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 Revise Date: 02 January 2021     Abstract 

Accept Date: 19 December 2021         Cross-docking is the practice of unloading COVID-19 vaccines from 

inbound delivery vehicles and loading them directly onto outbound 

vehicles. Cross-docking can streamline supply chains and help them 

move COVID-19 vaccines to pharmacies faster and more efficiently by 

eliminating or minimizing warehouse storage costs, space 

requirements, and inventory handling. Regarding their short shelf-life, 

the movement of the COVID-19 vaccine to cross-dock and their freight 

scheduling is of great importance. Achieving the goals of green logistics 

to reduce fuel consumption and the emission of pollutants has been 

considered in this study. Accordingly, the present study developed 

mixed-integer linear programming (MILP) model for routing and 

scheduling cross-dock and transportation in the green reverse logistics 

network of COVID-19 vaccines. The model was multi-product 

(samples of COVID-19 vaccines produced by several manufacturers) 

and multi-level. This model focused on minimizing the logistics 

network costs to increase efficiency, reduce fuel consumption and 

pollution, maximize the consumption value of delivered COVID-19 

vaccines and minimize the risk of injection complications due to 

COVID-19 vaccines corruption. Considering cost minimization as well 

as uncertainty in pharmacies demand for COVID-19 vaccines, the 

model was an NP-hard problem. In this model, the problem-solving 

time increased exponentially according to the problem dimensions; 

hence, this study proposed an efficient method using the NSGA II 

algorithm. 
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INTRODUCTION 

   An outbreak of the deadly COVID-19 virus has 

taken many peoples' lives (Shirouyezad et al., 

2020). Impacts of COVID-19 are observed 

ubiquitously in each type of unit from different 

sectors, especially the distribution of medicine 

between pharmacies (Adabavazeh et al., 2020; 

Singh et al., 2020). Corruption risk has long been 

an important aspect of logistics. This issue is 

especially prominent when the whole world is 

affected by COVID-19(Choi, 2020). After several 

manufacturers announced COVID-19 vaccine 

efficacy in clinical trials for protection against 

severe disease, a comprehensive post-efficacy 

strategy for the following steps to ensure 

vaccination of the global population is now 

required. These considerations should include 

how to manufacture billions of doses of high-

quality vaccines. It supports vaccine purchase, 

coordination of supply, the equitable distribution 

of vaccines, and the logistics of global vaccine 

delivery, all of which are a prelude to a massive 

vaccination campaign targeting people of all ages. 

Furthermore, additional scientific questions about 

the vaccines remain that should be answered to 

improve vaccine efficacy, including questions 

regarding the optimization of vaccination 

regimens, vaccine effectiveness, safety, and 

enhanced surveillance. The timely and 

coordinated execution of these post-efficacy tasks 

will bring the pandemic to an effective and 

efficient close. Inventory flow control is one of 

the crucial concepts of COVID-19 vaccine supply 

chain management(Kim et al., 2021). Cross-

docking has been assumed as an efficient method 

to control inventory flow, which is essential to 

COVID-19 vaccine supply chain management 

(Kim et al., 2021; Nalepa & Blocho, 2017; 

Taleghani & Taleghani, 2018). At the cross-dock, 

COVID-19 vaccines are directly shipped from the 

receiving dock-doors to shipping dock-doors – 

where COVID-19 vaccines are stored in a dock 

for a short time – and are then directly delivered 

to the pharmacies in at most 12 hours (Ardakani 

& Fei, 2020; Kim et al., 2021). In other words, 

although the cross-docking strategy removes the 

inventory operations of a traditional warehouse, it 

allows COVID-19 vaccines to be classified and 

unloaded via the integration process and then 

loaded in vehicles (Gelareh et al., 2020; Kim et 

al., 2021). If not all the vehicles of the pickup 

navy can arrive at the cross-dock simultaneously, 

the integration process is postponed after 

collecting all COVID-19 vaccines; as a result, the 

waiting time and inventory level increase 

exponentially. Most studies on cross-docking 

have addressed the exponential concept, its 

physical design, and its location (Babazadeh, 

2020; Mousavi & Vahdani, 2017). Green logistics 

is an effort to test ways to reduce environmental 

pollution and a more sustainable balance between 

the environment, economy, and society. As a 

result, green logistics's goal is to focus on helping 

sustainability and achieving it (Roshani Delivand 

& Shabgoo Monsef, 2020; Tirkolaee et al., 2020; 

Vaez-Ghasemi et al., 2021). The amount of waste 

of COVID-19 vaccines and environmental 

pollution are significantly affected by the time 

spent during logistics operations and 

environmental conditions of transportation and 

warehousing(Kim et al., 2021; Roshani Delivand 

& Shabgoo Monsef, 2020; Yazdanpanah et al., 

2019).  

   Therefore, this study examined vehicle 

scheduling at cross-dock with multiple doors and 

vehicle routing to minimize the system's total cost 

and risk of injection complication due to COVID-

19 vaccines corruption. The vehicles are designed 

so that inbound vehicles can be used as outbound 

vehicles. In addition to the vehicles used for 

exporting COVID-19 vaccines, inbound vehicles 

contain the COVID-19 vaccines of certain routes 

and unload other COVID-19 vaccines. After 

leaving the cross-dock, each vehicle serves only 

once at the specified destinations. Then it returns 

to the cross-dock after the service is offered to all 

destinations and goes to the designated 

destinations by selecting the shortest route. 

Assuming that inbound vehicles can be used as 

outbound vehicles can reduce the time needed to 

complete all activities. The inbound vehicle does 

not unload certain COVID-19 vaccines to deliver 

them to a destination as an outbound vehicle. This 

issue would reduce the total cross-docking 

completion time. Note that the model used in this 
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study determines whether or not the use of 

inbound vehicles as outbound vehicles is cost-

effective concerning the path to be taken by 

vehicles. 

The remainder of this paper is structured as 

follows. Section II reviews previous relevant 

studies to detect the study gap. Then, parameters 

and variables affecting routing and scheduling, 

cross-docking, and transportation in the green 

reverse logistics network of COVID-19 vaccines 

are extracted to develop a mathematical model. 

Section III addresses the research method, 

including the proposed mathematical modeling. 

Section IV deals with the proposed solution 

method, including the solution algorithm of the 

proposed mathematical model. Section V presents 

the procedure adopted to solve the mathematical 

model presented in Section III using the algorithm 

in Section IV. Finally, Section VI concludes the 

study. 

 RESEARCH BACKGROUND 

  An investigation was performed on previous 

studies on scheduling and routing of cross-dock 

and transportation and green reverse logistics 

network of COVID-19 vaccines To provide a 

literature review and cover all the above-stated 

subjects. 

   Choi (2020) examined risk analysis research in 

logistics systems with special relevance to 

COVID-19. This study proposed a research 

agenda, which can help inspire more innovative 

risk analysis research to overcome challenges in 

logistics during and after the COVID-19 

pandemic. Singh et al. (2020) proposed a public 

distribution system (PDS) model. Their model 

was developed with three different scenarios to 

demonstrate disruptions in the drug supply chain. 

Afra & Behnamian (2021) introduced the multi-

product production routing problem with startup 

costs and environmental considerations. they 

integrated reverse logistics and remanufacturing 

decisions and chose the Relaxation Algorithm 

(LR)  as the solution method. Tirkolaee et al. ( 

2020) introduced a novel robust mixed‐integer 

linear programming model for a green vehicle 

routing problem with intermediate depots 

considering different urban traffic conditions, fuel 

consumption, time windows of services, and 

uncertain demand for perishable products. To 

validate and solve the suggested model, they 

employed the CPLEX solver of GAMS as an 

exact method. Zulvia et al. (2020) introduced a 

green vehicle routing problem (VRP) for 

perishable products, optimizing operational cost, 

deterioration cost, carbon emissions, and 

customer satisfaction. they solved the proposed 

model using a many-objective gradient evolution 

(MOGE) algorithm. Sharafi & Bashiri (2016) 

presented two developed mixed-integer 

programming models   for the GVRP with social 

and safety concerns. Moreover, they developed a 

Genetic Algorithm (GA) to deal efficiently with 

the problem in large size. Dagne et al. ( 2020) 

entroduced a designing and optimizing model for 

perishable product in stochastic demand, which 

comprises multiple levels from producer, local 

collector, wholesaler and retailers. they 

considered the quality deterioration rate of the 

product with increased order of transportation 

time in network model. Avakh Darestani & 

Pourasadollah (2019) presented an Integer Linear 

Programming model to design a multi-layer 

reverse leading, multi-product, and multi-period 

integrated logistics network by considering multi-

capacity level for facilities under uncertainty 

condition. their model included three objectives: 

maximizing profit, minimizing the delay of goods 

delivering to the customer, and minimizing 

returned raw material from suppliers. they applied 

a nondominated sorting genetic algorithm II 

(NSGA-II). Jansen (2019) analyzed the logistics 

network concerning the effects of a new 

warehouse. They developed efficient routing and 

planning methods to use a complex logistics 

network. He & Li (He & Li, 2019) introduced a 

Mixed-Integer Programming (MIP) model to 

minimize distance in the routing process to 

describe the Dynamic Schedule Problem (DSP). 

Rahmandoust & Soltani (2019)  proposed a 

nonlinear multi-product Vehicle Routing Problem 

(VRP) with heterogeneous vehicles to find the 

probable minimum number of cross dockings 

among the available sets of discrete locations. 

This  
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problem minimizes the total cost of establishing 

cross-docking centers and vehicle transportation 

costs (i.e., distribution and operation cost) as well. 

Küçükoğlu & Öztürk (2019) addressed the VRP 

and packing problem with cross-docking and 

proposed an MILP model. LIU & And (2019) 

studied the problem of location routing with the 

limitation of the payment time window. They also 

applied the fuzzy processing method to define 

customer satisfaction performance to reduce 

costs, improve customer satisfaction, and enhance 

efficiency by selecting cross-docking centers and 

arranging routes properly. Baniamerian et al. 

(2019) designed a Profitable Heterogeneous 

Vehicle Routing Problem with Cross-Docking 

(PHVRCD) to increase the total benefit of a cross-

docking connected system. Rahbari et al. (2019) 

proposed a bi-objective MILP model for the 

problem of routing and programming vehicles 

with cross-docking for perishable products under 

the uncertainty in the travel time. Nikolopoulou et 

al (2019) presented a new routing problem of the 

public vehicle with cross-docking using an 

adaptive memory programming method coupled 

with a Tabu Search algorithm. They designed a 

set of pick-up and delivery routes with the 

minimum travel distance. Nasiri et al (2018) 

introduced a MILP model wherein the selection 

and allocation of the order were incorporated into 

the Vehicle Routing Problem with Cross-Docking 

(VRPCD) to minimize total costs, including 

purchasing, inventory, transportation, cross-

docking, and early/tardy delivery penalty costs. 

Mancini (2017) introduced and formulated the 

hybrid VRP, which is a developed form of VRP. 

In their proposed model, Hiassat et al. (2017) 

added location decision as a strategic decision to 

the model developed by Lee et al. (2006). The 

latter discussed the warehousing and transfer of 

blood units from hospitals to specialized centers. 

This study addressed a location-inventory-routing 

model for perishable goods. Shuang et al. (2019) 

introduced a reverse logistics production routing 

model. The researcher assumed a reverse supply 

chain with remanufacturing options under various 

greenhouse gas emissions policies. Kuşakcı et al. 

(2019) studied the optimization reverse logistics 

network under fuzzy demand to prevent the rapid 

consumption of natural resources and convert 

generated waste into value for the economy. 

Yavari & Geraeli  (2019) investigated the design 

of a green closed-loop supply chain network for 

degradable products under uncertain conditions 

using a MILP model to minimize costs and 

environmental pollution. Zhang et al. (2018) 

studied a stochastic reverse production routing 

model with environmental considerations. 

Furthermore, they incorporated the reverse supply 

chain model with the remanufacturing option to 

reduce greenhouse gas emissions. Gardas et al. 

(2018) examined reverse logistics in the 

automobile service sector to reduce exploration 

and production of oil using the multi-criteria 

decision-making method. Liao (2018) proposed 

the reverse logistics network design for recycling 

products and remanufacturing. They developed a 

generic Mixed-Integer Nonlinear Programming 

(MINLP) to maximize total profit by controlling 

the return of products for repair, remanufacturing, 

recycling, reuse, or burning/disposal. Yu & 

Solvang (2018) proposed a model to provide 

Pareto solutions between benefit and 

environmental performance. They investigated 

the effect of system flexibility on the sustainable 

reverse logistics system design. Rahimi & 

Ghezavati (2018) proposed a multi-period multi-

objective MILP model to design and program the 

network benefit, increase social effects, and 

decrease environmental effect in a reverse 

logistics network. Trochu et al (2018) evaluated 

the design problem of a reverse logistics network 

under environmental policies to recycle wood 

waste in construction, renovation, and demolition 

industry. Khodaparasti et al. (2018) presented a 

modified allocation model to avoid unwanted 

defects in criteria. This problem was expressed as 

a covering model involving the facility capacity 

and demand elasticity.  

   Much research has been conducted on reverse 

logistics concerning specific goals and 

constraints. The assumptions of these studies are 

not similar to what occurs in real life, especially 

in the current global crisis, namely the COVID-

19 outbreak. Moreover, the practical aspect of the 

subject has received less attention due to the 

simplification of the used models. In a green 
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reverse logistics network of COVID-19 vaccines, 

delivery time plays a critical role concerning 

several goals, including Just-in-Time (JIT) 

logistics. Failure to deliver on time or delayed 

delivery of COVID-19 vaccines for any reason at 

any stage of the logistics network process may 

lead to injection risk. It is due to corruption and 

endangering human lives, as well as financial and 

environmental losses. The goals are considered to 

reduce procurement time and costs and increase 

popular satisfaction under conditions where 

COVID-19 vaccines have maximum 

consumption value at the time of delivery and are 

spoiled COVID-19 vaccines. Accordingly, it was 

aimed to develop, solve, and analyze a 

mathematical programming model to remove the 

problem. Including these goals in the study, the 

model would help the green reverse logistics 

network of COVID-19 vaccines achieve the 

highest efficiency and productivity. Scientifically 

and theoretically, many researchers have 

examined vehicle scheduling at cross-docking. 

However, the present study addressed a 

combination of routing, scheduling, cross-

docking, and transportation according to the green 

reverse logistics network goals of COVID-19 

vaccines, less studied in recent years. 

RESEARCH METHOD 

In the problem introduced in this research, in 

order and replenishment cycles, pharmacies 

provide logistics network decision-makers with 

information about the amount, type, and delivery 

time of COVID-19 vaccines according to demand 

elasticity. Then, at cross-dock, they prepare a 

schedule for inbound and outbound shipments 

based on the orders. This schedule shall minimize 

costs and time of routing, scheduling, cross-

docking, transportation, environmental costs, and 

risk of COVID-19 vaccines corruption To 

increase the efficiency of the green reverse 

logistics network of COVID-19 vaccines. It 

should also allow for the timely delivery of 

COVID-19 vaccines to pharmacies such that their 

consumption value is maximized and 

endangering human lives is minimized. 

   According to this schedule, inbound vehicles at 

the cross-dock are unloaded at receiving dock 

doors concerning orders and defined schedules. 

Unloaded COVID-19 vaccines can be sent 

directly to shipping doors for loading operations 

or be stored in the cross-dock intermediate 

warehouse and remain there until they are 

consolidated with other received orders of the 

cross-dock. Consolidated orders are loaded onto 

outbound vehicles at shipping dock-doors based 

on the pre-specified orders and schedules. 

Furthermore, outbound vehicles leave cross-dock 

and meet pharmacies after loading all the orders 

based on the scheduled routing sequence. Then, 

they return to the central collection center after 

delivering the orders and collecting the returned 

COVID-19 vaccines from pharmacies. 

Accordingly, decision-makers would make the 

following decisions regarding inbound vehicles 

from manufacturers to receiving dock-doors: 

- Procedures to assign inbound vehicles to receive 

dock-doors: Accordingly, the sequence of 

inbound vehicles entering each specified 

receiving door determines when the inbound 

vehicles should arrive at receiving doors and the 

release time for the inbound vehicles and orders. 

Additionally, the decision-makers make the 

following decisions about shipping doors and 

outbound vehicles: 

- Assignment of the orders to the outbound 

vehicles (determining consolidation of COVID-

19 vaccines for each outbound vehicle); 

- Assignment of outbound vehicles to shipping 

dock-doors: In this regard, the sequence of 

outbound vehicles at each specified shipping door 

determines the arrival time of the outbound 

vehicles at shipping doors and the time allocated 

to the outbound vehicles. 

- Routing and scheduling the outbound vehicles in 

the delivery process and collecting COVID-19 

vaccines returned by pharmacies.  

- reducing emissions of greenhouse gases 

according to green logistics goals. 

Once these decisions are made, the consumption 

value of COVID-19 vaccines delivered to the 

pharmacies is calculated according to scheduling, 

routing, cross-docking, and transportation in the 

green reverse logistics network of COVID-19 

vaccines.  
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The development of this model relies on the 

following assumptions: 

- Manufactured COVID-19 vaccines are 

transported to the cross-dock by inbound 

vehicles. Once delivered to the cross-dock, they 

are loaded onto outbound vehicles by 

consolidating COVID-19 vaccines following 

pharmacies' demands. Finally, the outbound 

vehicles deliver the COVID-19 vaccines 

according to the pharmacies' orders, collect the 

returned COVID-19 vaccines, and return them to 

the central collection center. 

- Each of the shipping or receiving dock-doors is 

exclusively specified for a vehicle at the service 

time; 

- The crossover time of the unloaded COVID-19 

vaccines at receiving and shipping doors is highly 

short (almost zero), compared to loading and 

unloading times; therefore, no inventory holding 

cost is considered for the COVID-19 vaccines at 

this time; 

- The loading time of outbound vehicles starts 

when all relevant orders are unloaded and 

received at receiving dock doors and moved to the 

shipping doors; 

- Outbound vehicles are available at the beginning 

of the planning horizon, i.e., T=0 

- Each outbound vehicle can be used only once 

during the planning horizon; 

- Both the delivery routes of the ordered COVID-

19 vaccines and the collection of returned 

COVID-19 vaccines start from the cross-dock and 

ends with the central collection center; 

- In addition to the transfer time of vehicles, the 

load weight of vehicles also affects the amount of 

fuel consumption. It should be noted that the 

addition of vehicles will also add costs such as 

fuel consumption and environmental costs to the 

fixed costs of the logistics network. So in this 

mathematical planning model, we are looking for 

an optimal answer that, in addition to considering 

all aspects of the problem, seeks to reduce fuel 

consumption as a result of reducing 

environmental pollution to achieve green logistics 

goals. 

- All the orders of the pharmacies are delivered by 

an outbound vehicle. The returned COVID-19 

vaccines are received and collected from the 

pharmacies by the same outbound vehicle; 

- The number of returned COVID-19 vaccines is 

smaller than that of the ordered COVID-19 

vaccines; therefore, the outbound vehicle is not 

limited in capacity to collect the returned COVID-

19 vaccines from each pharmacy receiving 

orders; and 

- The consumption value of the COVID-19 

vaccines is greater than the planning horizon. 

Modeling changes in the consumption value of 

COVID-19 vaccines and endangering human 

lives over time due to COVID-19 vaccines 

corruption 

   devaluation of the COVID-19 vaccines is 

imperceptible because the COVID-19 vaccines 

are shipped under the right temperature 

conditions from their manufacturers. 

Accordingly, the consumption value of COVID-

19 vaccines is maximum when unloading 

COVID-19 vaccines at cross-dock. However, the 

activity and growth of the COVID-19 vaccine 

perishability factors and, consequently, 

devaluation of the COVID-19 vaccines are 

accelerated due to temperature changes and cross-

dock conditions at the time of unloading COVID-

19 vaccines in the cross-dock. In this model, the 

COVID-19 vaccines consumption is modeled 

according to a time-dependent linear piecewise 

function from the delivery time of COVID-19 

vaccines to the cross-dock. Finally, as COVID-19 

vaccines lose their consumption value after this 

period, the value of this function is considered to 

be zero, which means no consumption value. If 

the vaccine is injected, it poses a risk to human 

life. 

 Research problem model 

   This section introduces the indices, parameters, 

decision variables, objective functions, and model 

constraints. 

A) Sets and Indices 

i: Set of manufacturers, 𝑖 = {1,2,3, … , 𝐼}, indexed 

by i 

j: Set of nodes, indexed by j, where j = 0 denotes 

the cross-dock, 𝑗 = {1,2,3, … , 𝑛} denoted 
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pharmacies, and 𝑗 = 𝑛 + 1 denotes the central 

collection center. 

k: Set of outbound vehicles at the cross-dock, 

indexed by k, where 𝑘 = {0,1,2,3, … , 𝐾 + 1} such 

that 𝑘 = 0 and 𝐾 + 1 are considered as dummy 

outbound vehicles at cross-dock.  

l: Set of inbound vehicles at the cross-dock, 

indexed by l, where 𝑙 = {0,1,2,3, … , 𝐿 + 1} such 

that 𝑙 = 0 and 𝐿 + 1 are considered as dummy 

inbound vehicles at cross-dock. 

f: Set of receiving dock-doors, 𝑓 = {1,2,3, … , 𝐹}, 

indexed by f. 

h: Set of shipping dock-doors, ℎ = {1,2,3, … , 𝐻}, 

indexed by h. 

p: Set of samples of COVID-19 vaccines 

produced by several manufacturers, 𝑝 =
{1,2,3, … , 𝑃}, indexed by p. 

B) Parameters 

𝑇𝑇𝑖𝑙: Travel time from manufacturer i to the cross-

dock for inbound vehicles l. 

𝑥𝑙𝑖: 1 if inbound vehicle l carries COVID-19 

vaccines to the cross-dock from manufacturer i, 

and 0 otherwise. 

𝑢𝑗𝑙: 1 if some/all parts of order j are carried by 

inbound vehicle l, and 0 otherwise. 

𝑇𝑈𝑗𝑙: Time required to unload order j carried to 

cross-dock by inbound vehicle l. 

𝑇𝑙𝑗𝑘:  Time required to load order j carried to 

cross-dock by outbound vehicle k. 

𝑎𝑗: Minimum delivery time of order j. 

𝑏𝑗: Maximum delivery time of order j. 

𝑇𝑇𝑗𝑗′𝑘: Travel time between Node j and node 𝑗′ 

for outbound vehicle k ((𝑗 ≠ 𝑗′)   𝑗, 𝑗′ =
{0,1,2, … , 𝑛 = 1}). 

FCk: Fixed cost of using outbound vehicle k. 

𝑆𝑇jk: Service time for pharmacies j by outbound 

vehicle k. 

𝐷𝑗𝑝: Quantity of COVID-19 vaccine type p 

packages ordered by pharmacies j. 

𝐶𝑉𝑝: The consumption value time of COVID-19 

vaccine type p from the delivery time to the cross-

dock. 

𝑉𝑝: Volume of each COVID-19 vaccine type p 

packages. 

𝑃𝑇: Planned time for routing. 

𝛼𝑝: Earliness cost per COVID-19 vaccine type p 

packages. 

𝛽𝑝: Tardiness cost per COVID-19 vaccine type p 

packages. 

𝛾𝑝: Inventory holding cost of each COVID-19 

vaccine type p packages at cross-dock. 

𝐿𝐶𝑘: The additional cost of fuel consumption of 

the outbound vehicle k, per unit load weight 

carried by it, will lead to environmental costs due 

to increased emissions. 

𝐶𝑘: Crossover cost of outbound vehicle k. 

𝑄𝑘: Volume capacity of outbound vehicle k. 

𝑊𝑝: Weight of each COVID-19 vaccine type p 

packages. 

𝑀: Big number. 

C) Variables of inbound vehicles route from 

manufacturers to a cross-dock 

𝑎𝑡𝑙𝑖: Movement time towards cross-dock from 

manufacturer i  of vehicle l. 

𝑟𝑡𝑙: Release time of inbound vehicle l. 

𝑟𝑗: Release time of order j. 

𝑦𝑙𝑓: 1 if inbound vehicle l is processed at the 

receiving dock-door f , and 0 otherwise. 

𝑥𝑙𝑗′: 1 if inbound vehicles 𝑗′ is processed at the 

same the receiving dock-door, and inbound 

vehicle l immediately precedes inbound vehicle 

𝑗′, and 0 otherwise (( 𝑙 ≠  𝑗′) 𝑙, 𝑗′ =
{0,1,2, … , 𝐿 + 1}). 

D) Variables of outbound vehicles from cross-

dock to pharmacies and delivery process: 

𝑧𝑗𝑗′𝑘: 1 if outbound vehicle k travels from node j 

to node 𝑗′,and 0 otherwise (( 𝑗 ≠  𝑗′) 𝑗, 𝑗′ =
{0,1,2, … , 𝑛 + 1}) 

𝑣𝑗𝑘: 1 if outbound vehicle k carries order j, and 0 

otherwise. 

𝜏𝑘: 1 if outbound vehicle k is used, and 0 

otherwise. 

𝑠jk: Time at which outbound vehicle k leaves node 

j. 

𝑠𝑗: Time at which order j is delivered. 

𝑑𝑡𝑗: Departure time of order j. 

𝑌𝑘ℎ: 1 if outbound vehicle k is processed at the 

shipping dock-door h, and 0 otherwise. 
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𝑋𝑘𝑗′ : 1 if outbound vehicles k and 𝑗′are processed 

at the same shipping dock-door, and outbound 

vehicle k immediately precedes Outbound 

Vehicle 𝑗′, and 0 otherwise ((𝑘 ≠  𝑗′) 𝑘, 𝑗′ =
{0,1,2, … , 𝐾 + 1}). 

𝑒𝑗: Order j earliness. 

𝑡𝑗: Order j tardiness. 

𝐶𝑉𝑗𝑝: Consumption value of COVID-19 vaccine 

type p ordered by pharmacy j when it is delivered 

to the pharmacy, (0 ≤ 𝐶𝑉𝑗𝑝 ≤ 1). The closer 

𝐶𝑉𝑗𝑝 is to 1, risk of injection complication due to 

COVID-19 vaccines corruption is closer to 0.) 

𝐶𝑉𝑠𝑗𝑝: Auxiliary variable for the consumption 

value piecewise linear function of COVID-19 

vaccines, (−∞ ≤ 𝐶𝑉𝑠𝑗𝑝 ≤ 1)  

𝛿𝑗𝑝: 1 if (𝐶𝑉𝑠𝑗𝑝 ≤ 0), and 0 otherwise. 

𝑙𝑎𝑗𝑘: The load weight of outbound vehicle k, when 

it arrives the node j. 

 

E) Objective functions: 

(1) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹1

= ∑ ∑ ∑ ∑ ∑ ∑ 𝑦𝑙𝑓𝑌𝑘ℎ𝑣𝑗𝑘

𝐻

ℎ=1

𝐾

𝑘=1

𝐹

𝑓=1

𝐿

𝑙=1

𝛼𝑝𝐷𝑗𝑝

𝑃

𝑝=1

𝑛

𝑗=1

𝑒𝑗

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑦𝑙𝑓𝑌𝑘ℎ𝑣𝑗𝑘

𝐻

ℎ=1

𝐾

𝑘=1

𝐹

𝑓=1

𝐿

𝑙=1

𝛽𝑝𝐷𝑗𝑝𝑡𝑗

𝑃

𝑝=1

𝑛

𝑗=1

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑦𝑙𝑓𝑌𝑘ℎ𝑣𝑗𝑘

𝐻

ℎ=1

𝛾𝑝𝐷𝑗𝑝(𝑑𝑡𝑗

𝐾

𝑘=1

𝐹

𝑓=1

𝐿

𝑙=1

𝑃

𝑝=1

𝑛

𝑗=1

− 𝑟𝑗) + ∑ ∑ ∑ 𝐶𝑘𝑧𝑗𝑗′𝑘𝑇𝑇𝑗𝑗′𝑘

𝐾

𝑘=1

𝑛+1

𝑗′=1

𝑗≠𝑗′

𝑛

𝑗=0

+ ∑ 𝐹𝐶𝑘𝜏𝑘

𝐾

𝑘=1

+ ∑ ∑ ∑ 𝐿𝐶𝑘. 𝑙𝑎𝑗𝑘. 𝑧𝑗𝑗′𝑘

𝐾

𝑘=1

𝑛+1

𝑗′=1

𝑗≠𝑗′

𝑛

𝑗=0

 

(2) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹2

= ∑ ∑ ∑ ∑ 𝑣𝑗𝑘𝑌𝑘ℎ

𝐻

ℎ=1

𝐾

𝑘=1

𝐶𝑉𝑗𝑝

𝑛

𝑗=1

𝑃

𝑝=1

 

 

The objective function (1) is to minimize costs 

and increase the efficiency of a logistics network. 

The following costs are considered here. The first 

and second sections of the function calculate the 

earliness and tardiness penalty costs of 

pharmacies' orders to achieve just-in-time 

logistics goals, respectively. The third section 

calculates the cost of temporary storage at cross-

dock. The fourth section calculates the cost of the 

crossover outbound vehicle. The fifth section 

estimates the environmental cost of using each 

outbound vehicle. Finally, the sixth part is the 

added cost of fuel consumption and 

environmental pollution, related to the load 

weight carried by outbound vehicles, according to 

green logistics goals. The objective function (2) 

maximizes the consumption value of delivered 

COVID-19 vaccines and minimizes the risk of 

injection complications due to COVID-19 

vaccines corruption. 

F) Constraints: 

(3) 

xlirtl = xliatli + xliTTil

+ xli ∑ TUjlujl

n

j=1

     l

= {1,2 … , L};  i
= {1,2, … , I} 

(4) 

rtj′ ≥ rtl − M(1 − xlj′)    l

= {1,2 … , L}; j′

= {1,2 … , L}    (l ≠ j′) 

(5) 

rj ≥ rtl − M(1 − ujl)                        j

= {1,2 … , n}; l
= {1,2 … , L}     

(6) 
∑ ylf

F

f=1

= 1                                      l

= {1,2 … , L}     

(7) 

xlj′ − 1 ≤ ylf − yj′f ≤ 1 − xlj′        l, j′

= {1,2 … , L}  (l ≠ j′);       f
= {1,2 … , F} 

(8) ∑ xlj′

L

l=0
l≠j′

= 1        j′ = {1,2 … , L}    



Iranian Journal of Optimization, 13(2), 123-146, June 2021    

 

 

131  
    

Abbasi Tavallali et al./ Presenting a Mathematical … 

(9) 
∑ xlj′

L+1

j′=1

l≠j′

= 1        l = {1,2 … , L}    

(10) ∑ x0j′

L

j′=1

= F    

(11) ∑ xl,L+1

L

l=1

= F   

(12) 

x0l  + x0j′ + ylf + yj′f ≤ 3    l, j′

= {1,2 … , L + 1}, (l
≠ j′);     f = {1,2 … , F}    

(13) 

s0k ≥ rj + TLjk − M(1 − vjk)   j

= {1,2 … , n};  k
= {1,2 … , K} 

(14) 
s0j′ ≥ s0k − M(1 − Xkj′)   k, j′

= {1,2 … , K} ;   ( k ≠ j′)   

(15) 

dtj

≥ s0k

− M(1 − vjk)                                        j

= {1,2 … , n};   k = {1,2 … , K} 

(16) ∑ Ykh

H

h=1

= 1     k = {1,2 … , K}   

(17) 

Xkj′ − 1 ≤ Ykh − Yj′h

≤ 1 − Xkj′             k, j′

= {1,2 … , k}; (k ≠ j′)   h
= {1,2 … , H} 

(18) ∑ Xkj′

K

k=0
k≠j′

= 1           j′ = {1,2 … , K} 

(19) 
∑ Xkj′

K+1

j′=1

k≠j′

= 1       k = {1,2 … , L } 

(20) ∑ X0j′

K

j′=1

= H   

(21) ∑ Xk,K+1

K

k=1

= H   

(22) 

X0k + X0j′ + Ykh + Yj′h ≤ 3         k, j′

= {1,2 … , K + 1}   (k
≠ j′);  h = {1,2 … , H} 

(23) 
∑ ∑ zjj′k

n

j=0

j≠j′

K

k=1

= 1                       j′

= {1,2 … , n}   

(24) ∑ z0j′k

n

j′=1

= 1             k = {1,2 … , K}   

(25) ∑ zj,n+1,k

n

j=1

= 1       k = {1,2 … , K}   

(26) 

∑ zjhk

n

j=0

− ∑ zhj′k

n+1

j′=1

= 0                                h
= {1,2 … , n};    k
= {1,2 … , K}   

(27) 

1

M
∑ zjj′k

n

j=0

j≠j′

≤ vj′k ≤ ∑ zjj′k

n

j=0

j≠j′

               j′

= {1,2 … , n};           k
= {1,2 … , K} 

(28) 
∑ ∑ vjk. Djp. Vp

P

p=1

n

j=1

≤ Qk        k

= {1,2 … , K}   

(29) 

sj′k ≥ sjk + TTjj′k + STj′k

− M(1 − zjj′k)       j

= {0,1,2 … , n}, j′

= {1,2, … , n + 1}, (j
≠ j′);            k
= {1,2, … , K} 

(30) 

sj

≥ sjk − M(1 − vjk)                                     j

= {1,2 … , n};   k = {1,2 … , K} 

(31) 

sj

≤ sjk + M(1 − vjk)                                     j

= {1,2 … , n};   k = {1,2 … , K} 

(32) sj ≤ PT                    j = {1,2 … , n}   

(33) tj ≥ sj − bj              j = {1,2 … , n}   
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(34) ej ≥ aj − sj            j = {1,2 … , n}   

(35) 

CVsjpCVp ≤ CVp − (sj − rj)      j

= {1,2 … , n} ;     p
= {1,2 … , P}   ∀  Djp ≠ 0 

(36) 

CVsjp + Mδjp ≥ 0                  j

= {1,2 … , n};   p
= {1,2 … , P}    ∀  Djp ≠ 0   

(37) 
CVjp ≥ CVsjp         j = {1,2 … , n};    p

= {1,2 … , P}   ∀   Djp ≠ 0   

(38) 

CVjp ≤ CVsjp + Mδjp       j

= {1,2 … , n};   p
= {1,2 … , P}    ∀  Djp ≠ 0 

(39) 

CVjp ≤ 1 − δjp               j = {1,2 … , n};   p

= {1,2 … , P}       ∀  Djp

≠ 0 

(40) 
vjk ≤ τk              j = {1,2 … , n};   k

= {1,2 … , K} 

(41) 

(lajk − ∑ Djp. Wp

P

p=1

− laj′k) . zjj′k

= 0             j
= {0,1,2 … , n};  j′

= {1,2 … , n + 1}; (j
≠ j′);      k = {1,2 … , K} 

ylf ∈ {0,1}            l = {0,1,2 … , L + 1};    f
= {1,2 … , F} 

xlj′ ∈ {0,1}           l = {0,1,2 … , L};   j′

= {1,2 … , L + 1}    (l ≠ j′) 

Ykh ∈ {0,1}             k = {0,1,2 … , K + 1};    h
= {1,2 … , H} 

Xkj′ ∈ {0,1}          k = {0,1,2 … , K};   j′

= {1,2 … , K + 1}    (k ≠ j′) 

zjj′k ∈ {0,1}        j = {0,1,2 … , n};   j′

= {1,2 … , n + 1}; (j ≠ j′);      k
= {1,2 … , K}  

vjk ∈ {0,1}            j = {1,2 … , n};    k

= {1,2 … , K} 

atl, rj, rtl, DTk, s0k, dtj, sjk, 𝑙𝑎𝑗𝑘, sj, ej, tj ∈ R+ 

CVjp ∈ R+ ; CVsjp ∈ R;  δjp ∈ {0,1}                j

= {1,2 … , n};   p = {1,2 … , P} 

Constraints (3) - (12) related to inbound vehicles 

at cross-docking operations are as follows: 

Constraint (3) schedules the movement of 

inbound vehicle l from the manufacturer to cross-

dock as well as unloading completion and release 

time. Constraint (4) ensures that if an inbound 

vehicle precedes another inbound vehicle, the 

release time of the latter should ensure that there 

is enough time for the former to complete its 

unloading. Constraint (5) calculates the release 

time of pharmacy's order, which is the maximum 

release time of the vehicles that bring some/all 

parts of the pharmacy's order. Constraint (6) states 

that each inbound vehicle is serviced at only one 

receiving door. Constraint (7) ensures that if an 

inbound vehicle precedes another inbound 

vehicle, they should be at the same receiving 

door. Constraints (8) and (9) indicate that each 

non-dummy inbound vehicle is exactly ahead of 

an inbound vehicle (it may be a dummy vehicle). 

Constraints (10)- (12) restrict the dummy inbound 

vehicles '0' and 'L+1' to be the first and the last 

inbound vehicles at each receiving dock-doors, 

respectively. 

- Constraints (13) - (22) related to the outbound 

vehicles from the cross-dock for the delivery 

orders and the collection of returned COVID-19 

vaccines at the central collection center are as 

follows: 

Constraint (13) applies the dependency of an 

outbound vehicle on its related incoming 

pharmacy's orders. It connects the departure time 

of an outbound vehicle to the release time of its 

related pharmacy's orders. Constraint (14) ensures 

that if an outbound vehicle precedes another 

outbound vehicle, then the departure time of the 

latter should ensure that there is enough time for 

the former to complete its loading. Constraint (15) 

calculates the departure time of each pharmacy's 

order, which is the departure time of the vehicle 

that delivers the same order. Constraint (16) 

stipulates that each outbound vehicle can be 

processed at only one shipping door. Constraint 

(17) ensures that they should be at the same 

shipping door if an outbound vehicle precedes 

another outbound vehicle. Constraints (18) and 

(19) each non-dummy outbound vehicle is exactly 

precisely ahead of another outbound vehicle (it 

may be a dummy outbound vehicle). Constraints 
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(20)-(22) restrict the dummy outbound vehicles '0' 

and 'K+1' to be the first and the last outbound 

vehicles at each shipping dock-doors, 

respectively. 

- Constraints (23) - (41) related to the delivery 

process are as follows: 

Constraint (23) determines that each pharmacy's 

orders are delivered by only one outbound vehicle 

(this constraint prevents split delivery).  

Constraints (24) and (25) enforce each outbound 

vehicle to leave cross-dock and return to the 

central collection center. Constraint (26) ensures 

the continuity of the outbound vehicle route from 

the cross-dock. Constraint (27) determines that 

the pharmacy's order must be delivered by one 

outbound vehicles. Constraint (28) limits the load 

of the outbound vehicle to its capacity. Constraint 

(29) schedules the order delivery process. 

Constraints (30) and (31) compute the delivery 

time of the order to the pharmacy. Constraint (32) 

indicates that the delivery process of all orders 

should be carried out within the planning time 

horizon. Constraint (33) specifies the tardiness in 

the delivery of the order. Constraint (34) specifies 

the earliness in the delivery of the order. 

Constraint (35) models the Consumption value of 

the COVID-19 vaccine delivered to the pharmacy 

as a linearly decreasing function since unloading 

of the COVID-19 vaccine at the cross-dock 

COVID-19 vaccine has a maximum consumption 

value. Constraint (36) specifies whether a 

COVID-19 vaccine ordered by a pharmacy is 

delivered after its consumption value period. 

Constraints (37)-(39) model the consumption 

value function and ensure that the consumption 

value of the COVID-19 vaccines delivered after 

their consumption value period should be equal to 

zero to minimize the risk of injection 

complication COVID-19 vaccines corruption. 

Constraint (40) specifies whether a vehicle is 

used. Constraint (41) calculates each outbound 

vehicle's load weight when it arrives at each 

related node. 

PROPOSED SOLUTION 

   Survival of the Fittest! This issue is the same 

hypothesis of evolution and inheritance, which 

inspired the GA formation. As a random search 

algorithm, its advantage is considering a 

population of search space points as the initial 

population to start and improve subsequent 

generations using genetic operators rather than 

starting the search from an earlier point. In the 

simplest versions of this algorithm, a limited 

population of fixed-length chromosomes 

consisting of genes is processed. The two main 

operators of the algorithm are crossover and 

mutation. The crossover operator is to visit 

different parts of a justified area by combining the 

genes of two chromosomes. 

On the other hand, the mutation operator keeps 

the search process away from local optima by 

applying minor changes to a selected 

chromosome. The efficiency algorithm 

encompasses the combined use of these two 

operators. The present study used an advanced 

GA to solve the two-stage stochastic 

programming problem. 

Non-Dominated Sorting GA II (NSGA-II) 

   The NSGA-II algorithm is one of the most 

widely used and robust existing algorithms to 

solve multi-objective optimization (MOO) 

problems, proven to solve various problems. 

Srinivas and Deb(1994) introduced the NSGA 

optimization method to solve MOO problems. 

Regarding this optimization method, note the 

following highlights: 

- One solution, definitely unrivaled by no other 

solution, scores higher. Solutions are ranked and 

sorted based on the number of better solutions; 

- The fitness value is assigned to the solutions 

following their ranks, and other solutions do not 

dominate them; 

- The fitness sharing method is used for close 

solutions to optimally adjust the distribution of 

solutions and ensure the uniform distribution of 

solutions in a search space. 

Due to the relatively high sensitivity and 

performance of the solutions provided by the 

NSGA algorithm to fitness sharing and other 

parameters, the second version of the NSGA 

algorithm, NSGA-II, was introduced by 

Kalyanmoy Deb et al. (2000). In addition to the 

efficiency of NSGA-II, it is considered as a model 
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forming many MOO algorithms. Different 

researchers used this algorithm and its unique 

approach to MOO problems many times to 

develop newer MOO algorithms (Coca et al., 

2019; Abdi et al., 2020). Undoubtedly, this 

algorithm is considered one of the most basic 

members of the collection of evolutionary MOO 

algorithms, which can be named the second 

generation of such methods. The main features of 

this algorithm are: 

- Defining crowding distance as an alternative to 

methods such as fitness sharing; 

- Using binary tournament selection operators; 

and 

- Saving and archiving non-dominated solutions 

obtained in the previous steps of the algorithm 

(elitism). 

 In the NSGA-II algorithm, several options are 

selected from the solutions of each generation 

using the binary tournament selection method. In 

the binary selection method, two solutions are 

selected randomly from the population and 

compared to reach a better solution. In the NSGA-

II algorithm, the solutions are selected based on 

their rank and crowding distance. The lower the 

rank of the solution is, and the longer the 

crowding distance is, the better the option would 

be. A set of individuals from the same generation 

are selected to participate in crossover and 

mutation.  It is due to the iteration of the binary 

selection operator on the population. The 

crossover operation is performed on a portion of 

the selected set of individuals. The mutation 

operation is performed and leads to the generation 

of an offspring population. Then, this population 

is consolidated with the main population. Newly 

formed members of the population are first ranked 

in ascending order, and the members of the 

population with the same rank are also ranked in 

descending order in terms of crowding distance. 

Afterward, the population members are first 

sorted by rank and then by crowding distance. 

Some of the top members of the sorted list are 

selected, and the rest are discarded. The selected 

members form the next generation population, 

and the cycle introduced in this section is repeated 

until the stopping condition is met. Non-

dominated solutions, known as MOO, are often 

referred to as Pareto front. None of the Pareto 

front solutions takes precedence over the other, 

and each can be considered an optimal decision, 

depending on the circumstances. 

NSGA-II algorithm steps 

Step 1: Produce the initial population as usual, 

based on the scale and problem constraint; 

Step 2: Assess the produced population from the 

perspective of the defined objective functions;  

 

 

Fig.1. Second step in NSGA-II Algorithm 

Step 3: Apply the non-dominated sorting method; 

The population members are placed in a series of 

categories, as the members of the first category 

are a completely non-dominated set by the other 

members of the current population. In other 

words, the members of the second category are 

dominated only by the members of the first 

category. This process continues in other 

categories until all the members are ranked based 

on the category number. 

 

 

Fig2. Third step in NSGA-II Algorithm 

 

Step 4: Calculate the control parameter' 

population distance'; 
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This parameter is calculated for each group 

member, indicating the proximity of the sample. 

The larger value of this parameter results in better 

divergence and range in the set of population 

members. 

𝑑𝑗(𝑘) = ∑
𝑓𝑖(𝑘 − 1) − 𝑓𝑖(𝑘 + 1)

𝑓𝑖
𝑚𝑎𝑥 − 𝑓𝑖

𝑚𝑖𝑛
           (4 − 1)

𝑛

𝑖=1

 

 

Fig. 3. Calculation of population distance (Deb et al., 

2000) 

 

Step 5: Select parent population for reproduction; 

and 

One of the selection mechanisms is based on the 

binary tournament between the two randomly 

selected population members. 

Step 6: Perform mutation and crossover 

operations. 

 

 

Fig. 4. NSGA-II algorithm performance (Deb et al., 

2000) 

To describe the proposed algorithm, six important 

features of this algorithm are described below. 

Solution Encoding (Chromosome Structure) 

   The chromosome structure or the feasible 

solution of the third proposed model consists of 

two separate parts; however, the two parts are 

interconnected, and one affects the feasibility of 

the other. 

A) Genes related to variables 

   As the title implies, this part of the chromosome 

is related to the first-stage variables, also known 

as design variables. These variables must be 

decided before the actual values of the uncertain 

parameters are determined.  

B) Initial Population 

   A periodic strategy is used to obtain an initial 

feasible solution. Gene X is generated randomly 

from the chromosome based on resource 

constraints and mathematical expectations in the 

first step. Then, the other parts, i.e., XS, XM, and 

XP of the chromosome, are randomly filled. 

Afterward, the second chromosome is generated 

randomly to meet each scenario's model 

constraints and requirements. Note that the 

chromosomes are adjusted in each of the above 

steps if needed. Each chromosome is compared 

with the other chromosomes in the mating pool to 

prevent the production of similar chromosomes in 

each generation. 

C) Fitness Function 

   In GA, fitness assessment is usually performed 

based on the value of the objective function of the 

problem. According to the relevant explanations, 

one of the functions in this algorithm is 

considered as the main objective function, and the 

other functions are included in the model as 

constraints. Accordingly, in the proposed GA, the 

first objective function, i.e., the total weight of the 

mathematical expectations and the variability of 

the overall system costs, is considered as a fitness 

function. 

D) Selection Strategy 

   The proposed GA uses two selection strategies. 

In the first strategy, the best chromosome is 

passed directly from parents to the next 
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generation. A mating pool is first generated for 

the displacement operator, and the parents are 

then selected from the same pool. Finally, the 

parents are selected for the mutation operator. It 

is better to select the best and the most promising 

parents because better parents have better 

offspring, on average, To perform a crossover 

operation. Accordingly, a normalization 

operation is performed on the produced mating 

pool. The mean and standard deviation of the 

objective function is calculated for each 

generation. Then, a chromosome with an average 

better than that of the generation is transferred to 

the mating pool for crossover or mutation 

operations to guarantee that the best 

chromosomes create the next generations. 

E) Improved GA operators 

   The Chromosome Structure Section mentions 

that this structure consists of two-dimensional 

(2D) matrices; hence, the classical GA operators 

cannot implement these chromosomes. For this 

purpose, the classical GA operators are improved 

to be applied to the 2D matrices. The improved 

operators are divided into three categories 

(namely columnar, districted, and erratic), as 

described below: 

- Columnar Operator: This operator is applied 

as columnar. First, two random numbers are 

generated in the corresponding row and column 

of the chromosome. Then, the mutation or 

crossover operation is applied to the selected part. 

For example, in Figure 5, the red and green 

columns of the two chromosomes A and B are 

chosen randomly, and the mutation operator is 

applied. 

 

 

Fig. 5. Columnar displacement operator 

 

- Districted Operator: This operator is applied 

as districted. First, a few random numbers are 

generated within the corresponding column and 

row of chromosomes. Then, the operators 

(mutation or displacement) are applied to the 

block formed by these random numbers. For 

example, in Figure 6, the red and green blocks are 

randomly selected from two chromosomes, and 

the displacement operator is then applied to them. 

 

 

Fig. 6. Districted displacement operator 

 

- Erratic Operator: This operator is applied 

erratically. Several valves of the chromosome are 

selected randomly, and the crossover or mutation 

operation is applied to them (Figure 7). 

 

 

Fig. 7. Erratic displacement operator 

 

F) Modification operations 

   Following the application of each operator in 

section A, the composition of the index will 

change. Sometimes it makes the capacity of the 

transferred product exceed the available capacity 

and result in an unjustified chromosome. In this 

case, a modification operation is required to 

convert this unfeasible solution to a feasible 

solution. In this section, a modification operation 

is designed to change the solution randomly to 

obtain a feasible chromosome. Importantly, by 

setting up a counter, one can set the desired 

chromosome to be removed if it remains 

unfeasible after a certain number of the 

subsequent iterations of the operator. Afterward, 
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an alternative chromosome is re-generated based 

on the feasible solution production strategy. 

Comparison criteria for evaluating solution 

quality 

   Some comparison criteria are introduced to 

evaluate the proposed algorithm. In general, 

converging to Pareto optimal solutions and 

providing diversity among the resulting solutions 

are two distinct and almost contradictory goals in 

multi-objective evolutionary algorithms 

(MOEAs). Accordingly, no single criterion to 

decide solely and absolutely on the performance 

of algorithms has not been presented yet. This 

research pursues two goals; therefore, at least two 

criteria are introduced to evaluate the algorithm's 

performance. 

- Mean Ideal Distance (MID): This criterion is 

used to calculate the average distance of Pareto 

solutions from the origin of coordinates. 

- Maximum Spread or Diversity (D): This 

criterion, proposed by Zitzler, measures the 

length of the space cube used by the end values of 

the targets for a set of non-dominated solutions. 

For example, this criterion equals the Euclidean 

distance between two boundary solutions in the 

target space in a bi-objective mode. The larger 

values provide better results. 

- Spacing (S): This criterion, proposed by Schott, 

is the relative distance between successive 

solutions. The measured distance is equal to the 

minimum sum of the absolute values of the 

difference in the values of the objective functions 

between the ith solution and the solutions located 

in the final non-dominated set. This criterion 

measures the deviation of the criteria of different 

values. If the solutions are uniformly sided-by-

side, the value of S will be small too. Therefore, 

the algorithm, with its final non-dominated 

solutions, will have slightly better spacing. 

- The number of Pareto solutions (NPS): The 

NPS value indicates the number of Pareto optimal 

solutions observed in each algorithm. 

- CPU Time: Algorithm execution time is one of 

the main indicators in determining the efficiency 

of any metaheuristic algorithm. 

 Parameter Setting 

   The results of metaheuristic algorithms depend 

on the values of their input parameters. 

Accordingly, we describe how to set the values of 

the proposed algorithm parameters. Meanwhile, 

stopping conditions are considered to reach 20 

iterations. 

Parameter setting methods and Taguchi 

method 

   The Design of Experiments is widely used in 

many systems as an essential tool in determining 

and correcting process performance. Parameter 

setting methods are: 

- Referring to previous studies; 

- Trial and error method; 

- How to perform complete tests; 

- Taguchi method; 

- Response Surface Method (RSM); 

- Fuzzy neural network; and 

- Metaheuristic algorithms (before or during 

execution). 

The Taguchi method was used in this study. Dr. 

Genichi Taguchi contributed to expanding the 

experimental design knowledge. The parameter 

design method presents an engineering method 

for the product or process design to minimize 

changes and sensitivity of turbulence factors. The 

first goal of an efficient parameter design is to 

identify and adjust the factors minimizing the 

response variables. The next goal is to identify 

controllable and uncontrollable factors. 

Taguchi specifically addresses the concept of the 

loss function. A loss function combines cost, 

target, and diversity and achieves a measurement 

criterion. It further aims to set specification limits. 

He also expanded the concept of robustness. 

Taguchi defined quality as a loss transferred to the 

population from the moment the product is 

shipped. The ultimate goal of this method is to 

find the optimal combination of some controllable 

factors. Taguchi's philosophy is based on a solid 

and stable design. This method performs 

calculations using Minitab software version 16 

using the DOE option and then Taguchi sub-

option. The number of factors required to 

determine the number and combination procedure 

of laboratory levels should be specified (Table 1). 
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Table 1: Candidate factors and levels of NSGA-II algorithm  

 

 

 

 

 

 

  

 

 

 

 

The Taguchi L9 standard is selected as an 

appropriate experimental design to set the 

proposed parameters according to orthogonal  

 

 

 

 

 

 

 

arrays. The L9 array is a practical design with 

nine experiments. Table 2 shows the test designs 

for the proposed algorithm. 

 

Table 2: Test designs with orthogonal array L9 for NSGA-II algorithm 

Solution 

Values 

Algorithm Parameters 
Execution 

Order 
MID Pm Pc nPop 

6.9517 1 1 1 1 

37.162 2 2 1 2 

3.0812 3 3 1 3 

9.465 2 1 2 4 

5.6565 3 2 2 5 

9.5747 1 3 2 6 

16.3752 3 1 3 7 

14.2128 1 2 3 8 

7.9231 2 3 3 9 

 

 

The proposed metaheuristic algorithm runs for 

each Taguchi test. Figure 8 shows the average 

Signal to Noise (S/N) ratio obtained for each level  

 

 

 

of the algorithm. Table 2 presents the optimal 

levels of input parameters for this algorithm. 

 

 

 

High Medium Low Algorithm 

Parameters 

45 30 15 nPop 

0.9 0.7 0.5 P Crossover 

(Pc) 

0.4 0.3 0.2 P Mutation 

(Pm) 
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Fig. 8. S/N ratio of NSGA-II algorithm parameters 

 

 

    A multi-objective mathematical model is 

solved for routing, scheduling, cross-docking, and 

transportation in the green reverse logistics 

network of COVID-19 vaccines. The results are 

described in the next section. 

 

SOLVING THE MODEL 

    As seen in Section III, a mathematical model 

was developed to solve the model optimally. The 

concerned mathematical model was solved by 

determining the inputs for a group of 

manufacturers, the total inbound and outbound 

vehicles, dock-doors (for shipping and receiving), 

and a set of pharmacies. Accordingly, three small, 

medium, and big problems were designed and 

implemented to solve the mathematical model of 

the research problem. The number of 

manufacturers was considered 3, 6, and 10 for the 

three problems above (namely small, medium, 

and big), respectively. Accordingly, for Index j, 

which is set to zero in this study at the beginning 

of the problem, j = n represents the number of 

pharmacies. 

Additionally, the number of outbound vehicles for 

small problems is initially considered 1, so k = 0 

and K + 1 are considered dummy outbound 

vehicles at cross-docking operations. The 

maximum value for the number of vehicles in a  

 

 

large-scale solution is deemed to be 10. This 

process is also valid for outbound vehicles. 

The numbers of shipping and receiving dock-

doors are 3, 6, and 10 for small, medium, and big 

problems, respectively. Finally, the number of 

COVID-19 vaccine packages in solving small, 

medium, and big problems are 5, 10, and 15, 

respectively. 

NSGA optimization was used in the MATLAB 

environment to solve this model. Accordingly, as 

described in Sections IV and V in detail, the 

parameters of the solution method were set based 

on the Taguchi method (Section 4.5.1). Moreover, 

the input values of the problem were generated as 

random numbers and fed to the model as inputs. 

After solving this problem, the output is as 

follows: 
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Table 3: Solution results for the objective functions of the small, medium, and big problems 

Problems 
First Objective Second Objective 

F1 – S F1 - M F1 - L F2 - S F2 - M F2 – L 

T1 0.59 2.03 14.34 72.18 81.02 93.76 

T2 1.25 6.20 33.27 50.30 68.94 84.53 

T3 1.41 9.70 40.37 37.80 62.80 81.30 

T4 1.53 13.59 47.85 31.55 58.56 77.10 

T5 1.70 19.39 52.57 24.14 54.54 71.62 

T6 1.96 24.14 56.99 19.39 50.51 67.74 

T7 2.14 29.12 63.04 28.66 47.12 62.35 

T8 2.42 33.56 67.49 29.87 43.31 55.12 

T9 2.65 40.97 71.55 32.88 39.07 44.38 

T10 3.24 47.96 75.21 32.00 34.83 38.78 

T11 11.21 63.20 78.55 25.00 27.21 33.10 

T12 52.11 88.89 89.24 13.59 13.15 16.97 

 

   According to the explanations mentioned 

above, the data generated for the solution were 

considered input problems. Table 3 and figure 9 

show the results of solving the objective functions 

for the three research problems. This table shows 

that the first objective function, indicating the 

increased logistics and efficiency network's 

minimized cost, is presented in 12 time periods. 

Table 3, T1 shows the results of the objective 

functions for the problems in the first period. In 

this course, the problem is solved in three sizes: 

small, medium, and big, and the results are 

expressed for the first objective function. The 

remarkable difference is caused by the costs 

imposed on the research problem, resulting in 

increased penalties for delays. This issue is 

because the early delivery of demands increases 

the cost of stopping and wasting time, holding 

costs, and problem failure. For the problem of 

tardiness and the problem tardiness cost, it also 

imposes pharmacy dissatisfaction costs. 

According to table 3 and figure 9, as the number 

of periods for the system operations increases  

 

(Period 6 et seq.), the costs of the medium and big 

problems in the green reverse logistics network 

system become closer. This issue implies that 

more COVID-19 vaccine flows in the network 

make the delivery time more balanced as such, the 

costs become closer. As observed, in periods 11 

and 12, the system costs get closer to each other 

for any size problems. This subject presents a rise 

in the increasing demand and flow of COVID-19 

vaccines among producers, a cross-dock, and 

pharmacies; thus, the system cost is optimal. The 

right column in Table 3 shows the values for the 

second objective function of the three research 

problems. As stated in the research model, the 

second objective function indicates the maximum 

consumption value of the delivered COVID-19 

vaccines and minimizes the risk of injection 

complication due to COVID-19 vaccines 

corruption. Accordingly, this table shows the 

consumption value of COVID-19 vaccines to 

pharmacies. 
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(A): Convergence of first objective function 

 

 

(B): Convergence of the second objective function 

 

Figure 9: Convergence of the objective functions 

 

 

(A): Small Pareto front 
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(B): Medium Pareto front 

 

 

(C): Large Pareto front 

 
Fig. 10. Non-dominated solutions in the first test problem 

 

To analyze the algorithms, we have defined 

different tests with small and large complexities. 

Twelve tests are generated concerning 

benchmarks in the literature. For each test 

problem as given in Table 3, based on the Pareto 

solutions of the metaheuristics, we have 

considered the upper and lower bound of the 

solutions as well as the optimal solution, which is 

the average of the Pareto fronts.  

To further analyze the performance of the 

algorithms statistically, the interval plots for each 

assessment metric are provided. In this regard, we 

first normalize the data and then depict the data to 

show the robustness of the algorithms. In these 

plots, as shown in Figures 10 (A) to (C), the lower 

value brings the better accuracy and robustness of 

the algorithms.  

CONCLUSION 

    An outbreak of deadly COVID-19 has taken the 

lives of many peoples. Various manufacturing 

companies are looking to produce the COVID-19 

vaccines after it is discovered. Making these 

vaccines available to the public is one of the most 

important challenges today. Deciding on 

transportation and vehicle routing is one of the 

main decisions in the category of short-term 

decisions in logistics management and supply 
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chain for COVID-19 vaccines. Transportation is 

one of the most critical components affecting the 

total cost of the final COVID-19 vaccine 

produced, as well as one of the integral 

components of any society and one of the key 

sectors of any country's economy. The vehicle 

routing problem is one of the most challenging 

problems in COVID-19 vaccines supply chain 

management. It is a type of combinatorial 

optimization problem and integer programming, 

one of the practical concepts of operational 

research. Much research has been conducted on 

the types of vehicle routing problems and how to 

solve them. The present study looked at routing, 

scheduling, cross-docking, and transportation in 

the green reverse logistics network of COVID-19 

vaccines. It minimizes costs and time, maximizes 

the consumption value of delivered COVID-19 

vaccines, and minimizes the risk of injection 

complication due to COVID-19 vaccines 

corruption during logistics operations by 

manufacturers. Ignoring these goals would lead to 

an increase in the time and cost of logistics 

operations, an increase in the environmental 

costs, and a reduction in the consumption value of 

delivered COVID-19 vaccines, consequently 

maximizing the risk of injection complication due 

to COVID-19 vaccines corruption and getting 

away from green logistics goals. Then, an 

efficient method was demonstrated using the 

NSGA II algorithm. The algorithm provides a 

series of convergent solutions to solve three small, 

medium, and big problems for two objective 

functions of the mathematical model: minimizing 

costs and maximizing the consumption value of 

delivered COVID-19 vaccines. The present study 

assumed that there was no uncertainty in the input 

parameters of the problem. Accordingly, future 

researchers can investigate the effect of 

uncertainty in input parameters on design and 

problem-solving. The proposed model and the 

results of this study can be used in all the reverse 

logistics networks, especially the COVID-19 

vaccines logistics in the current global crisis, 

namely the COVID-19 outbreak. Moreover, the 

mathematical model can be generalized to the 

supply chains of most manufacturing companies. 
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