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Abstract

In this paper, the Exp-function method, with the aid of a symbolic computation
system such as Maple, is applied to the (2 + 1)-dimensional Calogero
Bogoyavlanskii Schiff equation. Exact and explicit generalized solitary solutions
are obtained in more general forms. The free parameters can be determined by
initial or boundary conditions. The method is straightforward and concise, and its
applications are promising. It is shown that the Exp-function method, with the
help of symbolic computation, provides a very effective and powerful
mathematical tool for solving Calogero Bogoyavlanskii Schiff equation.

Keywords: Exp-function method; Calogero Bogoyavlanskii Schiff equation;
partial differential equation.

1 Introduction

The investigation of exact solutions of nonlinear equations plays an important role
in the study of nonlinear physical phenomena. In recent years, several powerful
methods have been proposed to obtain approximate solution of nonlinear partial
differential equations, such as the tanh method [1-2], sine—cosine method [3],
homotopy perturbation method [4-5], variational iteration method [6-7], Adomian
decomposition method [8], and many others. Most recently, a novel approach
called Exp-function method [9-13] has been developed to obtain solitary solutions
and periodic solutions of various nonlinear equations. The solution procedure of
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this method, by the help of Matlab, Maple or any mathematical packages, is of
utter simplicity.

In this paper Exp-function method has been applied to obtain the exact solution of
the Calogero Bogoyavlanskii Schiff equation (CBS equation). This equation has
the following form;

u, +u,,, +4u.u. +2u, u, =0. (1)

XXXZ X7 XZ XX~z
The CBS equation was first constructed by Bogoyavlanskii and Schiff in different
ways. Bogoyavlanskii used the modified Lax formalism, where as schiff derived
the same equation by reducing the Self-dual-yang-mills equation. The equation is
used to describe the interaction of a Riemann wave propagating along the y-axis
with a long wave along the x-axis. Wazwaz applied tanh-coth method and
Hirota’s bilinear method to the CBS equation [14, 15].

2 The Exp-function method

To illustrated the Exp-function method let’s consider a general nonlinear PDE, in
the following form

p(u,u,,u,,u,,u,,...)=0. (2)
Using the transformation
& =kx +wt, (3)

where k and w are constants we can rewrite Eq. (2) as the following nonlinear
ODE:
G(u,u',u”u",..)=0, (4)
where the superscripts denotes the derivatives with respectto & .
According to Exp-function method, we assume that the solution can be expressed
in the following form, [9].
u(E) = sc exp(cs) +---+a, exp(-d <) | (5)
o EXP(P&) +---+b_, exp(-q &)
where c,d,p and q are positive integers which could be freely chosen, a, for
m=-d,..cand b,, for n=-q,...,pare unknown constants and should be

determined. To determine the values of ¢ and p, we balance the linear terms of the
highest order in Eq. (4) with the highest order nonlinear terms.

Similarly for determining the values of d and g, we balance the linear terms of the
lowest order in Eq. (4) with the lowest order nonlinear terms.

3 Solution of the equal-width equation by Exp-function method

Using the transformation
u=U (<), & =kx+wt + sz,

where k,w and s are constants to be determined later, Eq.(1) converts to an

ordinary differential equation, as follows:
wU" +k?sU™ +6ksU'U" =0. (6)
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Where the super scripts denotes the differential with respect to £. By integrating
the last equations we find:

wU' +k?sU"+3ksU" =0. @)
We assume that the solution can be expressed in the form (5). In order to

determine ¢ and p, we balance the linear term of the highest order in Eq. (1) with
the highest order nonlinear term. By simple calculation, we derive to

u”= clexp[(7p +C)§]+"'

(8)
C,exp[8ps]+--
and
U2 _ Ca®XPl(2p +2¢)c]+--- _ C;exp[(6p +20)5] +- - )
C,exp[4ps]+-- C,exp[8ps]+---
By balancing the highest order of Exp-function in Egs. (8) and (9), we have:
cC+7p=2c+6p, (10)
which leads to the following result:
p =cC. (12)

The values of d and g can be determined in a similar way. We balance the linear
term of the lowest order in Eg. (6)

u”= ---+d1exp[—(7q +d )é]

: (12)
--+d, exp[-89 <]
with the nonlinear term
yrz o Fdsexpl-q+20)f] ---+dsexpl=(6 +2)c] )4

-+ +d, exp[-4q<] -+-+d, exp[-8 <]
c,'sand d,'s are identified symbolically, so that for the sake of simplicity of the
form of equations (8), (9), (12) and (13). By balancing the lowest order of Exp-
function in Egs. (12) and (13), we derive;
—(70 +d)=—(2d +6q),
which leads to the following result:
d =q. (14)
It is possible to choose the values of ¢ and d, but we will illustrate that the final
solution does not strongly depend upon the choice of values of ¢ and d.

3.1 Thechoiceofp=c=1andgq=d=1
For the sake of simplicity, we choose p =c =1 and q = d = 1, the trials function,
Eqg. (5) converts to as:

U (&) - AR +ay +a, exp(-E)

b, exp(£) +b, +b_, Xp(-£) ()
In case b, # 0 Eq. (15) can be simplified as
U (é:) — a1 eXp(g) + a0 +a—1 eXp(—f) (16)

exp(&) +b, +b_ exp(=¢)
Substituting Eq. (16) into Eq. (7), by the help of the symbolic computation in the
Maple package, leads to
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%[cs exp(3&) +C, exp(28) +C, exp(&) + C,

+C_ exp(=¢) +C_, exp(-28) + C_;exp(-35)] =0,
Where A and C, are constants.
Equating the coefficients of exp(n&) in each term with zero yield to a set of
algebraic equations fora,,a,,a ,,b,,b,,w,s, andk .
C,=0, C,=0,C,=0, C,=0,
C, =0,
c,=0C,=0 C,=0, C,=0.

The solution of this system of algebraic equations are as follows,
a=a, a=0a,=a, bOZO, b1:b1'
_ (-a,+aby)’s (o aatab, (17)

- 4b? ' b,

Where s,a ;,b, and a, are free parameters. Substituting Eq. (17) into Eq. (16), we
obtain the following exact solution

Ul(X, Z, t) — ai exp(f) + a—l exp(_é:) . (18)
exp($) +b_; exp(=¢)
Where
é: - a71+a1b71 X — (_a‘—l + albfl)zs t+sz

4b 4b%

Ifweset b, =-1and a =a,, Eq. (18) reduces to

u(x, z,t) :coth(% a,x—a’st +sz), (19)
For b, =1 and a =-a ,, we get:

u(x, z,t) = tanh(% aX—a/st +sz), (20)

where in Egs. (19) and (20), s and a, are free parameters.

3.2 Thechoiceofp=c=2andg=d=1
If we choose p=c=2and g=d =1, Eq. (5) takes the following form:
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U () = 2 OPRE) 2, exXp(E) + 3, +a expl-t) 1)
exp(25)+b, +exp(§)+b, +b_; exp(=¢5)

Proceeding in a similar way as illustrated in 3.1, we can identify parameters,
a,,a,,ay,a,,b,b,,b,,w,;s, and k in Eq. (21) as follows
Casel:
aZ:—4kb°bo+a°, a, =0, a, =a,, by=b,,s=5, 22)
w=-4k?s, b =0, k=k, a,=0, b, =0.
Case2:
azz—alzjkbl, a, =0, a;, =a,, by=0,s=s, 23)
w=-9k’s, b =0, k=k, a,=a, b,=b,.

And
Cases:
a_,b, 4kb , +a , 4kb , +a
a_ =a_’a0: , aiz——’ a =—

b ) (24)
b,=b,, b,=b,, blzb;l, s=s, w=-4k’s, k =k.

0

Substituting Eq. (22) into Eq. (21), we obtain following exact solution

4kb07%‘0exp2(kx—4k"'st+sz)+a0 ,
U (X, 2,1) = b _ Akexp2(kx—4k“st +s7) L&
2 exp 2(kx —4k2st +sz) + b, exp2(kx —4k?st+sz)+hb, b,
(25)

If we set b, =1, Eq. (25) reduces to

u(x, z,t) =a, + 2k exp(&) sech(s), (26)

For b, =—1 we get:

u(x, z,t) = —a, + 2k exp(&) csch(&), (27)
Where
E=kx —4k st +sz.
Ifweset by=1 a,=0, k, =2k, andm, =2s, Eq. (25) reduces to

2k, exp(k X +m,z —k,;’m.t)

u,(x,z,t)= :
o ) 1+exp(k,x +m,;z —km.t)

This result is exactly the same as that obtained by wazwaz [15].



Iranian Journal of Optimization, Vol 2, Issue 2, spring 2010 144

By Eg. (23), we obtain the following solution:

a, +6kb ; B
b2 t)zblesz(f)"‘a_lexP( f)z 6k exp2(Z) a,
e exp 2(&) +b_, exp(=¢) exp2(£)+b_exp(-£) b’
(28)
where

E=kx —9Kk *st +sz.
And from Eq. (24), we get

18 expag) - MO Bt exp() + 200 12 enp(-9)
u,(x,z,t)= = 5 0 =
exp(28) + Fl exp(s) +b, +b_, exp(=5)
’ b (29)
. exp(25) '~ exp(d)
=1 +4k 0

D1 exp(22)+ 2 exp(£) +b, +b yexp(-8)

Where
E=kx —4k st +sz.

3.3 Thechoiceofp=c=1andq=d=2
As mentioned earlier the values of ¢ and d can be freely chosen, now we set p
=c=1andq=d=2,s0 Eq. (5) turns to the following form;
U (é:) — ai eXp(f) + aO + a—l eXp(—§)+ a—z eXp(—2§). (30)
exp(&)+h, +b, exp(=&)+b, exp(-2)
By the same manipulation as illustrated earlier, we obtain
Casel:

a =a,a=0 a,=0a,=a,b,=0b,=0b ,=b,,

_ 2 - 31
W a_2+a;b_2)s,k: a_2+2alb_2’ ‘s (31)
4b°, 6b°,
We, therefore, obtain the solution of Eq. (1) which reads
exp(&) +b_, exp(-2¢)
Where
2
E= —a, +a1b—2 X — (_a—z +a1b—2) S t +57.

6b’, 4p?,

Case2:
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b ab b
a =a, 4, :%’ a—lzf’ a,=a,, bo :b__Z’ b—l:b—l' b_2:b_2,
-1 -2 -1
(33)
2
W :_(_a-z +a21b—2) S k= —a, +2alb—2’ s =5,
4p°, 4b°,

The solution of Eq. (1) is

a, exp(&) + a;b-z 18P g0 gy va, exp(-2¢)

ug(x,z,t) = bﬁl b,
exp(s) + bi +b_, exp(=&) +b_, exp(-2£)

-1

(34)

Where

2
Fe -a, +2aib72 « (-a, +a21b72) S trsy.
4b°, 4b°,

Case3:
a=a,a=0a,=0a,=0b,=0b,=b ,b,=0,
wo (CAutaby)’s | -a,+ap, oo (35)
4b% ’ 42
By Eq. (35), we obtain the following solution;
8, exp(¢) +a, exp(=5) (36)
exp(&) +b_, exp(=5)

u,(x,z,t) =

Where
po_qatab, (2, +ap_,)’s
4b 4’
Which u,(x,z,t) is the same as u,(X,z,t).

t+sz.

3.4 The choiceof p=c=2andq=d=2
Under such case, the trial function (5) can be expressed as follows

U ()= 2O T expE)+ &+, expEl)ra, eXpE L) g
exp(25)+b, exp(¢)+b, +b_; expt-¢)+b_, exp-2Z)
Proceeding in a similar way as illustrated in 3.1, we can identify parameters,
a,,8,,8,,a ;,a,,b,by,b ,,b,,w,s ,and k in Eq. (37) as the following
Casel:

a2:4kbt(;—+a°,a1 =0, a,=a,, a,=0,a,=0,b,=0,b,=b,,b ,=0,b, =0,
0

w =-4k%,k =k, s =s.

(38)

Substituting Eq. (38) into Eq. (37), we obtain following exact solution
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4kb, +a,

TeXp(Z'f)Jrao
= 0 ) 39
ug(x,z,t) exp(2E) +b, (39)
and
E=kx —4k %t +sz.

Which is the same as u, (X, z,t).

Case2:
az:%,a1 =0,8,=0,a,=a,,a,=0b,=0,b,=0,
-1
(40)
b,=b, b,=0w :%, k =k, s=s.
-1

Inserting Eq. (40) into Eq. (37) yields the following generalized solution

D172 op(2) +a, exp(-E)
Ug(X,Z,t)=—— | -
exp(2§) + b_l eXp(_é:)

Where
E=kx -9kt +sz.
And that is the same as u,(X, z,t) .

Case3:
4kb , +a ; 4kb , +a ; a_b,
a=—| = 1a= 1a_ =a—la— =O’
2 b_l bo 0 b_1 1 1 2
b]_ :%' bO :b01 b_1 :b_llb—z :O;W :_4k 281 k :ka S :S'
0
(42)
Substituting Eq. (42) into Eq. (37) yields to
Mexp(%) 4 Mexp(é’) n at-)lbo +a_, exp(=&)
U (X,z,t) = = b : =
exp(25) + +exp(£) +by +b_, exp(=5)
0
(43)
Where
E=kx —4k’t +sz.

Which is the same as u, (X, z,t).

Case4:
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a, = 8kb_, +a,
b,

b,=0,b,=0,b,=0,b,=b,w =-16k’s, k =k, s =s.
(44)
By means of Egs. (37) and (44), we have

W02+ eup(22) va, exp(-22)

u,(x,z,t) = -2

exp(2<) +hb_, exp(-2£) (45)
8y g X2

b, — exp(2&)+b.,exp(-2¢&)

,a =0,8, =0 a,=0a,=a,,

Where
E=kx —16k ’t +sz.

If we set k =% and s =% , EQ. (45) will be the same as Eq. (25).

Caseb:
6kb , +a, 6kb , +a , ab,
a =, =—,a =0, a._ =—,a_ =a~_!
2 b_2 a:l. b_l 0 1 b_2 2 2
b, :E;Z, b,=0,b,=b ,b,=b,w=-9k%,k =k, s=s.
-1
(46)
By Eq. (46), we obtain the following solution:
U, (X' Z,t) =
801422 exp(ag) + 202722 o) + 201 exp(-g) + &, exp(-22)
b, b, b, 47)
b
exp(2) + % exp(£) +b eXp(~£) +b.,exp(-2¢)
-1
6k exp(2£) +%exp(§)
= 24— b_l
b,

2 exp(28)+ 2 exp(E) +b., eXp(-E) +D., exp(-22) |

-1
Where &=kx —9kt +sz.
4 Conclusions

In this article, we have obtained the exact solution of CBS equation. The solution
has been achieved by applying Exp-function method. We predict that these
solutions will be of great importance for analyzing the nonlinear phenomena
arising in applied physical sciences. The results show that Exp-function method is
a powerful tool for obtaining solitary solution. It may be concluded that, the Exp-
function method can be easily extended to all kinds of nonlinear equations. The
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advantage of this method over other methods is that we can obtain the exact
solution by using a simple computer program. Applications for exp-function
method are under study in our research group. The computations associated in this
work were performed by using Maple 11.
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