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Abstract 

The facet of Knapsack ploytope, i.e. convex hull of 0-1 points satisfying a given 

linear inequality has been presented in this current paper. Such type of facets plays 

an important role in set covering set partitioning, matroidal-intersection vertex- 

packing, generalized assignment and other combinatorial problems. Strong covers 

for facets of Knapsack ploytope has been developed in the first part of the present 

paper. Generating family of valid cutting planes that satisfy inequality with 0-1 

variables through algorithms are the attraction of this paper. 

Keywords: Convex- hull, set-covering, set-partitioning, Matrodial-intersection, 

vertex-packing, cutting-planes.  

1. Introduction 

The facets of Knapsack polytope, i.e. of convex –hull of 0-1 points satisfying a 

given linear inequality play an important role in set covering, set partitioning, 

matroidal intersection, vertex packing, generalized assignment and other 

combinatorial problems. It is known that every lower dimensional facet can be 

augmented to give rise to one or more facets of full dimension. Every strong cover 
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gives rise to at least one different facet. A necessary and sufficient condition for 

an inequality with 0-1 coefficients to be a facet is reviewed. 

 

 

2. Definitions and Notation 

Consider the inequality.  





n

j

ojj aa
1

        (1) 

Where a0 >aj >0, and xj = 0, 1. 

Definition 1: Let N = {1,2,……………., n}. Let S be a subset of N. Then S is 

called cover for (1.2.1), if  
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Definition 2: A strong cover S of (1) is called a strong q-cover of (1.2.1) if j1=q. 

Definition 1.2.3. Given a strong q-cover S, the set E(S) is called the extension of 

S, where S
/
= }|{

1jj aaSNj   

Let  be the set of all strong cover of (1.2.1). Balas and Jeroslow [5] have shown 

that if  be the family of minimal covers S for (1.2.1), then (1.2.1) is wquivalent to 

the set of (canonical) inequalities. 

( )

1,j

j E S

x S for all S 


         (2) 

In the sense that x R
n
, xj = 0 or 1, jN, satisfies (1.2.1) if and only if it satisfies 

(1.2.2). Further it was shown that (1.2.1) is also equivalent to the set 
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1,j

j S

x S S 


          (3) 

It was empirically observed that strong canonically inequalities often defined 

facets of convex hull of 0 -1, points satisfying (1.2.1), i.e. facet of the Knapsack 

polytope. 

P=conv {x 



nRj

jjj

n NjorxaxaR },10,| 0
 

3. Canonical facets of the Knapsack Polytope 

Let d be the dimension of P. The inequality k

j

j M

x K


    (4) 

Where M  N and k≥ 0, is said to define a facet [(d-1) – dimensional face] of P if 

and only if the half space defined by 



Mj

j kx                              (5) 

Contains exactly d (affinely) independent points of P.Proposition  1. 3. 1. d =n-n
/
, 

where n
/
=|N

/
| and N

/
= {jN|aj> a0}  

Proof .d being the dimension of P, d≥n-n
/
, since P contains n-n

/
 unit vectors ej, j 

N-N
/
. Also d≤n-n

/
, since xj=0 for all J n

/
 for any xP. 

Hence d=n-n
/
 

Proposition 1: The inequality xj ≤ 1 defines facet of P if and only if  

aj* aj ≤ ao 

Where aj* = 
i

jNi

amax
}{

      (1.3.2)  

Proof. Let ei be the ith unit vector, iN. Let ej be any arbitrary unit vector jN. 

The vectors ej, ei +ej for all i N – {j} are also linearly independent which are 

contained in P for which the inequality (1.3.2) holds. Thus if (1.3.2) holds xj≤1 

defines a facet of P.  

Suppose xj ≤1 defines a facet of P. Then 1i

jx  for n linearly independent vectors 

x
i
 of P which are the vertices of P for i=1, 2………n. Let X be the matrix whose 

rows are the vectors x
i
. If (1.3.2) does not hold good, then 0i

jx , i=1, 2…….n, 

then the matrix X is a singular matrix. But X is not singular. So (1.3.2) must hold. 

Example-1: Let P be the convex hull of 0-1 points satisfying  

10x1 +10x 2+4x3 +7x4 +2x5 +6x6 +x7 +x8 ≤15. 
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Then xj≤1, defines a facet of p for j=3, 5, 7, 8 but not for j=1, 2, 4, 6. Following 

algorithm is being introduced to determine facets of the convex hull P. 

Algorithm 1: 

Step 1... Find j*N such that 

 i
jNi

j aa
}{

* max


  

Step 2: is aj* +aj ≤ a0? 

If yes: then xj ≤1, j N is s facet. 

If no: then xj ≤ 1, jN is not a facet. 

Step 3: Redefine N: N =N-{j} 

Is N =? 

If yes: Stop, all facets have been found out. 

If no: Go to step 2. 

Theorem 2: If |M| ≥ k+1≥ 2 and (1.3.1) defines a facet of P, then for each iN, P 

has a vertex  x  satisfying (1.3.1a) and such that 1ix , and for each iM, P has a 

vertex x satisfying (1.3.1a) and such that xi =0 

Proof . We shall prove this theorem by the method of contradiction. Since (1.3.1) 

defines a facet of P,(1.3.1a) is satisfied by n linearly independent vertices x
h
, 

h=1,….,n of P. If X is the nxn matrix whose rows are these vertices x
h
, 

then 0h

ix , h=1, 2,…, n for some i N implies that x is singular. Hence for each 

iN, 1h

ix  for some h {1,….. , n}. 

Also, if XM is the sub matrix of X whose columns are indexed by M, then each 

row of XM has exactly k entries equal to 1, and therefore, 1h

ix  for h =1,…., n 

and some IM, then the ith column of XM is the sum of the remaining columns of 

XM devided by k-1, hence the columns of X are linearly dependent. Thus for each 

iM, 0h

ix  for some h {1,…., n}. 

The following algorithm, for facets is given according above theorem.  

Algorithm 2 

Step 1: Choose S  N a strong cover for Knapsack polytope P.  

Step 2: Find out K
k
 from |S| =k+1 
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Choose j1 such that j
Sj

j aa


 max
1

 

Set M =S  {j N –S | }
1jj aa   

Is M ≥ 2? 

If yes: Go to step 3. 

If no equation (1.3.1) does not defines a facet,  

go to step 4. 

Step 3: Set T
1
 ={S-{j1}} 

Choose j2 such that 
1

max{ }
Zj j

j T
a a


  

Set T
2
 = {S-{j1, j2}} {1} 

Is 



2

0

Tj

j aa  

If yes: Infer equation (1.3.1) defines a facet. 

If no: Equation (1.3.1) does not define a facet, go to step 4. 

Step 4: Redefine S: N-S 

Is S = 

If yes: Stop, All facets has been found out. 

If no: Go to Step 2. 

Example 2: Let P be the convex hull of 0-1 points satisfying  

4x1 +4x2 +3x3 +2x4 +2x5 +x6  ≤5. 

Here, N = (1, 2, 3, 4, 5, 6), a0=5, a1=4, a2=4, a3=3, a4=2, a5=2, a6=1 

Let us choose S = (3, 4) 

|S| =2 k+1=2k =1. 

3max 1311



jaaaa jj

Sj
j  

T
1
=S – {j1} = {4} 

43max 2412




jaaa j
Tj

j  
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S
/
= {j N- S: aj ≥ aj}  

= {j  {1, 2, 5, 6}: aj ≥
1j

a } = {1, 2} 

M =E(S) =SUS
/
 = {3, 4} {1, 2} ={1,2,3,4} 

T
2
 =(S-{j1,j2} {1}=({3,4} – {3,4})  {1}={1} 

)5(4 01
2




aaa
Tj

j
 

Thus the condition of Algorithm 1.3.1 is satisfied. 

So for |M| 2, j

j M

k


     is a facet  

x1+x2+x3+x4≤1 is a facet 

Let S = {1, 2, 6} 

|S| = 3 231  kk   

11max 111



jaaa jj

Sj
j  

T
1
 =S-{j1} = (2, 6) 

2maxmax 22
),2{12




jaaaa j
j

j
Tj

j


 

1

/ { : }j jS j N S a a      

M=E(S) = SUS
/
 = {1, 2, 6} = {1, 2, 6} 

T
2
=(S-{j1,j2}{1}=({1,2,6} –{1,2}{1} ={1,6} 

)5(514 01
2




aaaa
Tj

j   

Thus Algorithm (1.3.2) is satisfied. 

Here |M| =3>2 

So 



Mj

j k  defines a facet of given inequality. 

x1+x2+x6 ≤ 2 is facet. 

Similarly by choosing {1,2,6},{2,3,6}, {2,4,6},{2,5,6}, {3,4,6},{3,5,6} and 

{4,5,6} as strong  cover we can develop the following facets by theorem (2.3.1) 
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x1 + x2   + x6  ≤ 2 

x1 + x2+ x3  + x6  ≤ 2 

x1 + x2 +    + x4 + x6  ≤ 2 

x1+ x2       + x5 + x6  ≤ 2 

x1+ x2 + x3+ x4           + x6  ≤ 2 

x1 + x2 + x3      + x5 + x6 ≤ 2 

x1 + x2 + x3 + x4 + x5 + x6  ≤ 2 

Theorem 3: The inequality 





Nj

jjx 0         (1.3.6) 

Where 0≥0 is an integer, satisfied by all xP, if n ca be partitioned into (q+1) 

subsets Nh, h =0, 1, 2 , .… q, 1≤q ≤0 such that  

()j = h for all jNh, h = 0,1,2,….q,  

() M= h

q

n

N
1

 is the extension of some minimal cover for S for (1.2.1) such that 

SN and |S|= 0+1 

()=N0=N-M, N1=M-Z, where Z = h

q

zh N  

Nh = {i N :  
  


1 1h hSj Sj

jij aaa }, h =2,…., q 

Where Sh is the set of the first h elements of S, h = 2…., q+1. If in addition to 

(),() and  (), one also has 



1

0)(
hSSj

ij aaa  for all iNh =0,1….,q 

Then (1.3.6) defines a facet of P. 

Theorem (1.3.2) lays the ground work for generating a family T of valid cutting 

planes. i.e. inequalities satisfied by all 0-1 points  satisfying (1.2.1), most of which 

are facets of P. the procedure is given by the following algorithms as the proof of 

the theorem is described in Balas [2] 

Algorithm 3 

Step 1: Select S N 

Is 



Sj

j aa 0 ? 
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If yes, Take S as a cover 

If no: Stop, infer S is not a cover. Go to step 4. 

Step 2 set T1 =S-{j}, j S 

Is 



Ti

j aa 0  

If yes: Take S as minimal cover. 

If no: stop, infer S is not minimal cover. 

Go to step 4. 

Step3 (Choose j1 such that j
Sj

j aa


 max
1

 

Set E (S) =S {jN-S |aj
1j

a } 

Set T2 = N-E(S) 

Is T2  

If yes: Go to step 4 

If no: Infer S is not a strong cover. 

Step 4: Choose i1, such that, 
21

maxi j
j T

a a


  

Set T3 = (S –{j1} {i1} 

Is 



3

0

Tj

j aa  

If yes: Take S as a strong cover. 

If no: S is not strong cover.  

Step5. Redefine S: N-S 

S: S-{j}) {i | i  N} 

Step 6: Is S  ? 

If yes: Stop, all strong covers are found 

If no: Go to step 1. 

Algorithm 4: 



 

 

Iranian Journal of Optimization, Vol 4, Issue1, Winter 2012                                 300 

Step1: Set 0 =|S| -1, ST = family of cuts or strong covers  

j =h,j Nh, h =0,1…, q 

N0=N-E (S), N1 =E(S) - h

q

zh N  

Nh = {iN | }

1







hh Sj

ji

Sj

j aaa , h=2,…q 

Sh is the set of first h elements of S for h =2,…..q+1 

Step2. is 
0

1

aaa i

SSj

j

h




 

For I Nh, h =1,2,…q. 

If yes: 
0 



i

Nj

jx
h

 is a valid cut 

If no: S is not a facet. 

Step3. Redefine S =F-S 

Is S= 

If yes: Stop, all facets are found. 

If not: Go to step 1. 

Example 3: Let P be the convex hull of 0-1 points satisfying.  

10x1+8x2+ 6x3 +5x4 +3x5 +3x6 +3x7 + 2x8 + 2x9 +x10 ≤11 

Find out the facets along with strong covers of above inequality.  

Answer: According to given inequality, we a have a1 =10, a2=8, a3= 6 

a4 =5, a5 =3, a6 =3, a7 =3, a8 =2, a9 =2, a10 =2 and a0 =11 

So, N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

Table 1.3.1: Lists the family of cutting planes characterized by theorem 1.3.2, 

along with the strong cover from which they are generated of the 24 members of 

the family all are facets of P. The table is to be read as follows. 

Take line 1: S = {2, 3} is a cover, since a2+ a3 =8+6 >a0=11; a minimal cover 

since 6 ≤ 11 and 8 ≤ 11: a strong cover as a3+a4=6+4 ≤ 10. Extension of S is E(S) 

=SUS
/
 = {2, 3} {1} = {1, 2, 3} and N0 =N-E (S) = {4, 5, 6, 7, 8, 9, 10}. Since S 

contains only two elements, so it is impossible to set S3Nh =0 for h>1. 
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N1=E(S) - h

q

zh N +E(S) -0 =E(S)={1, 2, 3} 

Hence the first cut in the family F is  

x1 +x2 +x3 ≤1 

Which defines a facet of P, since S-S2 = and a1 =10 ≤ a0=11. 

Now let us consider a separate set as {4, 5, 6, 7} from below. It is a cover since  

a4 + a5 + a6 + a7 =4+ 3+ 3 +2 = 12 >10. Further, E(S) ={1, 2, 3, 4, 5, 6, 7} and N0 

=N-E(S) ={8,9}, N2 ={1,2}, since  a4 + a5 ≤ ai ≤ a4 + a5 + a6 for  i =1, 2. N3=, 

since  

a4 + a5 + a6 < ai ≤ a4 + a5 + a6 + a7 for i=1. 

Nh =0, h>2: N1 =E(S) –N2 = {3, 4, 5, 6, 7} 

j=h, jNh, h=0, 1, 2, 0 =|S| -1 =4 -1=3 

jN1 ={3, 4, 5, 6, 7} 

3 = 4 = 5 = 6 = 7 = h = 1. 

jN2 ={1, 2} 

2 = 1 = h = 2. 

So the cut associated with S is   

 2x1+ 2x2 + x3+ x4 + x5 + x6 + x7 ≤ 3 . 

 

4. Conclusion 

 In this paper we have attempted to characterize the convex hull of 0-1 solutions 

to linear inequalities to a linear inequality. We are motivated by the work of Balas 

[4] and Wolsy [80].  The purpose of our research was to present algorithms for 

suitable computer programs for enumerating strong cover planes directly from the 

definitions 

Table 1- The results from example 3 

Strong cover{S} 1   2   3   4   5   6   7   8   9   10  0  

1,5 1   0   0    0    1   0   0    0    0   0    1 

1,6 1   0    0    0    0   1   0   0    0    0   1 

1,7 1   0    0    0    0   0   1   0    0    0  1 
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1, 8 1    0   0    0    0   0   0   1   0    0   1 

1, 9 1    0   0    0    0    0   0   0   1   0   1 

2, 3 1   1   1     0    0    0   0   0   0   0   1 

2, 4 1   1   0     1    0    0  0   0    0   0   1 

1, 8, 10 1   0   0    0    0     0   0   1   0   1   2 

1, 9, 10 1   0   0    0    0   0     0   0   1   1   2 

2, 5, 8 1   1   0    0   1    0     0   1   0    0   2 

2, 5, 6 1   1   0    0   1    0    0   0    1   0   2 

2, 5, 10 1   1   0   0   1     0    0    0   0   1   2 

3, 4, 5 1   1   1   1   1     0    0    0    0   0   2 

3, 4, 6 1   1    1   1   0   1     0    0    0   0   2 

3, 4, 7 1   1    1   1   0    0    1   0     0   0   2 

3, 5 6 2   1    1   0   0    1    0    0    0    0   2 

3, 5 7 2   1    1   0   1    0    1    0   0    0    2 

3, 5, 8 2   1    1    0   1   0    0   1   0    0    2 

4, 5, 6, 7 2   2   1     1   1   1    1   0    0   0    3 

4, 5, 6, 8 2   2   1     1   1   1    0   1    0    0   3 

4, 5, 6, 9 2   2   1     1  1   1     0   0    1    0   3 

4, 5, 6, 10 2   2   1    1   1   1     0    0    0   1   3 

4, 6, 7, 8 2   2   1    1   0   1     1    1    0    0   3 

4, 6, 7, 9 2   2   1    1    0   1    1    0    1    0   3 

4, 6, 7, 10 2   2    1   1    0   1    1    0    0    1   3 

5, 6, 7, 8, 9 3   2    2   1    1   1    1    1    1    0   4 
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