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Lump Solutions of Biharmonic Equation
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Abstract 
 In this article, through symbolic computation With Maple, we 

get the solution of the (1 + 1)-dimensional Biharmonic-equation. 
These solutions, which we call lump solution, obtained using square 
functions, are rationally localized in all directions in the space. It 
should be noted that not all nonlinear partial differential equations 
have lump solution. Finally, by selecting the appropriate parameter, 
the lump solutions are shown in the figures.
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INTRODUCTION 
In mathematics, partial differential equations 

have received widespread attention because of 
their important role in describing physical phe-
nomena. Therefore, it is important to obtain the 
solutions to these equations, especially their 
exact solutions, which have received much atten-
tion in recent years. So, it can be said that study-
ing the exact solutions of the nonlinear equation 
is one of the hot topics in nonlinear science. 
Many of the exact solutions of partial differential 
equations are obtained by various effective meth-
ods, such as the homotopy analysis method [S. J. 
Liao.)2004), A. Aziz, F. Khani et al.(2010)], and 
the exp-function method[M. T. Darvishi et 
al.(2011), E. M. E. Zayed et al.(2015), Jian-Guo 
Liu et al.(2018), Elsayed M. E. Zayed et 
al.(2016), W. X. Ma et al.(2010), Yakup Yıldırım  
et al.(2017), J. H. He et al.(2007), F. Khani et 
al.(2009), B-C. Shin et al.(2009), Yakup Yıldırım  
et al.(2017), Yakup Yıldırım  et al.(2017), X. H. 
Wu et al.(2008), Zhang.(2008), M. T. Darvishi et 
al.(2011)], the tanh-method[A. M. Wazwaz 
(2005), Zayed, E. M. E et al.(2010)] and multiple 
exp-function method[W. X. Ma et al.(2010), W. 
X. Ma et al.(2012), A.M. Wazwaz(2017), Jian-
Guo Liu et al.(2013)],and so on. Rational solu-
tions are a broad set of exact solutions to 
nonlinear differential equations. The purpose of 
this article is to find lump solution. Lump solu-
tion is localized in all directions in the space, 
which is a special kind of rational solutions. 
Lump functions are, in fact, analytical rational 
functions of spatial and temporal variables, 
which are localized in all directions in space. It 
has been studied by many scholars in recent years 
and has attracted much attention in the mathe-
matical physics community [Hong-Qian Sun et 
al.(2017), Sun, H. Q et al.(2017), Yuan Zhoua et 
al.(2019), Solomon Manukure et al.(2018), Yong 
Zhang et al.(2017), Shou-Ting et al.(2018), 
Harun-Or-Roshid et al.(2018),J.Y.Yang et 
al.(2017), Bang-Qing Li et al.(2018), Jian-bing 
Zhang et al.(2017), Wen-XiuMa(2015), Wen-Xiu 
Ma et al.(2018), Li-Li Huang et al.(2017) ,Xiang-
min Meng et al.(2019) ] The Biharmonic equa-
tion is a fourth-order partial differential equation 
which arises in areas of continuum mechanics 
and it is important in applied mechanics. It can 

also be mentioned for its specific application in 
the modeling of thin structures that respond elas-
tically to external forces. The first time the Bi-
harmonic equation is used is not exactly clear 
because any harmonic function that applies to the 
Laplace equation is also a Biharmonic function. 
In this paper, based on the study of the Bihar-
monic equation, we obtain the lump solutions of 
this equation.   

 
 LUMP SOLUTION 

In this section, our goal is to obtain the solution 
of the Biharmonic equation. The main idea of 
this method can be expressed as follows: 

Consider the Biharonic equation as follows 
uuyyyy+2uuxxyy+uxxxx=0       (1)    
 
And suppose the solution to Equation (1) is as 

follows 
           u(x,y)=2 ln(f(x,y))x                           (2) 
 
Where f(x,y) is unknown real function.  Bihar-

monic equation is transformed into the proper bi-
linear form 

                          G(Dx,Dy;f.f)=0,             (3) 
 
Where Dx and Dy  are the bilinear derivative 

operators and D- operator  is defined by 
 
Dx

m Dyn a(x,y).b(x,y)=(∂y-∂y')n (∂x-∂x')m 
a(x,y)b(x',y' ), 

 
Where m and n are positive integers, a(x,y) is 

the function of x and y , and b(x,y) is a function 
of the formal variables  x and y.  

We search for the quadratic function solutions 
to find the lump solutions of Biharmonic equa-
tion, so define 

        f(x,y)=g2 (x,y)+h2 (x,y)+a3                (4) 
 
g(x,y)=x+a1 y+a2,    h(x,y)=b0 x+b1 y+b2    (5) 
 
Where   a_(i ),i=1,2,b_i,j=0,1,2  are arbitrary 

constants. Substituting (4) and (5) into (3), and 
with the help of Maple software, it gives us a sys-
tem of algebraic equations of all variables. 

We solve this system to determineai  
,i=1,2,bi,j=0,1,2 .  

{a1=-b0,a3=0,b1=1} 
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              {a1=b0,a3=0,b1=-1}                      (6) 
 
Using transformation (2), the quadratic func-

tion solution of the Biharmonic equation (1) is 
given by 

 
 

(7) 
 

It is observed that 
 

(8) 
 
Two special pairs of positive quadratic function 

solutions and lump solutions with choosing spe-
cific parameters are given in the following. 

First choice 
 
{a1=-b0, a3=0,a2=1,b0=1,b1=1,b2=-2} 
 
leads to  

 
 

(9) 
 

The plots are illustrated in Fig .1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Second,another selection of the parameters : 
{a1=b0, a3=0,a2=1,b0=1,b1=-1,b2=-2} 
The plots  are results in Fig 2. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
  We draw  two plots with particular choice of 

the involved parameters for lump solutions.(Fig-
ure 1,2) 

Obviously, for all of lump solutions above, one 
can see 

 
The lump solution derived in this paper satisfy 

this criterion,and they are rationally localized in 
all direction in the space. 

 
CONCLUSION 

In recent years efforts much has been done to 
obtain the lump solutions to the equations. Trying 
to find the  lampsolutions is very interesting. In 
this paper, by positive quadratic function solu-
tions, we have getted the lump solutions of the 
Biharmonic equation ,Our computations are 
based the symbolic computation software Maple. 
Finally,  with particular choices of the involved 
parameters which have been made to show the 
lump solutions, we get different plots.  we also 
hoped that our results will provide some valuable 
information in the field of nonlinear science. 
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Fig1: The lump solution of Biharmonic equation for 
-100≤x≤100,-0.8≤y≤0.8, a2=1,b0=1,b2=-2    

Fig2: The lump solution of Biharmonic equation 
for-10≤x≤10,-10≤y≤10,a2=1,b0=1,b2=-2 
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