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Abstract

We consider the Rothe difference scheme for approximate solution of the abstract
parabolic equation in a Hilbert space with the nonlocal boundary condition.
Theorems on stability estimates, coercivity and almost coercivity estimates for the
solution of this difference scheme are established. In application, new coercivity
inequalities for the solution of multi-point nonlocal boundary value difference
equations of parabolic type are obtained.
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1 Introduction

In the study of boundary value problems for partial differential equations, the role
played by, well-posedness (coercivity inequality) is well known (see
Ladyzhenskaya et al. 1968, Ladyzhenskaya and Ural’tseva 1968, Vishik et al.
1959). Coercivity inequalities for nonlocal boundary value problems for partial
differential equations parabolic and elliptic types have been studied extensively by
many researchers see Aibeche and Favini (2005), Clement and Guerre (1999),
Shakhmurov (2004), Sobolevskii (1971) and references given therein.
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In the paper (see Ashyralyev and el al. 2008) we considered the abstract nonlocal
boundary value problem

dg—gt)—Au(t): ft) (0<t<1)

p

U(l): Zaku(gk)+¢’ (1)
k=1

0<6,<0,<---<0,<1

in a Hilbert space H with self-adjoint positive definite operator A, under the
assumption

p

Z|ak| <1 (2)

k=1
The well-posedness of multi-point nonlocal boundary value problem (1) in spaces
C#(H) and C*(H) was established. Moreover, as applications, these astract

results enabled us to obtain new coercivity estimates in various Holder norms for
the solutions of nonlocal boundary value problems for parabolic equations.

In the present article, our focus is the well-posedness of the first order of accuracy
Rothe difference scheme

T_l(uk _kal)_ Au, =@, 0 = f(tk )’
t, =kz, 1<k <N, Nz =1

p
Uy =Y a,u, +o, 3
m=1

ém:{e—”‘} 1<m<p

i
for approximately solving problem (1).

Let [0,1] ={t, =kz,k=1---,N, Nz=1} be the uniform grid space with step
size 7 >0, where N is a fixed positive integer.

Throughout the paper, F([O,l],,H) denotes the linear space of grid functions
@" ={p }y with values in the Hilbert space H.
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Let C.(H)=C([01].,H) be the Banach space of bounded grid functions with the
norm

Q@ Ca(H)_ (0 Ca(H) 1<k<k+r<N (rf)a ’
s (N lovc o]
e c*(h) " 1ekdoren (re) -

We say that difference problem (3) is stable in F([01].,H), if we have the
following stability estimate

i et M1 el )

where M is independent of ¢°, ¢ and 7.

Difference problem (3) is said to be well — posed in F([0,1].,H), if for every

" e F ([O,l], , H ) problem (3) is uniquely solvable and have the
following coercivity estimate:

{r’l(uk —uk_l)}?

<m(

where H' < H, M does not depend on ¢*,¢ and .

+ H{Auk_l}F

F([o], H) al{CEIRLY

F([01],.H) +||A¢||Hj’

e

Throughout the paper, M shall indicate positive constants which can be different
from time to time and we are not interested to precise. We shall write M (e, 3,---)

to stress the fact that the constant depends only on «, £3,--.

2 The First Order of Accuracy Difference Scheme
Let us start with some auxiliary lemmas we need below. Throughout the paper, H

denotes a Hilbert space and A is a positive definite self-adjoint operator with
A>01 forsome 6 >0.

Lemma 1.1. (See Ashyralyev and Sobolevskii (1994)). The following estimates
hold:

[tAe™| <M, t>0, K=0, (4)
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HRKHH—M < (1+5z')k , K21, (5)

HﬁmemS%’ K>1, (6)

<

R, M

1<k <k+r<N,pe{0l,0<y<1, (7

for some M, >0, which are independent of 7 is a positive small number and
R=(I+7A)" isthe resolvent of A,

Lemma 1.2. Assume that (2) holds. Then, the operator

|—meN“} (8)

has an inverse

w4
T, =[1->R '
k=1
and the following estimate is satisfied:

T

T

H

. <c(s,0,). (9)

Proof. The proof of estimate (9) is based on the triangle inequality, assumption
(2), and the estimate

H(I—Zp:akRN[ﬂ]l <sup 5 L PRIE
S )

k=1

H—>H

L]
Let us now obtain the formula for the solution of problem (3). It is clear that the

first order of accuracy difference scheme
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T_l(uk _kal)_ Au ., =@, 0 = f(tk )’
t, =kz, 1<k <N, Nz =1

p
Uy =D a,u, +o, (10)
=1

ém:r—”‘} 1<m<p

T

has a solution and the following formula holds:

N .
u =R" uy - Y R™p;z, 0<k<N-1. (12)

j=k+1
Applying formula (11) and the nonlocal boundary condition

p

¢ = Uy :Zamu{’m T

m=1

we can write

P .
E= Za{RN”f—ZR”k(/)jr]+(p.
k=1
Using Lemma 1.2, we get

p N _
Uy :TT(— 2. ZakR”'k¢>jr+(pj (12)

j=l+1

Hence, difference equation (10) is uniquely solvable and for the solution,
formulas (11) and (12) are valid.

Theorem 1.3. Suppose that (2) holds and ¢ e D(A). Then, for the solution of
difference scheme (10) the following stability estimate

c,<H>)' (13)

holds, where C(&, Qp) is independent of 7,¢p,and ¢°.

maxu,|,, <C(5.0,) o, +|

0<k<N ¢
Proof. From estimate (5), formula (11), and Nz =1 it follows that

e Jui, < Juyl, +mex

quHH-
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Using assumption (2), estimate (5), (9), formula (12), and N_ =1, we obtain

Cr(H))

Juull, <060, )i, +]o
From these estimates it follows (13).

This concludes the proof of Theorem 1.3. L]

It is well-known that problem (1) in the space C([0,1], H) is not well-posed for the
general positive definite self-adjoint operator A and Hilbert space H. Hence, the
well-posedness of difference problem (10) in C([0,1].,H) norm does not take
place uniformly with respect to z > 0.

Theorem 1.4. Let (2) holds and ¢ e D(A). then, for the solution of difference
problem (10), the almost coercivity inequality

H{T_l (Uk —U, )}:j

o H{Au“ h Hc,m)

C

. (14)
<clo.0, minfn 1 wlal, ol 18, |
is valid, where 0(5,49,,) does not depend on z,¢, and ¢°.
Proof. Using formula (11), estimate (5), we get for 1<k <N
N .
AU, <[/Auy], +[l¢ CT(H)ZI;HTAR”” (15)
i

H—H

It follows from Theorem 1.2 (see Ashyralyev and Sobolevskii (1994) on page 87)
that

N e N—k+1 .
ZHTARJ = ZTHAR |
j=k m=1 H—->H (16)

<M min{ln l 1+‘In||A||FHH ‘}
T

H->H

By formula (12), estimate (9), and assumption (2), we obtain

. (1
2 . mln{ln ;,‘ n|Al, ‘} +]Ag], J (17

Il <clo.0,
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Thus, from estimates (15)- (17) it follows that

w3, <clo,)

x( CI(H)mln{ ‘In||A||H_)H‘}+||A¢||]

Using difference equation (10), the triangle inequality, and estimate (18), we get
estimate (14).

(18)

®

This completes the proof of Theoren_1.4.

Theorem 1.5. Suppose that (2) holds and ¢ < D(A). Then, the solution of
difference scheme (10) satisfy the following stability estimate

H ~Us) I(H)JrH{Au“}lN ci (H)
1 (19)
< 0(5,9p{m. 0o, A9, J
where C(&,Gp) is independent of z,¢, and ¢°.
Proof. It follows from formula (11) and identity
AR=1-R (20)

that for 1<k <N

Auk_1=RN-k+1AuN—ifARi-“(%—¢k_l)+(RN-k“—| . (21)

i=k

Thus, using estimate (5), (6), and the definition of C,*(H )—norm, we get for
1<k<N
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[Auc], <[Aul,

T

®»

TN k+1)1a,zk k+1)f

4
<fau, +2

T

@ (22)

o A e

T cr(H)’
Now, we estimate ||Auy|., -

From formula (12) and zAR =1 —R it follows that

AuN=T{ Zak[ AR (p, — g, )+ (|—RN-‘k)@kJ+A¢}

j=0+1

Hence, by estimates (5), (6), (9), the definition of C*(H )-norm, and assumption
(2), we obtain

4
Jw, <clo.0,) 2

T

¢ C

") +||A¢||Hj- (23)
Thus, from estimates (22), (23) it follows that

[tAu k] < C(&,ep)(%

T

¢ Cf(H

+lAdl, j | (24)

Cz(H)
Let us now estimate

((N -k +1)T)a||Auk—l+r - Auk—l”H .

1<k<k+r<N (rz-)a

First, let N —k +r < 2r. By estimate (24) and the triangle inequality, we obtain

((N -k +1)T)a ||Auk—1+r - Auk—l”H 1y .
= <c(s,0, )(; 2 .

Next, let N —k +r <2r. From formula (11) it follows that

+|Ad], j (25)
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AUk_l - AUk_1+r = (RN’kJrl _ RN—k+17r ) AUN

k+2r-2

- Z T AR (4 -4, )
k+2r-2

j—(k=1+r) _
+ jzk;r 7 AR (¢J ¢k—1+f) (26)
3 ZN: z_A(Rj—k+1 RJ (k=1+T) ) (¢ ¢k 1)
j=k+2r-1

( Rr—l) (¢k » _@71)+(RN—k+l_RN—(k—l+r))¢k71
=1, (K)+ 1, (k)+ 15 (k)+ 1, (k)+ 15 (k)+ 15 (k).

We first estimate 1,(k). Using estimates (7) for £ =0, and the fact
N—j+1>2r, we get

T

4

< y (g (1
0, 5060,

Next, it follows from estimate (6) and the definition of C/(H)—norm that

» +||A¢||j 27)

T
k+2r-2

- ¢t (H) ‘
[tk “ (N k+1yyj§;«j—W—l+0ﬁf“ (28)
2 L Q° .
"o (N—k 2o 7 et

By using estimate (6), the definition of C*(H )-norm, and the fact
N — j+1>2r, we obtain

a

150N, <

«N—k+1 £ +r(J—k 1+0ﬁ)
. 200" g (re)”
(N-k+1))" @

If follows from estimate (7) for S =1, the definition of C;*(H )—norm, and the
fact j—k+1> 2r, that

(29)
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a T

N

il =T -

I M e ™ 2 ke
a T (30)
210 sy (re)”

(N—Ks1)) G-a)
Using estimate (5), the definition of C*(H )—norm, we obtain

a

c(H) o
s < ey (31)

T

Finally, from estimate (7) for =0 and the fact N — j+1> 2r it follows that

e (), <2

ci(H)’ (32)

Thus, combining estimates (27)-(32), we get for N — j+1> 2r

T

((N -k +1)T)a||Auk—l+r - Auk—l”H P ce(H)
(”)“ < C(§,6’p) m'F”AQ)”H . (33)

From estimates (25) and (33) it follows that

T

((N —k +1)T)a " Uk71 - uk*1||H c(H)
Al = A c W Ve ) (34
X < (5,9p) (1_ )+||A(0||H ( )

1<k<k+r<N (rT)“

Combining estimates (24)-(34), we obtain that

T

®»

- +||A¢|| J (35)

1
N
[{Au, .} HCT(H) <c(s.0, )(m
Hence, estimate (19) follows from difference equation (10), estimate (35) and the
triangle inequality.
This concludes the proof of Theorem 1.5. L]

Let H, = HM(H ,A) be the fractional space, consisting all ve H for which the

following norm is finite,
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v

W = v, + supﬂ;tl‘“ Ae“’*vHH

p
Theorem 1.6. Assume that ¢, —Zak@k +ApeH_ and (2). Then, problem (10)
k=1

is well-posed in C“(H ) and the following coercivity estimate holds

N

{r’l (uy —uk_l)}1

C“(H)
N _ N
k], e el
l : C(é"gp) T
<M L; Py _kZ:;ak¢k + AP " + a(l—a) ¢ com) |

where M does not depend on ¢,¢", and 7 .

Proof. Let us establish the estimate for H{Auk_l}lN oy Similar arguments

introduced in the proof of estimate (24) result that

[tAu ] <clo.e, )(é

T

®»

o g, j . (36)

Cz(H)

Next, we estimate

1<k<k+r<N (rz-)“

Using formula (11), we obtain for 1<k < N then
Au, =-¢, + RN7k+l(AuN + oy )

N .
+ ZTARJ_k+l ((Dj - @k—1)+ RM (¢’k—1 AN ) (37)

j=k

= Jl(k)+ ‘Jz(k)+ Js(k)+ J4(k)-
It is clear that

T

”‘]1 P

C*(H) = c(H) (38)

Let us estimate ||J2||Ca(H). To alleviate the notation, let v =(Au, + ¢, ). From the
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definition of H, —norm, the equality

k+zr_1_ ARNI = RN—(k—l+r) _ RNk

i=k

and the formula connecting the resolvent of the generator of a semigroup with the
semigroup it follows that

||J k+r k)||
—d5
O k4r-1 2
<M. |2 ot e ot (39)
0 j=k E
3)
w o 2
SZl | H, (rT) ;

Thus, using estimate (39), we get

4
| 2 C"H)S;|

It follows form estimate (6), the definition of C“(H)—norm, and Nz =1 that

(40)

N
3,k < d
” 3( X|H ”(H),Z—;‘((j —k+1)1)17a (41)
_ (N =k +1))"
B a ce(H)’
forall k.
Hence, using estimate (41), we obtain
1930y < 0. (42)

Next, we estimate

195(k +1) k)|

1<k<k+r<N (r T)

First, let us consider the case N — j+1<2r. Using the triangle inequality,
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estimate (41), we get

|35k +r)=3,(k)., (za +1)
(rf) a

T

(43)

c(H)’
Next, we consider the case N — j+1> 2r. We can write as
‘]s(k)_ ‘]3(k + I’): ‘JSl(k)+ Jsz(k)+ Jss(k)+ J34(k)’

where Jg, (k) =1,(t), Ja,(k)=15(k), J,(k)=1,(k) (see equation (26)), and

‘]34(k):(Rr_1 e ) (@ “A+r ¢k— )

So we have
2%(ro)" .
||J3l(kX|H S% ¢ Ca(H)’ (44)
2%(ro)" .
||J32(k]|H S% (D Ca(H)' (45)
v (23
R (@

Finally, using estimate (5) and the definition of C“(H)— norm, we get

||J34 (k]|H < 2("2‘)(1 @r CQ(H) ' (47)
Hence, it follows from estimates (44)- (47) that for N — j+1> 2r,
19, (k +7) k]| M ]
o e e “9
Combining estimates (43), (48), we get
J k + r k M
3.k +1)- 3,k I

1<k<k+r<N (rT) 05(1— a)
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Thus, estimate (42), (49) result that

T

(50)

c(H)’

J -
[ ” (1 a) 4
Using estimate (5) and the definition of C“(H )— norm, we obtain

T

<o

C“(H)

34l = (N —k+2)r) e

c(h) for all k. (51)

Hence, estimate (51) gives

9. (), < 52)
By using estimates (5) , (7) for =0, wegetforall 1<k <k+r<N
Pucr )= 3, (Y <[RME0 R o g,
+HRN (ktar) b Per _¢k—1”H (53)
<(M +1)rz)*|lp° ey
So, from estimate (53) it follows that
19, (k+r)-3,(K)
: (54)
1<k<k+r<N (I’T)a c“(H)
Thus, by combining estimates (52), (54), we obtain
||J4||C"’(H) =M, o’ ()’ (55)

From estimates (36), (38), (40), (50), and (55) it results that

JtAu |

T

®»

1 1
c#(H) < M(Z”AUN + @\ ||Ho( +m C"’(H)} (56)

Hence, using the triangle inequality, estimate (56), and difference equation (10),
we get

c(H)

H{T_l(uk —Uy )}i\‘
1

1
< M(;”AUN +ou +m

T

(57)
v ca(H)j'
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Let us now establish the estimate for H{r’l(uk —ukfl)}lN

ce(H)
It results from formula (11) and difference equation (10) that for all k,

Ye Tl _ gk (ay. 4, )+ R (g — )

N
- Z AR (¢j - ¢’k—1)

=k

=G,(k)+G,(k)+G,(k).

T

Using estimate (5) and the definition of H,_, —norm, we obtain
[G.(k),, <[Auy +eoy, - (58)

Now, using the definition of H_, —norm and the formula connecting the resolvent
of the generator of a semigroup with the semigroup, we get

”Gz (kaa = s/gg‘;ﬁia Ae “R" 7k+1(¢k N X‘H

=Ssu
>0

T

®»

(N _ k)! e_”A(cok 2N )dt (59)

Joe peA J‘:

H

<

C(H)

Next, let us estimate |G, (k)],, . Let A > 0. From estimates (4), (5), (7) for B =1,
and identity (20) it follows that

Ae P AR < min{;,i} <M——2_ (60)
| Hon (i-Kk)e) 2 (1K) +2)y
Using estimate (60) and the definition of C*(H)—norm, we get
G,(k), <M|p7|| . supA™ — —
1k ,C e JZ—;‘((J —K)r+A) (61)
VLAY

l-«a

Hence, combining estimates (58)- (61), we obtain
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H ~Uy,)
C*(H)
+H Au, }; HC“(H) + {z-*l(uk _UH)}F oo (63)
1 1 .
< M(E”AUN +(0N H, +a(1—_c() [ Ca(H)j.

Now, we estimate |Auy +¢,||,, . Using formula (12), we get

Auy +¢, =T, {—Zp:ak i TAR (¢4, )

J=lga

: N-¢
+2 g R (4, ~4y)
k=1
P
+¢N—Zak¢(k +Ap}
k=1
=P +P,+P,.

It follows from estimates (6), (9), (60), assumption (2), and the definition of
C“(H)—norm that

cls.0,), .
I, < (1_a") 2 T (64)
”PZ”HQ SC(é" HPX(Dr c(H)’ (65)
p
||P3|| (5 6 1 kzlock(pfk +Ap (66)
=1 H,,

Therefore, estimates (63), (64)- (66) finishes the proof of Theorem 1.6. [
3 Application
In this section, we consider applications of Theorem 1.5 and Theorem 1.6.

First, let us consider the nonlocal boundary value problem for one dimentional
parabolic equation
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u, +(@(x,), -o, = ft,x), 0<t<l, 0<x<l

u(l, x)= Zp_;amu(em X)+o(x), 0<x<1,

0<6,<0,<---<0, <],
u(t,0)=u(tl), u,(t,0)=u,(t1), 0<t<1

(67)

under assumption (2), where 5 >0, a(x)>a>0 (xe(01)), p(x)(x €[0,1])
and f(t,x) (t,xe[01]) are smooth functions.

The discretization of problem (67) is carried out in two steps. In the first step, we
define the grid space

[01], ={(x=x, : x,=nh, 0<n<M, Mh=1}

Let us introduce the Hilbert space L,, =L([01],) of the grid functions
@"(x)={p, i defined on [0,1], , equipped with the norm

I’

1

2
L =( le(X)IZhJ -
2n xe[0,1],

To the differential operator Agenerated by problem (67), we assign the difference
operator A; by the formula

A" ()= 1@, ), + 0, (68)

acting in the space of grid functions ¢"(x)={p, i’ satisfying the conditions
Do =Pus PL— Py =Py —Pu- ILiswell-known that A is a self-adjoint
positive definite operator in L,, . With the help of A, we arrive at the nonlocal
boundary value problem
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h
WX (0= (6 x), 0<t< xefod,

p
:Z{amuh(ﬁm,x)+ o(x), xelod],, (69)
0<6,<0,<---<6, <L

In the second step, we replace (69) with the difference scheme (10)

fh(x)=f"(t.,x), t =kr, 1<k<N, xel0l], 70

0<6,<6,<---<0,<1.

Theorem 2.1. Let z and h be sufficiently small numbers. Then, the solutions of
difference scheme (70) satisfy the following coercivity stability estimate:

h N
{uk—l }1

)

—U
H ) cr (0], Loy cr (0], w3)

sC(&,ep{@‘{fk“}lN ("

hold where C(,6, ) is independent of 7, f"(x), and ¢"(x), 1<k <N —1.

c(oal, w

Theorem 2.2. Let
P
Ap"(x)= £"(x)= > et (x)
k=1

Then, for solutions of the problem (70), we have the following stability
inequalities
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N N
1, ;h .h h
{T (uk _uk—l)}l +H{Uk—1}1

c([04], Ly ) c*([0a], W)

where M does not depend on ¢, ", and 7 .

The proof of Theorem 2.1, Theorem 2.2 is based on the abstract Theorem 1.5,
Theorem 1.6 and the symmetry properties of the difference operator A’ defined by
formula (68).

Second, let Q be the unit open cube in the n-dimensional Euclidean space
R"={x=(x,,---,%,): 0<x <1, i=1---,n} with boundary
S, Q=QUS. In [01]xQ, the boundary value problem for the multi-
dimensional parabolic equation

A3 G ov,), = 160

r=

x=(x,-X )eQ, 0<t<l,

ul, x)= Z::aiu(ei X)+o(x), xeQ, (71)

0<6, <0, <---<0, <],
ut,x)=0, xeS, 0<t<1

under assumption (2) is considered. Here a,(x), (xeQ)o(x) (xeQ) and
ft,x) (te(0l) xeQ)aregivensmooth functionsand a,(x)>a>0.

The discretization of problem (71) is carried out in two steps.
In the first step, define the grid space Q, ={x=x, =(hm,----hm,); m=
(m,---,m), 0<m <N, hN, =Lr=1--n}Q =Q N,

S, =0, NS.

Let L,, denoted the Hilbert space
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L,y = L[, )= go“(x):[Z\(p“(x)rm.--hzfmo .

XeQy,

The differential operator A in (71) is replaced with

AU ()= (e ()ul ), (72

r=1

where the difference operator A' is defined on those grid functions u"(x)=0, for
all xesS,. It is well-known that A’ is a self-adjoint positive definite operator in
L,, .

Using (71), we get

h ~
dud(:’x)—Afuh(t,x)z f'"(t,x), O<t<l, xeQ,
P ~
u"(L,x)=> e, u"(0,,x)+ p(x), xeQ, (73)
m=1

0<6,<6,<---<0,<1.

From (73) it follows that

Theorem 2.3. Let r and |h| =/ +---+h? be sufficiently small numbers. Then,
the solutions of difference scheme (74) satisfy the following coercivity

Y
+H{ukl}1

cr ([0, Lan)
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where C(5,6,) is independent of z, f"(x),and ¢"(x), 1<k <N -1.

Theorem 2.4. Let A'p"(x) Zam(pg ). Then, for solutions of problem

(74), we have the following stability inequalities

N
H Ui Ui l ”([0,1],,L2h)+‘{ui?l}l c= (o1 w3)
c(5.0,)(.
= a(l—opt) {fkh}l c(H)

where M does not depend on ¢", f", h,and 7.

The proof of Theorem 2.3, Theorem 2.4 is based on the abstract Theorem 1.5,
Theorem 1.6, and the symmetry properties of the difference operator A, defined
by formula (72), and the following theorem:

Theorem 2.5. (see Sobolevskii (1975)) For the solutions of the elliptic differential
problem

{Ahxuh (x)=w"(x), xeQ,,

u"(x)=0, xeS,,

the following coercivity inequality holds:

n
h h
ZH(Uk )xm, H <M HW
r=1

2h

Lon
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