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Abstract 

In this paper, we present a comparative study between the Adomian 

decomposition method and two classical well-known Runge-Kutta and 

central difference methods for the solution of damped forced oscillator 

problem. We show that the Adomian decomposition method for this 

problem gives more accurate approximations relative to other numerical 

methods and is easier to apply. 
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1 Introduction 

The topic of the Adomian decomposition method (ADM) has been rapidly growing 

in recent years. The concept of this method was first introduced by G. Adomian at 

the beginning of 1980's [1,2]. This method has been applied to a wide class of 

deterministic and stochastic problems of mathematical and physical sciences 

[3,4,5,6,7]. The method provides the solution in some rapidly convergent series 

with components that are elegantly computed. This method can be used to solve all 

types of linear and nonlinear equations such as differential and integral equations, 

so it is known as a powerful method. Another important advantage of this method is 

that it can reduce the size of computations, while increases the accuracy of the 

approximate solutions. 

Several authors have compared the ADM with some existing techniques through 

solving different types of problems. Wazwaz proposed a new approach to develop a 

non-perturbed approximate solution for the Thomas-Fermi equation. This approach 

is based upon a modification of the ADM [8].  In another work, he introduced a 

comparison between the ADM and the Taylor series method [9]. Advantages of the 

ADM over the Picard's method have been showed by Rich in [10]. S. M. El-Sayed 

et al. [12] compared the ADM and Wavelet-Galerkin method through solving the 

integro-differential equations and showed that the ADM is efficient and easy to use. 

Edwards et al. [11] have introduced their comparison of ADM and Runge-Kutta 

method for approximate solutions of some predator prey model equations. 

 Some reports show that the ADM for linear problems is equivalent to one of the 

classical methods. N. Bellomo et al. [13] show that using ADM to solve linear 

integral equations tends to successive approximation method. E. Babolian et al. 

have shown that solving the system of linear equations in the form BAX   by 

ADM tends to Jacobi iterative method [15]. While for some problems, the method is 

equivalent to one of classical methods, we show that for damped forced oscillator, 

as a well- known linear problem which appears widely in many physical fields and 

is described by a second order ordinary differential equation, this method gives 

more accurate approximations of solution than other numerical methods. 

 In this paper, we outline a reliable comparison between three powerful methods. 

The first is ADM which our work mainly focused on it. The other applied numerical 

methods are central difference method (CDM) and Runge-Kutta method (RKM). 

The results of the ADM are compared with the exact solution and those obtained by 

RKM and CDM, for different values of constants. It should be noted that we only 

report the numerical results of RKM and CDM, and we do not explain these 

methods. 
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2 The problem 

Damped forced oscillator 

 Oscillation is the repeated motion of a particle, a body or a system, displaced from 

its equilibrium position. This motion appears widely in many physical subjects such 

as acoustics, molecular spectra, vibrations of mechanisms and electrical circuits etc. 

Oscillating systems are classified according to the forces which act on the system 

[16,17]. 

As a special case when a mass, connected to a spring, displaces from its equilibrium 

position, a restoring force acts on it and makes it to oscillate. For small 

displacements, according to Hook's law, the force is proportional to displacement, 

x . If a damping force, proportional to the velocity of the system, dtdx , acts on the 

system, the motion is called damped oscillation. Finally exciting the mass by an 

external time dependent force,  tF , we have a damped forced oscillator. Using 

Newton's second law, this motion describes by the following equation  

 

                  )(''' tFkxbxmx  , 

 

where m  is the mass, k  is the stiffness of spring, and b  is the viscous damping 

coefficient [17].  

Special choices are ( ) 2(1 sin )F t t  , 2m kg , 1 /k N m , 0.3 /b Ns m  and  

(0) (0) 0x x   as initial conditions [18]. 

3 The methods and solutions 

In this section, we first obtain the exact solution for a special case of the problem, 

introduced in section 2, then approximate the solutions, using three numerical 

methods. The first applied numerical method is the ADM. The other methods are 

well known RKM and CDM. 

3.1 Exact solution 

Using classical methods [19], the exact solution of the equation (1), with introduced 

coefficients, will be as follows 
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3.2 Adomian decomposition method solution of (1) 

Consider the equation (1) with given initial conditions. Denoting 22 dtd by L , we 

have 1L , as two-fold integration from 0 to t . Therefore this equation can be written 

as: 

                   )(' tFkxbxmLx   

Operating with 1L , 

                   )()/()/( 11'11 tFLxLmkxLmbLxL    

                    ),(/1//)0()0( 111 tFmLxmLkxmLbxtxx    

          ).(/1/)(//)0()0( 111 tFmLxmLkxdtdmLbxtxx    

To use ADM, let 
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0m nxx . Hence, from (3) we have  
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In practice, all terms of the series 



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m m txtx , cannot be determined, so we 

use an approximation of the solution by the following truncated series: 
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For the convergence of the Adomian decomposition scheme, we refer the reader to 

[1,20,21]. To approximate the solution as a polynomial for the special case 

introduced in section 2, replacing )(tF , with first four terms of its Maclaurin series 

in equation (5), we obtain 
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In a similar manner, the components kx  are calculated for ,,4,3 k but for 

brevity will not be listed. Considering (6), the approximate solution including six 

terms is 
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Using this polynomial, the approximations of x  values for /10t k  

( 0,1, ,10)k  , will be obtained as shown at table 1, labeled by ADM1. 

More accurate solutions of the problem will be obtained, if we use six terms of 

Maclaurin series of )(tF  in equation (5). The results are shown at table 1 as ADM2. 

 

3.3 Runge-Kutta Method (RKM) 

In the Runge-Kutta method, an approximation to dependent variable at tt   is 

obtained from it and t  in such a way that the power series expansion of the 

approximation coincides, up to terms of a certain order nt)( , in the time interval 

t , with the actual Taylor series expansion of tt   in powers of t . The method 

is based on the assumption that the higher derivatives exist at required points. The 

main drawback of the method is that each forward step requires several 

computations of the functions, thus increasing the computational cost. This method 

extensively described at [18]. The differential equation (1) is solved using 4th order 

RKM. Table (1) shows the approximate solutions for  t0 , and 10/h , 

labeled by RKM. 

 

3.4   Central Difference Method (CDM) 

In this method the continuous variable t , is replaced by the discrete variable it  and 

the differential equation is solved progressively in time increments ii tth  1 . The 

solution obtained is an approximation but suitably selecting the time increment, 

improves the accuracy of the solutions. In this method, the solution domain replaces 
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with a finite number of points, known as mesh points. The method is based on the 

Taylor's series expansion of dependent variable, about the grid point i .  

For more details, we refer the reader to [18]. Finally using 10/h , the systems 

response will be obtained as shown in table 1, labeled by CDM. 

 

4 Results and Discussions 

In this section, we consider the results of three numerical methods to the damped 

forced oscillator problem. In order to verify the efficiency of the ADM in 

comparison with exact solutions and the RKM and CDM, we report the numerical 

solutions for different values of t . Table 1, shows the results of the exact solution 

and the numerical methods applied to the equation (1) at ],0[  , with time steps 

10/ . The second column shows the results of the exact solution (2). The third and 

fourth columns show the results of ADM choosing four and six terms of Maclaurin 

series of  ttF sin1)(  , in equation (5). At the fifth and sixth columns you see the 

results of 4th order RKM and CDM respectively. 

 

Table 1. Numerical results of applied methods 

 

Time                   Exact                ADM1                  ADM2                  RKM                  CDM 

0                        0                         0                          0                         0                        0 

10/             0.04331342            0.04331343             0.04331343           0.04329083       0.04934802  

10/2          0.14902732            0.14902736             0.14902736           0.14898049        0.16067235 

10/3          0.28266644            0.28266654             0.28266653           0.28259993        0.29887250 

10/4          0.41548994            0.41549041             0.41549011           0.41541276        0.43471614 

10/5          0.52766675            0.52767045             0.52766701           0.52758992        0.54806644 

10/6          0.61013810            0.61016370            0.61013849            0.61007204        0.62977479 

10/7          0.66500924            0.66514511            0.66500994            0.66496128        0.68207794 

10/8          0.70447466            0.70505310            0.70447665            0.70444714        0.71750410 

10/9          0.74844113            0.75051183            0.74844883            0.74843041        0.75645436 

                     0.82115244            0.82760961           0.82118323             0.82114892      0.82376858    
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To have an accurate comparison between the numerical methods, absolute errors of 

each numerical method are calculated and shown in table 2.  

Table 2. Absolut errors of the methods 

 

Time         ADM1-Error        ADM2-Error          RKM-Error         CDM-Error 
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To increase the accuracy of ADM, we used six terms of Maclaurin series of )(tF . 

In other word, using more terms of Maclaurin series, reduces the error of ADM. 

Table 2, shows that using suitable order of Maclaurin series, the ADM gives more 

accurate results than RKM while in RKM, changing the steps, gives more accurate 

results which has computational complexity and is not recommended. Table 2 

shows that the CDM has the highest error of the order of 210 , while the maximum 

error of the RKM is about 510 . 

 

5 Conclusion 

In this work, we used three numerical methods to approximate the solutions of 

differential equation, governing on the oscillative systems, and compared the results 

with the exact solution. The CDM gives the results with an unacceptable error 

relative to the exact solution. The RKM tends to the results which are suitably 

accurate relative to the exact solutions, but the ADM gives more accurate results. 

The study shows that the ADM in a simple way gives the nearest results to the exact 

solutions while, the RKM needs to convert the differential equation to a system of 
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differential equations [18], and so has computational complexity. So, we prefer the 

ADM to RKM, and introduce the ADM as a simple and efficient method. 
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