
  

Optimal Inventory Control of Obsolete Products with Permissible Delay in Payments and Time-
dependent Demand using PSO Algorithm 
 
Abstract 
This study provides an inventory control model for determining the optimal replenishment cycle 
of obsolete items, in which the customer demand is regarded as a decreasing function of time in 
sudden obsolescence. Further, to encourage the buyer for more purchasing, the seller can allow 
the buyer to pay the cost with a delay. Accordingly, the present paper focuses on investigating an 
inventory control model for obsolete items while considering a trade credit policy with time-
dependent demand and sudden obsolescence. Given the nonlinearity of the proposed model, the 
Taylor series approximation was used to solve it. In addition, to avoiding the effect of Taylor 
series approximation on the optimal solution, an efficient particle swarm optimization meta-
heuristic algorithm was applied to find the near-optimal solution, indicating better answers. 
Numerical examples in the case study of mobile phone wholesale industry, were considered and 
solved to demonstrate the validation of the proposed model. Finally, a sensitivity analysis was 
performed on the effects of the main parameters on the total profit and replenishment cycle time. 
The numerical results indicated that the inclusion of obsolescence risk in the inventory model 
with obsolete items has a significant effect on increasing profits while reducing the costs of these 
items. 
Keywords: Particle Swarm Optimization (PSO); Inventory Control; Obsolete Items; Time-
dependent Demand; Delay in Payment;  
 



  

Introduction 
The classical economic order quantity (EOQ) model is based on implicit assumptions. For 
example, the demand rate is considered constant over an infinite planning horizon. This 
assumption is valid only at the maturity stage of the product lifecycle, while not applying to 
the introduction and growth stages of this lifecycle, when companies face high demands 
whereas less competition. Contrarily, the demand decreases while competition increases at 
the decline stage of the product life cycle. Therefore, different modelling patterns of time-
varying demands should be considered to reflect product sales at different product lifecycle 
stages. 
In this respect, the current paper evaluates an inventory control model for obsolete items 
where the optimal replenishment cycle time is achieved, aiming to reduce inventory costs 
under trade credit conditions. 
To this end, a general optimization model was proposed with a decreasing demand function 
over time, considering that after occurring obsolescence, the demand will become zero 
immediately. In addition, the demand is considered time-dependent due to the importance of 
reviewing the lifecycle of obsolete items. Further, considering that the demand reduces over 
time, especially at the decline stage of the lifecycle, the trade credit policy has been used to 
encourage customers to buy more.  
Obsolescence, especially in the mobile phone industry as the case study of this research, 
usually decreases the sales value of the product, and ultimately, the volume of the product 
that can be sold. Thus, the speed of product obsolescence affects the seller's decision and the 
amount of inventory in the sales channel. 
Due to complexity and nonlinearity, it is impossible to solve the original model as the closed-
form in such models. Thus, Taylor series are generally applied to simplify the model. 
Additionally, the first two or three terms of series are frequently employed, considering that 
writing and calculating the infinite terms of the Taylor series is impossible. 
 Nonetheless, it should be noted that this approximation regarding using the first two or three 
terms of the Taylor series at a point is only valid around this point. At the same time, it 
results in a more significant difference value between the real function and its approximation 
at farther points. So, meta-heuristics were used as the replacement solution of Taylor 
approximations. In other words, the model was solved with meta-heuristics instead of adding 
approximations to the model and then solving it with exact methods. In this study, the particle 
swarm optimization (PSO) algorithm was employed explicitly as the solution method, and 
numerical results demonstrated the performance of this replacement. The remaining sections 
of the paper are organized as follows. 
The literature on time-dependent demands and studies on obsolete items are reviewed in 
section 2. Section 3 describes the applied assumptions and notations in the modelling in this 
study. In addition, the mathematical model is provided in section 4, followed by proving that 
the optimal value of the replenishment cycle exists along the planning horizon and is also 
unique. Finally, section 5 concludes the study. 
Literature review 
This section consists of three research parts related to the inventory models of obsolete items, 
inventory models with time-dependent demands, and inventory models with payment delays. 
The inventory models of obsolete items were first introduced by Brown (1964). In this study, 
the multi-period inventory control model was considered for sudden obsolescence items. In 
the multi-period modelling of obsolescence items, the probability of obsolescence in all 
periods was assumed to be equal to one, and the modelling was performed using dynamic 
programming. Cobbaert et al. (1996) proposed an inventory control model for the 
obsolescence items considering an exponential lifetime of products up to sudden 
obsolescence. They then generalized the proposed model to a situation by considering 
shortage and lead-time. Similarly, Arcelus et al. (2002) presented a model to maximize 
profits by considering Cobbaert’s model, in which the demand is a function of the sales price 
and time. In another study, Song et al. (2004) introduced a periodic inventory model for 
sudden obsolete items based on the concept of dynamic programming. In this model, obsolete 
costs in each period are calculated according to the conditional probability of non-
obsolescence in the previous period. Wang et al. (2011) also proposed and solved an 



  

inventory control model in the case of obsolete items by considering time-dependent 
demands during the product lifecycle as a function of population growth and offering 
discounts during the demand decline period. In another study, Delft et al. (1996) added the 
descending discount function to the obsolete inventory model by considering Cobbaert’s 
model. Likewise, Persona et al. (2005) developed the consignment stock policy concerning 
obsolete items. Further, Joglekar et al. (1993, 1996) modelled the case of sudden 
obsolescence by considering the sales price in a revenue function instead of a cost function. 
Barron (2018) introduced an EOQ inventory model including revenues, losses, shortages, and 
ordering costs, under unexpected obsolescence conditions in which the returns are governed 
by a Markov additive process (MAP).  
Inventory models with time-dependent demands were also reviewed in this study. As 
previously mentioned, a limited number of studies have addressed this concept in 
obsolescence models, mainly focusing on simple structures. Thus, the topic was reviewed in 
other types of models. Various studies have been conducted with different decreasing and 
increasing time functions in changing the demand relative to time regarding deteriorating 
items. Some studies have been performed by considering increasing geometric demand 
function over time. For instance, Pal et al. (2015) proposed an economic production quantity 
model with a time-dependent geometric demand function including shortage and inflation in 
a fuzzy environment for deteriorating items with variable deterioration rates. Prasad and 
Mukhergee (2014) also introduced a model for inventory control of perishable products by 
considering the geometric demand relying on the inventory level and time along with a 
shortage. In another study, Sunni and Chukwu (2013) provided a model of perishable items 
by considering the decreasing geometric demand function over time and time-dependent 
deterioration rate with the Weibull distribution function and the permissible shortage. 
On the other hand, several studies examined the incremental time-dependent quadratic 
demand function. For example, Begum et al. (2012) offered an inventory model including a 
time-dependent quadratic demand function with partial shortage. Furthermore, Sett et al. 
(2012) suggested a two-warehouse inventory model for perishable items based on the 
incremental time-dependent quadratic demand. Similarly, Sarkar et al. (2012) submitted an 
inventory model for deteriorating items with variable deterioration rates, demand rates with a 
time-dependent quadratic function, and delays in payment between the retailer and the 
supplier. 
Some other studies also evaluated the increasing linear dependence of demands on time. For 
instance, Chauhan and Singh (2015) presented an inventory model for perishable items with a 
linear time-dependent demand function, linear time-dependent deterioration rate, and 
inflation. Moreover, Dutta and Kumar (2015) introduced an inventory model for perishable 
items with linear demands over time, linear holding costs over time, and partial shortage. 
Mishra et al. also proposed a model similar to Butar and Kumar (2015) with linear demand 
functions over time and different holding costs over time. Additionally, Pervin et al. (2015) 
provided an inventory model for perishable items with delays in payment and a linear time-
dependent demand function.  
Some studies also investigated the demand function based on the product lifetime. For 
example, Avinadav et al. (2013) suggested an inventory model to determine the optimal price 
and order quantity of perishable items based on time- and price-dependent demands. The 
demand function is linear and polynomial relative to cost and time, respectively. Likewise, 
Herbon (2013) presented a dynamic inventory model for perishable items where the demand 
function depends on the product lifetime, and the demand is higher for a newer product. 
As shown, most studies on the state of demand over time are increasing functions. However, 
some studies reported decreased demands over time that can be included in the obsolescence 
research area. For instance, Ghoreishi et al. (2013) provided an inventory model with a 
decreasing demand function on both time and price. In this paper, the cost and optimal order 
quantity was examined in an inflationary environment. Ghoreishi et al. (2013) also developed 
the previous model by adding the shortage to the model. Further, Maihami and Nakhaei 
(2012) introduced a model for simultaneously optimizing the order quantity and selling price 
of perishable items by considering demand reductions over time and, with cost in which 
delay in payment is allowable. Maihami and Nakhaei (2012) further presented the demand 



  

model suggested in the previous study by considering partial shortage for non-instantaneous 
deteriorating items.  
Akhtar et al. (2023) proposed an inventory model with partial backlogging for deteriorating 
items in a limited time horizon. The study considered the deterioration rate as a random 
variable that follows the three-parameter Weibull distribution. In addition, demand rate was 
considered to be dependent on the time and the selling price of the item. The purpose was to 
determine the optimal selling price of the product, the optimal number of ordering cycles, and 
the optimal level of shortage that maximizes the retailer's total profit in a limited time 
horizon. 
Another classic inventory control model assumption indicates that the buyer immediately 
pays for the purchase after receiving the items. At the same time, the seller may consider 
more time for the buyer to pay the purchase cost. This is known as delay-in-payment policy 
and is generally used as an incentive policy to attract more customers by the seller. Regarding 
this policy's category of inventory models, Ouyang et al. (2006) evaluated an optimal 
inventory policy for non-instantaneous deteriorating items considering this policy. In another 
study, Moussawi et al. (2014) extended a three-level supply chain including the customer, 
vendor, and the bank under the conditions that the vendor's trade credit is given to the 
customer, and the vendor-related bank controls the cash. They considered that the bank 
would provide the vendor with a specific discount on the loan rate, and this coordination will 
reduce the costs. Jamal et al. (1997) also developed the ordering policy under credit periods 
when the shortage was allowable. Chang and Dye [29] offered an inventory model in which 
the items were perishable, and delays in payment and shortage were permissible. 
Furthermore, Huang (2003) provided a two-level trade credit model where the supplier and 
retailer could give trade credits to the retailer and the customer, respectively. Similarly, Soni 
et al. (2010) reviewed inventory models with trade credits consisting of topics such as 
perishability, stochastic demands, discounting, and cash present values. 
Some studies have also investigated the decrease in inventory values over the time. For 
example, Khouja and Goyal (2006) obtained the optimal order quantity, considering 
continuously decreasing inventory costs over the time. Additionally, Yu et al. (2011) 
addressed the continuous product price reduction in an inventory model with a two-level 
supply chain. Vandana (2016) also suggested an ordering model under trade credit with a 
shortage in a two-level supply chain, where the retailer prepaid a percentage of costs. 
Zahran et al. (2016) presented a trade credit inventory model with the consignment stock 
policy in their study. Pourmohammad Zia and Taleizadeh (2016) also introduced a three-level 
inventory model with a combination of shortage, prepayment, and delay in payment. 
Moreover, Amin Khan et al. (2021) expanded an EOQ model including advanced payments, 
partial delays, all-unit discounts, partial shortage, and warehouse limits. The retailer tends to 
optimize the number of rented warehouses in addition to own warehouses. Likewise, Ahmed 
et al. (2019) proposed a multi-period inventory model based on reworking defective items 
and considering delay in payment in the supply chain. In a similar study, Taleizadeh et al. 
(2020) provided an EOQ model with delay in payment, partial shortage, and probabilistic 
replenishment intervals. 
Duary et al. (2022) presented a model of inventory control for perishable items with two 
warehouses, delay in payment, partial shortage, and advertisement activities.  
Kaushik (2023) provided an inventory control model based on profit maximization policy 
considering two different interest rates, where ramp-type demand has been employed with a 
delay in payment approach. 
Amin Khan et al. (2022) proposed a perishable inventory control model for the era of the 
Corona pandemic, with time-dependent demand and combined payment conditions, where 
the deterioration is considered to be non-instantaneous and the shortage is also allowed. 
Gap Analysis: 
Unlike the former inventory control models in which by simplifying assumptions the model 
can be easily solved, in the models with obsolescence, parameters, restrictions, decision 
variables, objective functions, and newer assumptions should be considered in inventory 
ordering models according to the prevailing conditions in today's world. Pricing, delay in 
payment, incentive policies such as discounts on the purchase price, and considering more 



  

other realistic functions on product demand are among the most important of these factors in 
the field of obsolete items. According to the conducted studies, the three characteristics of 
pricing, quantity discount, and delay in payment are significant in the subject of inventory 
control of obsolete items. Based on the previous literature, so far, no model is provided 
considering these three altogether. It is noteworthy that this topic is an essential request in the 
obsolete product market (specifically, mobile phone market in this study) considering the 
decreasing demand over time in these products and requiring an incentive policy such as 
trade credit to sell the products as much as possible. The other specifications of the developed 
model are as follows: 
Assumptions: 
The single product model is considered. 
Lead time and shortage are not allowed. 
The inventory level at the end of the ordering cycle is set to zero, if obsolescence does not 
occur and if obsolescence occurs; the inventory level at the end of the ordering cycle is set to 
the remained items.  
To show the obsolescence in demand level, the decreasing demand function over time is 
used. Therefore, it is assumed that the demand rate function follows the exponential function 

𝐷0𝑒
−𝜆𝑡; however, the mean lifetime of product is also considered equal to L, 𝜆 =

1

𝐿
 

(1) 𝐷 = 𝐷0𝑒
−𝜆𝑡 

 The replenishment cycle is considered to be continuous. 
Obsolescence happens suddenly.  
 The probability distribution function of the obsolescence lifetime is assumed exponential 
The planning horizon is unlimited 
Parameters: 
t: The time that the obsolescence occurs (year) 
L: Expected lifetime of product (years) 
D: The time-dependent annual amount of demand 
D0: The fixed demand rate per time unit. 
h: The rate of holding costs per unit time of an item ($/year) 
M: The payment time after receipt the order (years) 
Ie: The interest rate earned in a cycle 
Ip: The interest rate charged in a cycle 
Cs: The cost of obsolescence per unit ($/year) 
c: The cost of purchasing per unit ($/year) 
Ps: The probability that obsolescence does not occur during the order cycle. 
Decision variables 
T: Replenishment cycle time 
Cost function 
The objective function of a period consists of holding cost, obsolescence cost, the interest 
payable and interest receivable, as follows. 
The obsolescence costs of a period are equivalent to: 
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The holding costs of a period are equal to: 
If obsolescence occurs at 0 < t < T, the mean inventory available over a period is (𝑇 ∗ 𝐷0 −

(
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2
))𝑒

−𝑡

𝐿 . Therefore, the holding cost would be equal to: 
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           If obsolescence occurs at t > T with concerning to that the probability of obsolescence 
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; therefore, the holding cost would be as follows: 

(4) ∫ (
𝑇 ∗ 𝐷0
2

) ∗ (𝑇 ∗ C ∗ 𝐻) ∗ ((
1

𝐿
)𝑒
−2𝑡
𝐿 ) ⅆ𝑡

∞

𝑇

=
𝐷0𝐶𝐻𝑇

2(𝑒−
2𝑇
𝐿 )

4
 

The average interest earned and average interest paid in two cases according to the status of 
M relative to T are: 
 

First case: M  < T 
 
 
 
 
 
 

 
Figure 1: Inventory level in the range [0, T] 
M  T when 

The cost of interest payable of a period in the first case is equal to: 
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The interest receivable revenue of a period by the retailer is equal to: 
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Second case: M > T 
 

 
Figure 2: Inventory level in the range [0, ) when M > T 

In this case, there is only interest receivable: 
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Therefore, by summing the obsolescence cost, holding cost, and payable costs, as well as the 
interest receivable revenue, the total cost in cases 1 and 2 are as equations (8) and (9) 
respectively: 
First case: 
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Second case: 

(9) 

𝐶𝐶2 = 

−𝐷0(
1
2𝐻𝐶𝐿 + 𝐶𝑠) (𝐿 (1 − 𝑒

−
2𝑇
𝐿 ) − 2𝑇)

4
−

𝐶𝐷𝐼𝑒(𝐿 − 𝑒
−
2𝑇
𝐿 (𝐿 + 2𝑇))
4
4

−
𝐶𝐼𝑒(𝑒

−
2𝑇
𝐿 𝐿 − 𝑒−

2𝑀
𝐿 (𝐿 + 2(𝑀 − 𝑇)))

4
 

 

By dividing Cc1 and Cc2 into (1 − 𝑒−
𝑇

𝐿) [40], the total cost for all periods will be resulted 
respectively by equations (10) and (11).  
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The convexity proof of the objective functions at the first and second cases are brought in 
appendices A and B respectively. 
Solution Approach 
The meta-heuristic PSO algorithm is an evolutionary computational method based on the 
population of solutions, which have been used to solve the models in this study. Like other meta-
heuristic algorithms, this algorithm is an optimization tool to solve various optimization 
problems and reach near optimal solutions. This algorithm is one of the most recent meta-
heuristic solutions, inspired by the social behavior of groups of migratory birds trying to reach a 
destination. There are two main reasons for using the PSO method to solve the present models.  
The introduced method is based on swarm intelligence, and the particles move in the direction 
that achieves the best result. In inventory control models, this is fundamentally important 
specially in the models with time-dependent demands.  
The PSO algorithm’s convergence speed is relatively high, and it is not memoryless. In fact, the 
particles benefit from their past information (i.e. inventory of the previous period), and this 
advantage cannot be found in other optimization algorithms. For example, the prior information 
in genetic algorithm will be removed by changing in population. 
With these two main properties, while the results are more confident, they are also more suitable 
for inventory control models such as models in this research. 
In the PSO algorithm, the solutions' population is called a group. Each solution is like a bird in a 
flock of birds called a particle and is similar to the genetic algorithm's chromosome. All particles 
have a fitness value calculated using the fitness function, and during the implementation of the 
algorithm the particle fitness function of the all particles will be optimized. The velocity vector 
of a particle determines the direction of motion of it. Unlike the genetic algorithm, in the 
algorithm's evolutionary process, new birds are not created from the previous generation. 
Instead, each bird optimizes its social behavior according to its experiences and other birds' 
behavior in the group and accordingly improves its movement towards the destination. The PSO 
algorithm starts with random solution and then seeks the optimal solution by updating the 
particles per iteration. 
The decision variables according to the position of the velocity vector of particles, and each 
particle's position per iteration of the algorithm are calculated based on the following notations 
and equations. 
i: Particle index 
t: Iteration index 



  

itV 1 : The new velocity vector of each particle based on the its previous velocity  

ipBest : The best position the particle has ever reached 

inBest : The position of the best particle in the neighborhood that has been obtained so far 

 gBest : The position of the best particle among the group 

r1: and r2: Two random numbers (with an uniform distribution between [0,1]) 
c1: and c2: Learning coefficients that control the effect of pBest and nBest on the search process. 
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According to equations (12-15), the new velocity vector of each particle is calculated based on 

the previous velocity of the particle itself ( itV 1 ), the best position the particle has ever reached (

ipBest ), and the position of the best particle in its neighborhood ( inBest ) that has been obtained 

so far. If each particle's neighborhood includes all the particles in the group, then inBest  

indicates the position of the best particle in the group, which is shown as gBest. r1 and r2 are two 
random numbers generated as independent of each other. Learning coefficients c1 and c2, control 

the effect of pBest and nBest on the search process. The maxV  limits the particle velocity vector. 

In other word, maxV  is a limit that controls the global search capability of the particle group. 

Using equation (15), the velocity vector of each particle is converted to the change probability 
vector. In this equation, si indicates the probability that xit is equal to 1, which is calculated based 
on a random value of p (with a uniform distribution between zero and one). Then, using the 
above vector relation, the position of each particle is updated.  
The time-dependent inventory control problem of obsolete items under the assumptions 
examined in this research, is one of the problems with a high complexity. As a result, in this 
research, a new improved PSO algorithm has been developed to solve the above problem. 
According to (10) and (11), the inventory control model of obsolete items with time-dependent 
demand is a nonlinear problem in which the decision variable is defined as T.  
The proposed algorithm consists of two stages, the first of which consists of two individual parts. 
In the first part, SSize particles are first created using a quasi-random method as primary 
particles. After that, the random neighborhood with NSize particle is formed around each initial 
solution. However, to increase the quality of the solutions during the algorithm's steps, it is 
necessary to exchange information between different neighborhoods of the particles. 
Accordingly, after updating the nBest values in each iteration of the algorithm, 2 * SSize 
particles from the nBest particles are selected as parents using the match selection method. Then 
the SSize new particles (offspring’s) are selected randomly. The new particles replace the worst 
particles in any neighborhood. As shown during the algorithm's steps, the quality and distribution 
of solutions are improved and a maximum of SSize particles of suitable and non-repetitive 
solutions is chosen and placed in a set called the “reference set” for use in the next steps of the 
algorithm. Meanwhile, the particle diversification mechanism is performed to prevent early 
convergence and at result create initial solutions with good distribution and quality for the next 
steps. Accordingly, a set of best particles among the reference set is selected and then, the MRate 
percentage of the group particles is randomly generated (using the uniform distribution function) 
based on the selected particles. The new particles are replaced with the worst particles in the 



  

group. 
At the end of the first part, the reference set of solutions are considered as the initial particles to 
start the second part. If the number of particles in the reference set is less than the SSize, the 
remaining required particles are created and added randomly. In the second part, improving the 
solutions continues with a different mechanism, and good and non-repetitive solutions are placed 
in the reference set per iteration. At the end of the second part, the reference set of solutions are 
considered as the initial particles to start the second stage. 
The first and second parts are terminated after P1S1 and P1S2 iterations or in the case of 
reaching to the unchanged best solution after CR11 and CR12 iterations. Besides, the first stage 
of the algorithm terminates after P1 times sequential repetition of the first and second parts.  
In the second stage, first, the optimal results are determined from the model, and the best 
solution is selected among all solutions. The quality of the chosen solution is then improved by 
using the local search procedure. Therefore, a new particle is obtained with only one component 
different from the original one in a way almost similar to mutation operator in genetic algorithm. 
The new particle's fitness value is calculated using the mathematical model. If the new particle's 
fitness value is better than the original particle, the new particle replaces the original particle. 
Otherwise, the new particle is removed, and the original one remains unchanged. The procedure 
is stopped at the latest after P2 iterations or if the particle's best fitness value is not improved 
during CR2 consecutive iterations. The second stage of the algorithm ends after P2 iterations or 
in the absence of any change in the best particle's value after CR2 iterations. 
Case study 
This study focuses on the mobile phone wholesale industry in Iran. As a historical experiment, 
with the obsolescence of the A8 series and the Edge model of Samsung mobile phones, the 
mobile phone wholesalers in the Iranian market suffered huge losses and hence they were 
seeking to determine the optimal economic ordering quantity in this field.  So, it seems that in 
this industry reviewing the wholesale inventory control model of mobile phones would be 
essential considering the possibility of obsolescence due to the emergence of new technology. 
It is more challenging to decide on replenishment cycle time due to the unclear customer demand 
caused by obsolescence. Furthermore, these decisions would be more complex due to the unclear 
supply side by suppliers. Therefore, for the products facing obsolescence, developing 
optimization models is more essential. All data used in this study are gathered from wholesale 
mobile phone industries in working period of 2021-2020.  To protect data privacy, more 
information about mobile phones are ignored.  
Numerical result 
Now after introducing the mathematical model, the solutions approach has been presented in this 
section. The model was solved on a PC with windows 7, version 2012, and Intel(R) Pentium (R), 
Core-I5, 2.9 GHz CPU with 2 Giga bytes of RAM. In this study, some numerical examples are 
presented to evaluate the performance of the proposed model and solution procedure. 
Accordingly, the convexity of the objective function is demonstrated for the presented example 
by the following Figures. The exact results have been obtained by Mathematica 6.0 and Figures 
were plotted using the “Extremum” in GeoGebra. Also, PSO toolbox in MATLAB V9.0 has 
been used for developing the introduced Meta-heuristic solution approach. 
Let A=200, 𝐷0=10000, c=200, Cs=200, H=0.15, Ie=0.13, Ip=0.15, L=4, M=0.04 
The objective function of the first case based on the above information is shown in Figure 3: 

Figure 3: The inventory objective function values in the case M T 
The optimal value according to the 
above example in the first objective 
function (i.e. equation 10) is equal to: 
T*= 0.378155, 𝐶𝐿1 = 640230 



  

The objective function of the second case is also shown in Figure 4: 
Figure 4: The inventory objective function values in the case M> T 

The optimal value in the second objective function 
(i.e. equation 11) is also equal to: 
T* = 0.0241189, 𝐶𝐿2 = 79873 
 
Sensitivity analysis results 
Generally, the changes in the values of the model 
parameters lead to uncertainty in decision-making. 
In this section, the sensitivity analysis is 
performed on the presented numerical example by 
setting different values for the critical parameters 
of the model. This analysis is based on the 
obtained solution by replacing the Taylor series 
approximation and model solving by the PSO 

algorithm. 
Table 1 represents the changes on the decision variable and objective function for different 
values of the M, Cs and L. Also, Table 2 provides the changes in decision variable and objective 
function for different values of H and Ie. 
In these Tables, the approximate cost resulted from PSO algorithm (CLpso) and Taylor series 
(CLTapp) are respectively presented. 
Table 1: Changing inventory costs by parameters L, M and c 

M  T 

Cs =400, c =400  Cs = 200, c =200  C 

4 2 4 2 L M 

0.0151627 0.0117828 0.0214494 0.01667 Tpso 
0 
day 

0.0165919 0.0123843 0.0234544 0.0175027 Tapp 
114326.0 71697.8 77528.3 49352.4 CLpso 

131978.0 80530.8 85989.4 53747. CLTapp 

0.0221003 0.0211952 0.0268244 0.0242833 Tpso 
60 
days 

0.0266371 0.0207021 0.0313758 0.0241201 Tapp 
77364.2 33682.7 51349.4 22679.2 CLpso 
83939.2 42831.9 56809.8 29763.1 CLTapp 

Table 2: Changing inventory costs by parameters H, Ie and C 

M  T 

Cs =400, Cp = 400 Cs =200,= Cp= 200 

0.15 0.11 0.07 0.15 0.11 0.07 Ie H 

0.0151878 0.0273212 0.0355366 0.0214844 0.0312675 0.0386555 Tpso 

0
.3

 

56381.6 140907. 198139. 50123. 84200. 109935. CLpso 

0.0161421 0.0290387 0.0377713 0.0228346 0.0332336 0.0410873 Tpso 

0
.2

 

45237.9 124779. 178639. 43257.4 75325.7 99545.2 CLpso 
 

Based on Table 1, the optimal replenishment cycle and the ordering quantity increase by 
increasing the amount of L, since the risk of product obsolescence decreases by increasing the 
amount of L. In addition, the average product lifecycle of inventories increases by increasing on 
L, leading to a rise in the holding cost during product lifetime, while the annual average 
inventory cost (CL / T) demonstrates a reduction. 
Therefore, for products with a decreasing obsolescence rate whereas an increasing expected 
product lifetime, the retailers should increase the order quantity per cycle to avoid the ordering 
cost and increasing the total inventory cost.  



  

Similarly, the replenishment cycle time (T) and consequently the optimal ordering quantity 
increase by increasing M, and so the retailers are encouraged for more ordering. Accordingly, the 
retailers can undergo lower inventory costs and lower obsolete item costs by selecting an 
appropriate policy and considering a more extended payment time. 
The comparison of the objective function results of the Taylor series and the PSO algorithm 
revealed that PSO results have priority over those of the Taylor series. The results in the case M 
> T can be extracted similarly. 
Furthermore, the optimal replenishment cycle time decreased, whereas the total inventory cost 
increased by increasing the holding cost (Table 2). Conversely, the optimal replenishment cycle 
time increased while the total inventory cost represented a decline by raising the receivable 
interest rate. 
Validity of the model 
To check the validation of  the proposed solution method based on PSO algorithm, it is necessary 
to compare the solutions obtained from the algorithm with the already existing exact solution of 
the model. Accordingly, the results of the PSO algorithm solution for the first case of the 
inflation model, was compared with the solutions which have been solved manually without 
using metaheuristic algorithms, and the outputs are presented in Table 3. The ratio of the 
algorithm solution and the exact solution is about 0.007, which indicates the high accuracy of the 
algorithm in providing the solution near to the optimal solutions. 
Table 3: Comparing the exact solution results with the solution of the proposed PSO algorithm 

M<T 

Cs=Cp=c=200 Cs=Cp=c=20 c 

4 2 4 2 L M 

49.98 39.34 150.41 119.42 Qopt 

15 
day 

54.8 32.02 151.8 120.4 Qpso 
593070.67 349503.16 64518.67 38809.92 CLopt 

597721 352373.9 64973.3 39052.7 CLpso 

1.007841 1.008214 1.007046 1.00625562 
𝐶𝐿𝑝𝑠𝑜

𝐶𝐿𝑜𝑝𝑡
 

73.7 48.5 166.8 102.7 Qpso 

30 days 

592689.29 349188.85 64276.29 38662.68 CLopt 
598368.8 351862.9 64765.2 38987.64 CLpso 

1.009583 1.007658 1.007606 1.008405 
𝐶𝐿𝑝𝑠𝑜

𝐶𝐿𝑜𝑝𝑡
 

 
Conclusion 
In this study, an inventory control model was introduced for obsolete items in which the demand 
is a decreasing function of time as expected in the real world. It is noteworthy that the suppliers 
permanently attempt to attract more customers or increase their current customers’ loyalty by 
various incentive policies such as making delays and facilitation of payment terms. Therefore, 
the trade credit policy has been used along with time-dependent demands in developing this 
research model as the main contribution to the real world. 
In the modeling process, the total inventory cost of the model was determined in both cases of M 
 T and M > T after extracting the obsolescence cost, the holding cost, and trade credit-related 
costs. The convexity of both models was proved as well.  
However, considering that the proposed model has no closed-form due to its nonlinear 
complexity, the Taylor series was applied as an approximation. Nonetheless, using only two or 
three terms of the Taylor series leads to highly different results compared to the optimal solution.  
Therefore, the PSO meta-heuristic algorithm was introduced and employed as an alternative 
solution method, which was evaluated by comparing the algorithm's performance with that of the 



  

Taylor series method in their approximation errors. Numerical results approved the superiority of 
PSO results over those of the Taylor series approximation. 
In addition, according to the numerical results, the costs of the model can be decreased for 
obsolete items by increasing the expected payment time (M) and the expected lifetime of the 
product (L).  
Overall, the presented model in this research improves the inventory control and ordering 
policies in businesses dealing with obsolete items such as electronic products (e.g., mobile 
phones, tablets, laptops, and the like). In future studies, it is possible to add realistic assumptions 
such as considering partial backlog items and inflation rates to the model. Finally, the proposed 
model can be solved with other evolutionary algorithms. The results can be compared in terms of 
time to reach a near-optimal solution and concerning efficiency with the presented solution in 
this study. 
Appendix A 
To prove the convexity of the objective function at the first case, the following equations are 
used to simplify the equations (10) and (11): 

(A.1) 𝛼 = 𝐷0 (
1

2
𝐻𝐶𝐿 + 𝐶𝑠) > 0 

 

(A.2) 𝛽 = 𝐶𝐷0𝐼𝑒 (𝐿 − 𝑒
−
2𝑀
𝐿 (𝐿 + 2𝑀)) > 0 

Using the Taylor series approximation as 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2
, we will have : 

(A.3) 𝐶𝐿1 =
𝛼𝑇

2(1 −
T
2𝐿)

+
2(𝑀 − 𝑇)(

𝑀
𝐿 −

𝑇
𝐿 −

2𝑀2

𝐿2
)𝐷0CI𝑝

4(
𝑇
𝐿 −

𝑇2

2𝐿2
)

−
𝛽

4(
𝑇
𝐿 −

𝑇2

2𝐿2
)
 

 

(A.4) 𝐶𝐿2 =

2𝛼𝑇2

𝐿

4(
𝑇
𝐿 −

𝑇2

2𝐿2
)
−

𝛾

4 (
𝑇
𝐿 −

𝑇2

2𝐿2
)
−
2𝑇𝐶𝐷𝐼𝑒(−

2𝑇
𝐿 +

2𝑇2

𝐿2
+
2𝑀
𝐿 −

2𝑀2

𝐿2
)

4(
𝑇
𝐿 −

𝑇2

2𝐿2
)

 

 
The second-order derivative of the first objective function is equal to: 

(A.5) 
𝝏2𝐶𝐿1
𝝏𝑇2

= 



  

𝛼

2 (𝐿 −
𝑇
2)

2 +
𝑇𝛼

4 (𝐿 −
𝑇
2)

3 +
CI𝑝𝐷0

𝐿 (
𝑇
𝐿 −

𝑇2

4𝐿2
)
+
1

𝐿
(
1

𝐿
−
𝑇

2𝐿2
) (𝑀 − 𝑇)CI𝑝𝐷0

+
1

𝐿
(
1

𝐿
−
𝑇

2𝐿2
) CI𝑝𝐷0 [1 + (

1

𝐿
−
𝑇

2𝐿2
) (𝑀 − 𝑇)] {𝑀 − 𝑇

−
2𝑀2

𝐿2
}

(

 
1

(
𝑇
𝐿 −

𝑇2

4𝐿2
)
2

)

 

+
1

2
(𝑀 − 𝑇)(

𝑀

𝐿
−
2𝑀2

𝐿2
−
𝑇

𝐿
)

(

 
1

2𝐿2 (
𝑇
𝐿 −

𝑇2

4𝐿2
)
2

)

 CI𝑝𝐷0

+
1

4

(

 −
2(
1
𝐿 −

𝑇
2𝐿2
)
2

(
𝑇
𝐿 −

𝑇2

4𝐿2
)
3 −

1

2𝐿2 (
𝑇
𝐿 −

𝑇2

4𝐿2
)
2

)

 𝛽 

 
In order to simplify the calculations, let’s assume: 

(A.6) 
1

L
−
T

2L2
= x,M − T = y,

T

L
−
T2

4L2
= z, 

 
So given that 0 < T < 1 and L > T, we will have:1 > x > 0, −1 < y < 0,1 > z > 0, 
By replacing x, y and z in (A.5), we will have: 

(A.7) 

∂2CL1
∂T2

= {
Tα

L2z2
(
3T2

4L2
−
T

L
)} + {

αT2

2Lz2
(
2(
1
L −

T
2L2
)
2

z
+
1

2L2
)}

+ {
CIpD0

Lz
(1 +

xy

z
)(1 +

x [y −
2M2

L ]

z
)}

+ {
1

2
y (
y

L
−
2M2

L2
) (

1

2L2z2
) CIpD0} − {

β

4z2
(
2(
1
L −

T
2L2
)
2

z
+
1

2L2
)} 

To prove that equation (A.7) is greater than zero, it should be proved that the third term of this 
equation is positive, as shown in (A.8): 

(A.8) 
𝑧 = 

𝑇

𝐿
−
𝑇2

4𝐿2
>
𝑇

𝐿
−
𝑇2

2𝐿2
= 𝑇 (

1

𝐿
−
𝑇

2𝐿2
) > |(𝑀 − 𝑇) (

1

𝐿
−
𝑇

2𝐿2
) = 𝑥𝑦| → 𝑧 > |𝑥𝑦|

→ 1 +
𝑥𝑦

𝑧
> 0 → 



  

𝑇 > |(𝑀 − 𝑇 −
2𝑀2

𝐿
)| → 1 +

𝑥 [𝑦 −
2𝑀2

𝐿 ]

𝑧
> 0

→
CI𝑝𝐷0

𝐿𝑧
(1 +

𝑥𝑦

𝑧
)(1 +

𝑥 [𝑦 −
2𝑀2

𝐿 ]

𝑧
) > 0 

It should also be proved that the fourth term of this equation is greater than zero, as shown in 
(A.9): 

(A.9) 
−1 < 𝑦 < 0 → (

𝑦

𝐿
−
2𝑀2

𝐿2
) < 0 →

1

2
𝑦 (
𝑦

𝐿
−
2𝑀2

𝐿2
) (

1

2𝐿2𝑧2
) CI𝑝𝐷0 > 0 

Meanwhile, the second term of the equation (A.7) is positive, but the last term is negative. 
Therefore, it should be proved that the sum of the first and last terms is higher than zero. 

Given that, 
2𝛼𝑇2

𝐿
 in logical conditions is more than β, therefore: 

(A.10) 

2𝛼𝑇2

𝐿
> 𝛽 →

𝛼𝑇2

2𝐿𝑧2
(
2 (
1
𝐿 −

𝑇
2𝐿2
)
2

𝑧
>
𝛽

4𝑧2
(
2(
1
𝐿 −

𝑇
2𝐿2
)
2

𝑧
)

→
𝛼𝑇2

2𝐿𝑧2
(
2 (
1
𝐿 −

𝑇
2𝐿2
)
2

𝑧
+
1

2𝐿2
) −

𝛽

4𝑧2
(
2(
1
𝐿 −

𝑇
2𝐿2
)
2

𝑧
+
1

2𝐿2
)

> 0 
 
The first term of equation (A.7) is above zero, but the fourth term is less than zero. It is necessary 
to show that the sum of these two terms is also greater than zero: 

Since Tα > −
1

4
yCIpD0 , considering T > 2√

(ML−2M2)

3
, we will have: 

(A.11) |
4(ML − 2M2)

3
| < |T2| → |

𝑀 − 𝑇

L
−
2M2

L2
| < |

3T2

4L2
−
T

L
| → |

𝑦

L
−
2M2

L2
| < |

3T2

4L2
−
T

L
| 

Then: 

(A.12) 

𝑇𝛼

𝐿2𝑧2
(
3𝑇2

4𝐿2
−
𝑇

𝐿
) > −

1

2
𝑦 (
𝑦

𝐿
−
2𝑀2

𝐿2
) (

1

2𝐿2𝑧2
) CI𝑝𝐷0 

 
And hence, the objective function of the first case can be considered to be convex. 
Appendix B 
The second-derivative of the second objective function is equal to: 



  

(B.1) 
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In order to simplify the calculations, let’s assume: 
(B.2) 𝐶𝐼𝑒𝐷0 = 𝑚 > 0 

So we will have: 

(B.3) 

𝝏2𝑇𝐶𝐿2
𝝏𝑇2

=
𝑇𝛼
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Let’s consider: 

(B.4) 𝐴 =
2𝑇𝑚

𝑧2𝐿2
(
𝑇2
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T2α

L3z2
(
3T

4L
− 1) 

(B.7) 
𝐷 =

𝑚𝑇2

4𝐿4𝑧2
(
𝑀

𝐿
−
𝑇

𝐿
) (1 −

𝑀

𝐿
−
𝑇

𝐿
)(−

𝑇

𝐿
−
𝑇

4𝐿2
+
1

𝐿
+
𝑇2

2𝐿2
) 

About above terms, it should be noted: 
 (A) is greater than zero. 

Considering 
2αT2

L
> 𝛽, (B) is also greater than zero. 

(C) is less than zero. But Considering 



  

(B.8) 
𝑇2𝛼
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And then 

(B.9) 
2𝑥2
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+
1

2𝐿2
+ (
3𝑇
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B + C would be greater than zero. 
It is not possible to decide about D with certainty; but considering M > T in this case, we will 
have: 
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−
𝑇

𝐿
) < 1&0 < (1 −

𝑀

𝐿
−
𝑇

𝐿
) < 1 

In addition 
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 Hence, A + D would be greater than zero. 
Consequently, the objective function of the second case can be considered to be convex 
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