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Abstract 

In this paper, He‘s variational iteration method is applied to Fredholm integral 

equations of the second kind. To illustrate the ability and simplicity of the 

method, some examples are provided. The results reveal that the proposed 

method is very effective and simple and for first fourth examples leads to the 

exact solution. 

Keywords: Variational iteration method; Fredholm integral equation; Lagrange 

multiplier; Restricted variation. 

1 Introduction 

Variational iteration method [1-2] is a power device for solving various kinds of 

linear and non-linear functional equations. It was introduced by Ji-Huan He in 

1998 and has been used by many mathematicians and engineers to solve various 

kinds of functional equations, such as wave equation [9], hyperbolic differential 

equations [10], Telegraph equation [11], nonlinear chemistry problems [12], 

Cauchy reaction diffusion problem [13], quadratic Riccati differential equation 

[14], and many other equations. Fredholm integral equation has been solved by 

some other methods, such as Adomian decomposition method [3, 7] and 

Homotopy perturbation method [3-6]. In this study, we use variational iteration 

method for fredholm integral equations of the second kind. The general form of 

this integral equation is given by 

                    ( ) ( ) ( , ) ( ( ) ) , .
b

a
u x f x k x t F u t dt a x b                 (1) 
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Where ( , )k x t is the kernel of the integral equation, f and F  are known functions 

and ( )u x  is the unknown solution of integral equation, which we are going to 

find, via variational iteration method. 

2 Application of Variational iteration method 

  For solving equation (1) by variational iteration method, first we differentiate 

once from both sides of equation (1) with respect to x : 

                    
( , )

( ) ( ) ( ( ) ) .
b

a

k x t
u x f x F u t dt

x


  

                               (2) 

Now, we apply variational iteration method for equation (2). According to this 

method correction functional can be written in the following form: 

                1 0

( , )
( ) ( ) ( ) ( ) ( ) ( ( ) ) ,

x b

n n n na

k s t
u x u x s u s f s F u t dt ds

s


 
     

 
     

(3) 

where ( )s is a general Lagrange multiplier. To make the above correction 

functional stationary with respect to nu , we have: 

 

1 0

0 0

( , )
( ) ( ) ( ) ( ) ( ) ( ( ) )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

x b

n n n na

x x

n n n n n

k s t
u x u x s u s f s F u t dt ds

s

u x s u s ds u x x u x s u s ds

   

       


 
     

 

      

 

 

 

From the above relation for any nu , we obtain the Euler-Lagrange equation 

                                   ( ) 0.s                                                                        (4) 

With the following natural boundary condition: 

                                   ( ) 1 0.x                                                                    (5) 

By using equations (4) and (5), Lagrange multiplier can be identified optimally as 

follows: 

                                  ( ) 1.s                                                                         (6) 

Substituting the identified Lagrange multiplier into equation (3), results in the 

following iterative formula: 

 1 0

( , )
( ) ( ) ( ) ( ) ( ( ) ) .

x b

n n n na

k s t
u x u x u s f s F u t dt ds

s

 
     

 
     (7) 
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By starting from 0( )u x , we can obtain the exact solution or an approximate 

solution of the equation (1). In some Fredholm integral equations by 

differentiating from the integral equation, we obtain a differential equation and we 

can solve this differential equation by variational iterative method. (See Example 

2) 

3 Numerical examples 

  To illustrate the ability and simplicity of the proposed technique, some examples 

are provided here. 

Example 1. Consider the following linear Fredholm integral equation 

         
13 3

0

1
( ) (2 1) ( ) , 0 1,

9

xu x e e x x t u t dt x                      (8) 

with the exact solution, 3( ) xu x e [3, 4]. 

The corresponding iterative formula (7) for this example can be constructed as 

follows: 

             
13 3

1 0 0

1
( ) ( ) ( ) 3 (2 1) ( ) .

9

x s
n n n nu x u x u s e e t u t dt ds

 
      

 
        

       (9) 

By taking 3 3
0

1
( ) (2 1)

9

xu x e e x   , we derive the following results: 

3 3
1 3
( ) (2 1),

3

x x
u x e e    

3 3
2 4

( ) (2 1),
3

x x
u x e e    

3 3
3 5
( ) (2 1),

3

x x
u x e e    

 

3 3

2
( ) (2 1),

3

x
n n

x
u x e e


  

 

Thus, we have 3( ) lim ( ) x
n

n
u x u x e


  , which is the exact solution. 
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Example 2. Consider the following fredholm integral equation with the exact 

solution ( ) sin cosu x x x   [4]. 

              
0

( ) (1 2 )cos sin 4 cos cos ( ) .u x x x x t u t dt


            (10) 

By differentiating twice from integral equation (10), the following differential 

equation will be obtained: 

                            ( ) ( ) 0.u x u x                                                              (11) 

By applying variational iterative method for (11), we derive the following 

iterative formula: 

              1 0
( ) ( ) sin ( ) ( ( ) ( )) .

x

n n n nu x u x s x u s u s dt            (12) 

Let's start with 0( ) sin cosu x A x B x  , as an initial approximation, and using 

the iterative formula (12) we get: 

1( ) sin cos ,u x A x B x   

2 ( ) sin cos ,u x A x B x 
 

For determineing A  and B , we substitute the solution in the integral equation 

(10) and we obtain 1A B  . 

Example 3. Consider the following integral equation with the exact solution, 

( )u x x [8]. 

                  
1 2

0

7 1
( ) ( ) .

8 2
u x x xt u t dt                                              (13) 

The iterative formula would be as: 

               
1 2

1 0 0

7 1
( ) ( ) ( ) ( ) .

8 2

x

n n n nu x u x u s t u t dt ds
 
    

 
              (14) 

Consider the initial approximation 0
7

( )
8

u x x . Therefore other terms of the 

sequence are computed as follows: 

1
497

( ) 0.9707031250 ,
512

u x x x   
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2
2082017

( ) 0.9927830696 ,
2097152

u x x x   

3

4

5

( ) 0.9982022779 ,

( ) 0.9995509734 ,

( ) 0.9998877686 ,

u x x

u x x

u x x






 

The sequence tends to x , as n .  

Example 4. Consider the following equation 

         
1 2 2

0
( ) cos ( ) sin ,u x x x x u t t dt                                   (15) 

with the exact solution, ( ) cosu x x  [6]. 

In the same procedure, the iterative formula can be expressed as the following: 

 
1 2 2

1 0 0
( ) ( ) ( ) sin 1 ( ) sin .

x

n n n nu x u x u s s u t t dt ds
       
 

     (16) 

By using this iterative formula and taking 0( ) cosu x x , we have: 

1( ) cos ,u x x  

2 ( ) cos ,u x x
 

Therefore, the exact solution can be recognized easily. 

Example 5. For the last example consider the following non-linear Fredholm 

integral equation 

  
13 2 3 5 2

0

367 11357 2095
( ) sin(4 ) cos (4)sin (4) cos (4) ( ) .

4096 98304 32768
u x x x x t u t dt

 
       

 
 (17) 

Where the exact solution is, ( ) sin( 4 )u t x   [5]. 

By using variational iteration method for equation (17) and considering 

3 2
0

367 11357 2095
( ) sin(4 ) cos (4)sin (4) cos (4)

4096 98304 32768
u x x x

 
      

 
, we 

obtain the following results: 

  =  u 
1    0.003982967666 x 3 8. ( ) sin x ( ) cos x 3 4. ( ) sin x ( ) cos x 

,
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  =  u 
2   0.000374692464 x 3 1. ( ) sin 4. x 

,
 

  =  u 
3   0.0000353613617 x 3 1. ( ) sin 4. x 

,
 

  =  u 
4   0.333819270 10 -5 x 3 1. ( ) sin 4. x 

,
 

  =  u 
5   0.315123700 10 -6 x 3 1. ( ) sin 4. x 

,
 

 

Suppose 5( ) ( )u x u x . Plots of approximated solution, 5( )u x , and the exact 

solution are presented in Fig.1. 

 

 
4 Conclusion and Discussion 

    In this work, variational iterative method has been successfully applied to find 

the solution of Fredholm integral equations of the second kind. It can be 

concluded that the method is very powerful and efficient technique for finding 

exact solutions for wide classes of problems. In this work, we have used the 

Maple 11 package to carry out the computations. 
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