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INTRODUCTION 

   Most phenomena in applied sciences and 

engineering are modeled by nonlinear partial 

differential equations (PDEs). Since their exact 

solutions are difficult to obtain, studying these types 

of equations is often challenging. Consequently, 

numerical methods for approximating nonlinear PDEs 

have been widely regarded by researchers and have 

been successfully applied to numerous real-world 

problems (e.g., Patil & Maniyeri, 2019; Jiang et al., 

2019; Rossi et al., 2019; Gao & Keyes, 2019; Jose et 

al., 2017). One well-known class of numerical 

methods is meshless methods, which have attracted 

significant attention in recent decades. They have been 

applied as powerful tools, especially for problems in 

computational mechanics. The advantage of meshless 

methods over traditional numerical techniques such as 

the finite difference method (FDM), finite element 

method (FEM), and finite volume method (FVM) is 

that they do not require mesh generation or 

domain/surface discretization. 

Several types of meshless methods exist, including the 

moving least square meshless method (Dabboura et 

al., 2016), the meshless local Petrov-Galerkin method 

(MLPG; Atluri & Zhu, 2000), smooth-particle 

hydrodynamics (Wang et al., 2016), the reproduced 

kernel particle method (RKPM; Liu et al., 1995), the 

finite point method (Onate et al., 1996), the mesh-free 

weak-strong form (MWS; Liu & Gu, 2003), the 

diffuse element method (DEM; Nayroles et al., 1992), 

and the radial basis functions (RBFs) method. Each of 

these approaches has specific advantages for certain 

classes of problems. Among them, the RBFs method 

is considered the simplest and most efficient. 

The RBFs method was introduced by Ronald Hardy, 

an Iowa State geodesist, in 1971 (Hardy, 1971). He 

proposed this method to efficiently interpolate 

scattered data on topographic surfaces. In RBFs 

interpolation, a set of N distinct points, referred to as 

centers, is used. There are no constraints on the 

geometry of the problem domain or the position of the 

centers (Sarra, 2017). Various types of RBFs exist, 

including multiquadric (MQ), thin plate spline (TPS), 

Gaussian, linear, inverse quadric (IQ), and inverse 

multiquadric (IMQ) functions. Hardy used the MQ 

function in his interpolation scheme. Later, Duchon 

(1977) proposed the use of TPS for data interpolation. 

The use of RBFs was initially limited to scattered data 

interpolation until 1990, when Edward Kansa, a 

physicist, applied them to solve PDEs (Kansa, 1990a, 

1990b). His method, however, produced ill-

conditioned matrices for a large number of nodes due 

to the asymmetrical nature of the interpolation matrix. 

To address this issue, Fasshauer (1997) proposed a 

Hermite-based approach in which the collocation 

matrices are symmetric and have smaller condition 

numbers. Since then, significant efforts have been 

made by numerous researchers to improve the method 

and develop new versions of it (e.g., Rosales & La 

Rocca, 2006; Li & Chen, 2003; Wendland, 2002; 

Fornberg & Piret, 2007; Šarler & Vertnik, 2006; Ling 

& Kansa, 2005). 

In recent years, the RBFs method has been considered 

an efficient tool for solving various problems, 

including PDEs (Kazem et al., 2012; Siraj-ul-Islam et 

al., 2013; Kadalbajoo et al., 2015; González Casanova 

et al., 2019), integral equations (Dastjerdi & 

Ahmadabadi, 2017; Assari & Dehghan, 2018), and 

fractional equations (Chandhini et al., 2018; Piret & 

Hanert, 2013). The present study focuses on the 

numerical solution of a two-dimensional nonlinear 

PDE using the RBFs method. 

 . ( )(1,1). ( , , ),       

0,   ( , ) , (1)

t t F uu u u u f x y t

t x y

 



     

 
 

with following initial and boundary conditions. 

( , ,0) ( , ),   ( , ) ,
(2)

( , , ) ( , , ),   0,  ( , )    

u x y p x y x y

u x y t q x y t t x y

 


  
 

where ( , , )u u x y t , ( )F u  is the vector valued 

function, 
2R ,  ,   are gradient and Laplacian 

operators respectively. This equation is known as the 

nonlinear generalized Benjamin–Bona–Mahony–

Burgers (GBBMB) equation.  

The GBBMB equation is applied in various scientific 

fields, including the analysis of surface waves with 

long wavelengths in liquids, hydromagnetic waves in 

a cold plasma, acoustic gravity waves in 

incompressible fluids, and acoustic waves in harmonic 

crystals. Its modified or generalized forms have been 

widely studied both numerically and analytically by 

many researchers (Gomez et al., 2010; Guo & Fang, 

2012; Kadri et al., 2008; Noor et al., 2011; 

Abbasbandy & Shirzadi, 2010; Abdollahzadeh et al., 

2011; Omrani & Ayadi, 2008; Omrani, 2006; Qinghua 

& Zheng, 2012; Xiao & Zhao, 2013; Yin & Hu, 2010; 

Dehghan et al., 2015). 

Several analytical and numerical methods have been 

developed to solve the nonlinear GBBMB equation. 

Tari and Ganji (2007) utilized He’s methods to 

approximate analytical solutions for the nonlinear 

GBBMB equation. Additionally, Ganji et al. (2009) 

proposed an exponential function method to address a 

specific type of the nonlinear GBBMB equation. In 
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another study, Dehghan et al. (2014) developed a 

meshless approach based on radial basis functions 

(RBFs) to solve the nonlinear GBBMB equation. Haq 

et al. (2019) introduced a numerical technique that 

combined Haar wavelets and finite difference methods 

to solve the nonlinear GBBMB equation. Furthermore, 

Hajiketabi et al. (2018) presented a new numerical 

approach to solve the nonlinear GBBMB equation 

using the Lie-group method with RBFs. Recently, Ali 

Ebrahimijahan and Dehghan (2019) proposed a 

method based on integrated radial basis functions 

(IRBFs) to solve the nonlinear GBBMB and 

regularized long-wave equations. 

This study aims to develop a numerical method that 

combines the RBF collocation method with finite 

differences to solve the nonlinear GBBMB equation. 

The temporal discretization is achieved using finite 

differences and the Crank-Nicolson scheme, while the 

spatial parts are approximated using a two-

dimensional RBF interpolation. The multiquadric 

RBF (MQ-RBF) is selected due to its widespread 

application and superior approximation properties. 

The manuscript is organized as follows. Section 2 

introduces the RBF method by presenting its basic 

concepts and definitions. Section 3 details the 

implementation of the RBF collocation method for the 

time-discretized nonlinear GBBMB equation. In 

Section 4, the proposed method is applied to several 

test problems, and the results are presented. Finally, 

Section 5 provides a conclusion summarizing the key 

findings of the study. 

A BRIEF REVIEW OF RBFS METHOD 

   In this section, some basic concepts and definitions 

are expressed for the radial basis functions 

interpolation. 

 Definition 1. Let 
d

be d-dimensional Euclidean 

space and 
* dx  . A radial basis function is a 

function which is both continuous and multivariable 

like : d   that its value at any point 
dx is 

dependent on the distance from a certain point 
* dx  This function could be written as ( )r  

where r x x   and   is the Euclidean norm on 

ℝ𝑑. The function   is an univariable function in r and 

x
 is a center of RBF . 

Definition 2. Given the data  ,i ix f , with 1,...,i N , 

𝑥𝑖 ∈ ℝ𝑑, and 𝑓𝑖 ∈ ℝ, the scattered data interpolation 

problem is defined as finding a smooth function s  

such that  i is x f , for 1,..., .i N  Function s is 

called an interpolant. 

A radial basis function interpolant u at centers 

1 2{ , ,..., }c c c d

NX x x x  assumes the following 

form. 

   
1

(3)x xj

N

j
j

u  


  

Where      
2

j j

c
j r   x x x ,   is a radial 

basis function, coefficients , 1, , ,j j N   are 

constants to be determined such that the following 

interpolation condition at the set of N  centers, X  is 

hold. 

 

  ,    1,..., (4)c

i iu x f i N   

Imposing the interpolation condition 4 to 3 leads to a 

linear system as follows. 

 

(5)a u B  

where  1,...,
T

N a ,  1,...,
T

Nu u u , and B  is a 

N N matrix called the interpolation matrix or the 

system matrix defined as follows. 

     

     

1 1 2 1 1

1 2

N

N N N N

r r r

B

r r r

  

  

 
 
 
 
 

  

where  
2

, , 1,..., .j

c c
i jr i j N   x x  

According to Definition 1, a radial basis function 

(RBF) is independent of the spatial dimension. This 

unique property allows for the transformation of a 

multivariable problem into a one-variable problem, 

thereby simplifying the computational process. This is 

a significant advantage of the RBF interpolation 

scheme compared to other classical methods. 

RBFs are generally categorized into two main types: 

infinitely smooth and piecewise smooth functions. 

Table 1 lists some of the most well-known RBFs. 

Infinitely smooth RBFs include a free parameter, 

known as the shape parameter (often denoted by 

ε\varepsilonε). While this parameter can be selected 

arbitrarily, its proper choice is crucial, as it directly 

affects the accuracy of the RBF interpolation scheme. 

This is particularly important in infinitely smooth RBF 

interpolation, where the value of the shape parameter 

significantly influences the scheme's precision 

(Fasshauer, 2007). In contrast, piecewise smooth 
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RBFs exhibit algebraic convergence rates, whereas 

infinitely smooth RBFs achieve higher rates of 

convergence, either spectral or exponential (Fornberg 

& Flyer, 2015; Buhmann, 2003). 

This classification highlights the superiority of 

infinitely smooth RBFs in terms of convergence rates. 

However, the sensitivity of infinitely smooth RBFs to 

the shape parameter demands careful consideration, as 

an improper choice can negatively impact the overall 

performance and accuracy of the scheme. 

 

 

 

 

 

 

Table 1: Some well-known RBFs 

Category Name of the function Definition 

 Multiquadric (MQ) 2 21 r  

 Inverse Multiquadric (IMQ) 
2 2

1

1 r
 

Infinitely smooth RBFs Inverse Quadric (IQ)  2 2

1

1 r
 

 Gaussian 
2 2re   

Piecewise smooth RBFs 

Linear r 

Cubic 3r  
Thin Plate Spline (TPS) 2 log( )r r  

 

 

TIME DISCRETIZATION OF NONLINEAR 

GBBM EQUATION 

   In this section, Let  2L   be an arbitrary interval 

in 
2R . by applying forward finite differences and also 

Crank-Nicolson scheme, the time variable is 

discretized for the first-order time derivative as 

follows. 

 1 1 1k k k k

xx yyU U U U      

   

   

   

 

1 1

1 1

1

1

Δ

2

Δ Δ

2 2
(6)

Δ Δ

2 2

Δ
Δ .

2

k k k k

xx yy xx yy

k k k k

xx yy x y

k k k k

x y x x

k k k

y y

t
U U U U

t t
U U U U

t t
U U F F

t
F F tf

 

 





   

   

   

  

 

Now, choose 21
( )

2
F u u . Then, x xF UU , 

.y yF UU  

Approximated non-linear terms by the following 

formulas 

   

   

1 1 1

1
1 1

,
(7)

.

n n n n n n

x x x x

n n
n n n n

y y y y

uu uu u u u u

uu uu u u u u

  


 

  

  
 

yields to 

 

 

   

   

   

 

1 1 1

1 1

1 1

1 1

1 1

Δ

2

Δ Δ

2 2

Δ Δ

2 2

Δ
Δ .

2

k k k k

xx yy

k k k k

xx yy xx yy

k k k k

xx yy x y

k k k k k k

x y x x

k k k k k

y y

U U U U

t
U U U U

t t
U U U U

t t
U U U U U U

t
U U U U tf

  

 

 

 

 

  

   

   

   

  

 

 

This equation can be simplified as follows. 
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 

 

 

 

 

1 1 1

1 1

1

Δ
1

2

Δ
(1 )

2

Δ
(8)

2

Δ
1

2

Δ
Δ .

2

k k k

xx yy

k k k

x y

k k k

x y

k k k

xx yy

k k k

x y

t
U U U

t
U U U

t
U U U

t
U U U

t
U U tf
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 



 
   
 

  

  

 
   
 
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Discretizing Eq. 8 in space by RBF expansion (3) 

results in 

   

   

   

   

 

1 1

1 1

1

1 1

1

1 1

1 1

1

1

1
2

1
2

2

1
2

.
2

N N
k k

j j j j

j j

N N
k k

j j j j

j j

N N
k k

j j j j

j j

N N
k k

j j j j

j j

N
k k

j j

j

t
r r

t
r r

t
r r

t
r r

t
r tf


   


   


   


   


 

 

 



 



 

 





 
  
 

 
   

 

  

 
  
 

   

 

 

 

 



 

Considering N collocation points 1{ }N

i ix   in   leads 

to the following linear system. 

 

  1

1
2 2

2

1 ,
2 2

k

k k k

x y

k k

t t
B M I D N

t
D D B

t t
B M N t



   
    
 

 
  



    
     
  

a

a + f

 

 

Where     1, ,..., ,
T

k k

N

k f x t f x tf , 

 1 ,...,k k

N

k  a , ( )k kD diag U , 

( ),k k

x xD diag U  ( ),k k

y yD diag U  and

xx yyM B B  . xxB and yyB  are matrices of second 

derivative of the system matrix, B, respectively in x , 

and y . xB  and yB are matrices of first derivative of 

the system matrix, B, respectively in x , and y .  

Let 

   

1
2

,
2 2

L

k k k
x y

t
T B M

t t
I D N D D B

 
 
 


   

 
  

 

and 

Δ Δ
1 .

2 2
R

t t
T B M N

 
 
 

     

By the assumption LT  is non-singular,  
1ka 
obtained 

as follows 

1 1 1 .k k k
L R LT T tT   a a f  

Recalling that 
1B ua , the approximate PDE 

solution at 
1kt 
 is obtained as follows. 

1 (9)n nu Au F    

Where 
1 1

L RA BT T B   and 
1 k

LF tT   f . 

NUMERICAL EXPERIMENTS 

In this section, the following some test problems are 

numerically solved for the purpose of verifying the 

ability of the proposed method with regards to the 

nonlinear GBBMB equations. Among all of the RBFs, 

MQ, the most popular RBF, is used in computations 

due to the rapid convergent rate. Here, following MQ 

radial basis function is used. 

  2 21 ,r r    

Where   is the shape parameter.  

Meshless methods which are based on radial basis 

functions (RBFs) contain a free shape parameter that 

plays an important role for the accuracy and condition 

number of the coefficient matrix of the method. Most 

authors use the trial and error method for obtaining a 

good shape parameter that results in best accuracy. 

Here, the shape parameter is chosen by trial and error 

method. 

The domain   is chosen as the unit region, i.e.
2[0,1] . In order to test the accuracy, two error 

norms, L  and 2L  defined as follows are computed. 
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 
2

2 , ,

1 1

, ,
1 ,

,

max ,

    

 

N N

i j i j

i j

i j i j
i j N

L u u

L u u

 


 

 

 


 

where u  and u  denote the approximate and exact 

solutions, respectively. 

Test Problem 1 

Consider the nonlinear GBBMB equation as follows. 

(1,1).

( , , ),  0,   ( , ) ,

t t x

y

u u u u uu

uu f x y t t x y

 



    

   
 

with conditions  

( , ,0) 0,   ( , ) ,  

( , , ) sin( ),  ( , ) ,  0<t T,

u x y x y

u x y t t x y x y





 


   

 

and the source term 

2

( , , ) 2 cos( )

sin( )(3 2 2 cos( ))

f x y t t x y

x y t t x y

 

    
 

The exact solution of the problem is

( , , ) sin( )u x y t t x y  . 

Numerical solutions are calculated at various values of 

time variable 0.1,0.2,0.5,1T   with 10N   and 

time step 0.001t   0.001t   and shape 

parameter= 1.4. Consequently, the results are provided 

in Table 2, showing that the proposed method is 

accurate sufficiently. The numerical results at 4N  , 

1T   and different time steps 

1
( 0,...,8)

10(2 )n
t n    and the numerical results 

presented by Haq et al. (2019) are all provided in Table 

3. Values of shape parameter are derived by trial and 

error method. Comparison the results show that better 

approximations are obtained by the proposed scheme.  

Approximate and exact solutions and also absolute 

error are illustrated in Fig. 1. According to this figure, 

it can be seen that approximate solutions are very close 

to the exact ones.  

Table 2: Error norms of test problem 1 at 10N 

0.001t   

T 
 2L  

0.1 6.7949e-06 3.4022e-05 

0.2 1.2265e-05 6.1129e-05 

0.5 2.1897e-05 1.0869e-04 

1 2.9094e-05 1.2306e-04 

 

 
 

 

 
Fig. 1. Graphs of approximate and exact solutions 

and absolute error of test problem 1 at 1T  , 

10N  , 0.001t   

 

 

 

Table 3: Error norms of test problem 1 at 1T  , 4N   

 

Δt  L
 

2L  L
[54] 

2L [54] CPU 

time 

Shape 

parameter 

L
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1/10 1.9000e-3 3.4000e-3 
4.1369e - 

03 

1.0243e - 

02 
0.1550 1.5 

1/20 9.9446e-04 1.8000e-3 
2.4115e - 

03 

5.8698e - 

03 
0.1718 1.1 

1/40 5.7353e-04 9.8716e-04 
1.5207e - 

03 

3.6346e - 

03 
0.1747 0.8 

1/80 3.1700e-04 5.5014e-04 
1.0682e - 

03 
2.5188 - 03 0.1958 0.6 

1/160 1.2022e-04 1.7277e-04 
8.4022e - 

04 
1.9708 - 03 0.2301 0.6 

1/320 5.0058e-05 8.2924e-05 
7.2574e - 

04 
1.7034 - 03 0.3083 0.5 

1/640 2.0853e-05 3.9993e-05 
6.7980e - 

04 
1.5724 - 03 0.47338 0.4 

1/1280 3.2936e-05 5.0085e-05 
6.6576e - 

04 
1.5079 - 03 0.7473 0.3 

1/2560 2.4328e-05 4.8605e-05 
6.5874e - 

04 
1.4759 - 03 1.3567 0.3 

 

Test Problem 2    

Consider the nonlinear GBBMB equation as follows. 

(1,1).

( , , ),   0,   ( , ) ,

t t

x y

u u u u

uu uu f x y t t x y

 



   

    
 

With initial and boundary conditions  

( , ,0) 1,   ( , ) ,  

( , , ) 1 sin( ),  ( , ) ,0<t T,

u x y x y

u x y t t x y x y





 


    

 

and the source term 

 2( ) 3 2 2 ( ) ,( , , )f sin x y t t coy t s x yx      

with the exact solution ( , , ) 1 sin( )u x y t t x y   . 

In table 4, Numerical solutions are calculated at 

various values of time variable 0.1,0.2,0.5,1t   with 

10N   and time step 0.001t   and shape 

parameter= 1.4. The results are provided in Table 4 

show that the proposed method is accurate 

sufficiently.  

Table 4: Error norms of test problem 2 at 10N 

0.001t   

T  2L  

0.1 3.7096e-06 1.5701e-05 

0.2 7.4830e-05 2.8961e-05 

0.5 1.9129e-05 6.5406e-05 

1 3.9390e-05 1.5772e-04 

 

CONCLUSION 

   In this study, an PDE called nonlinear generalized 

Benjamin–Bona–Mahony–Burgers (GBBMB) 

equation was studied numerically. The finite 

difference formula and Crank Nicolson technique 

were implemented to discretized the temporal parts. 

As a result, a time semi-discrete formula was obtained. 

After that, a fully discrete formula was achieved by 

approximating the spatial terms using RBF 

interpolation. Numerical results show that the 

suggested method has better accuracy and the error has 

been improved. 
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