 is a reducing function and if 
1

0
s(r ) dr =

2

1
, we call it a 

regular reducing function. 

Definition 2.4: [4] Let u be a fuzzy number with parametric form (u (r),u (r))  

and let s:[0,1] → [0,1] be a reducing function. Then the Value of  u (with respect 

to s) is 

Va l(a) = 
1

0
 s(r)[ u (r) + u (r)] dr , 

Then the Ambiguity of u (with respect to s) is 

Amb(u) = 
1

0
 s(r)[ u (r) - u (r)] dr 

and for s(r) = r, the Fuzziness can be assessed by 

Fuzz (u )=  2

1

0
[ u (r) - u (r)] dr + 

1

2

1 [ u (r) - u (r)] dr. 

 

3. Approximate Solution Of Fuzzy Polynomial Equation. 

In this section we are going to split a fuzzy polynomial and find its 

approximate solution by solving the associated split system. 

Definition 3.1:  We define associated split system as follow: 

(1)  Val (A1x+A2x
2
+…Anx

n
)=Val(A0) 

(2) Amb(A1x+A2x
2
+…Anx

n
)=Amb(A0) 

(3) Fuzz(A1x+A2x
2
+…Anx

n
)=Fuzz(A0) 

Then we have: 

(4)  Val (A1) Val (x) + Val(A2) Val (x
2
) +…+ Val(An) Val(x

n
)=Val(A0) 

(5)  Amb(A1)Amb(x)+Amb(A2)Amb(x
2
)+…+ Amb(An)Amb(x

n
)=Amb(A0) 

(6)  Fuzz(A1)Fuzz (x)+Fuzz(A2)Fuzz (x
2
)+…+Fuzz(An)Fuzz(x

n
)=Fuzz(A0) 
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By solving (4),(5),(6) we have (Val(x),Amb(x),Fuzz(x)); 

Then we want to obtain a symmetric trapezoidal representation for x. let 

T=(b1,b2,b3,b4) be a symmetrical trapezoidal number and suppose that its defining 

parameters are written as b1=m–c–d, b2=m–c, b3=m+c, b4=m+c+d, and s(r) =i(r)=r 

again. It is easy to see that Val(T)=m, Amb(T)=
3

d
+c, and Fuzz(T)=

2

d
, solving 

for c and d, we obtain 

d =2 Fuzz(T)         ,        c=Amb(T) – (
3

2
)Fuzz(T). 

Suppose now we are given a fuzzy number x with parameters Val(x)=xv , 

Amb(x)=xa , and Fuzz(x)=xf , then  from the above results we can construct a 

symmetrical trapezoidal number T such that Val(T)=xv , Amb(T)=xa , and  

Fuzz(T)=xf  provided  c ≥ 0, or equivalently, xa – 
3

2
xf ≥ 0. 

Otherwise, xa – 
3

2
xf < 0, x will not have a canonical trapezoidal representation. To 

define a canonical representation for fuzzy numbers for which c < 0, we will make 

use of what we call (symmetrical) quasi-trapezoidal numbers. The parametric 

representation of a typical quasi-trapezoidal number is as follow; 

( u (r) , u (r)): 
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Carrying out the appropriate integrations, we easily obtain the parameters for w, 

Val(w)=m, Amb(w)=
3

3th
+s, [3] 

Fuzz(w)=







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
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Observe that if  h
2

1
 , then for s near 0, the ratio 

)(

)(

wAmb

wFuzz
 approaches 

2

3

h
, and, 

consequently it will the case that whenever  
)(

)(

wAmb

wFuzz
 is large, we can find non-
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negative number h,s,t to construct a quasi-trapezoidal number w with the same 

Value, Ambiguity, and Fuzziness as the original fuzzy number. The challenge 

here, however, is that different combinations of h,s,t can yield the same value of 

Val(w), Amb(w), and Fuzz(w). if a particular canonical formula is required, then 

one might consider that for which h is maximum,i.e, the "most trapezoidal" quasi-

trapezoidal feasible number. In the case, we have 

Val(w)= th,  Amb(w) = 
3

3th
 and  Fuzz (w) = .

3

2

s
h

  

4. Numerical Examples 

Example 4.1: Consider the following fuzzy polynomial 

(0, 1, 2,) x
2
+ (2, 3, 5) x= ( 2 ,7 ,13) 

where x is a fuzzy number. 

Now according to section 3 obtain: 

xv=2, xa=
3

1
 and xf =

2

1
 . 

It is easy to see that m = 2, c = 0, d = 1 

we obtain  x=(1,2,2,3). 

Example  4. 2. [7]: Suppose a corporation wishes to set aside around one million 

dollars ((A=1, 0.2, 0.2)) to be invested at interest rate R so that after one year they 

may withdraw approximately 250,000 dollars 

(S1=(0.25, 0.05, 0.05)) and after 2 years, the amount that is left will accumulate to 

about 900,000 dollars (S2=(0.9, 0.3, 0.3)). Find R so that A will be sufficient to 

cover about S1 and S2 . R will be a fuzzy number whose support lies in [0,1]. 

After one year the amount in the account will be A+AR . 

After withdrawing S1 the amount at start of the second year is 

(A-S1)+AR . 

At the end of the second year the accumulated total is 

[(A-S1)+ AR]+ [(A-S1)+AR]R     or      AR
2
+BR+D 

where B=2A-S    and  D=A-S 

since multiplication distributes over addition for positive fuzzy numbers. 

Therefor, we must solve 
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AR
2
+BR+D=S2 

or 

(1, 0.2, 0.2)R
2
+(1.75, 0.45, 0.45)R+(0.75, 0.25, 0.25)=(0.9, 0.3, 0.3) 

where R is fuzzy number. 

Now according to section 3 obtain: 

X v= 0.08  ,   xa=3.66×10
- 4

     ,    xf = 0.002 

it is easy to see that m=0.08 ,  c=0.001 ,  d=0.004   we obtain:
 

x=(0.075, 0.079, 0.081, 0.085). 

 

5. Conclusion 

Solving fully fuzzy polynomial equations (FFPEs) by using Canonical    

representation(CR) is presented in this paper.We transformed fuzzy polynomial 

equations to system of crisp polynomial equations, this transformation is perform 

by using canonical representation based on three parameters Value, Ambiguity 

and Fuzziness. 
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