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INTRODUCTION
Integral equations particularly Fredholm and

Volterra integral equations play a key role in a
vast area of biology, economics and engineering
[1-5]. For this reason, integral equations have
gained a special interest in the last few decades.
General schemes to solve integral equations are
classified into two categories of analytical and
numerical methods. Exact analytical methods are
usually not available for solving integral
equations. Consequently, numerical methods
have been adopted to find approximate solutions
of integral equations. One of the numerical
schemes for handling integral equations is to
apply orthogonal polynomials such as Miintz
polynomials. In this respect, many researchers
have utilized the Muntz polynomials to solve
many equations. For example, In [6], Mokhtari
and his colleagues used the Tau method on the
basis of the Miintz-Legendre polynomials to solve
the fractional differential equations. Esmaeili and
his colleagues [7] have solved the fractional
differential equations by using collocation
method based on the Mintz polynomials.
Mokhtari [8] solved the second-order Abel
integral equations in 2016 using Galerkin's
method based on the Mintz Legendre
polynomials. Yiizbasi et al. found the solution of
the linear Fredholm differential-integral equation
by exerting a collocation method in terms of the
Miintz-Legendre polynomials [9]. A fractional
differential system has been solved by Aghashahi
and Rasouli [10] by using the Mintz-Legendre
polynomials. In 2018, Rahim Khani and
Ordokhany [11] applied the Muintz—Legendre
polynomials to solve the Bagley-Torvik equation
in a large interval. Rahimkhani et al. [12] have
solved the fractional Pantograph differential
equations using Mintz—Legendre  wavelet
operational matrix [12]. Our focus in the present
work to solve the Fredholm and Volterra integral
equations as
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V(x) = f(x)+}v1-l‘01k1(x= x=}-(x))a’x+l3-[;k3 (.1, v() dr,

(1)
by proposing a new scheme based on the
normalized Muntz—Legendre polynomial in
conjunction with a spectral method. It is worthy
of note that y(x) is an unknown, f (x) is a known

function, k, and k, are linear or nonlinear

functions and 4, and A, are arbitrary constants.

The rest of paper is organized as follows: In
Section 2, the Mintz—Legendre polynomials are
explained; in the third section, the solution
method is introduced in detail; several theorems
regarding the stability, error bound, and
convergence analysis of the method are presented
in Section 4; in Section 5, several illustrative
examples are used to examine the proposed
methodology and its results and at the end,
concluding remarks are provided in the last
section.

BASIC FORMULATION OF THE MUNTZ
AND MUNTZ-LEGENDER
POLYNOMIALS
In this section, the Mintz polynomials and their
basic properties are reviewed systematically.

Further information can be found in [13, 14].
Mintz—-Legendre polynomials

In this subsection, first the Miintz Theorem [15-
17] which a generalization of Weierstrass’
theorem is defined. After that, the relevance of
Mintz—Legendre  polynomials and Jacobi
polynomials is given in another Theorem.
Theorem 1 (Miintz’s Theorem). Suppose that

A= {k K } :—o be a sequence of real numbers such
: 1 Ao o M .
that inf, A, >—3. Then span {x , X } is

dense in L2[0,1] if and only if Z:’_Oﬁzoo
07 41

[18].

D=x=1,
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It should be mentioned that the Muntz polynomial
> Gk X M can be orthogonalized on L2[0,1]

. Inthis regard, the orthogonal Miintz polynomials
that were first introduced by Armenian
mathematician can be defined as

]ﬁlrma,-ﬂ)
. k=01..n, n=012,. .

‘E‘n("‘\‘"{):z:=an’ixﬂ%= Cn_k ==
_:_I_J;('f--;-—-"-;)

in which L,(A,x) is the orthogonal Mintz
polynomial of order n associated with A.

MLPs are orthogonal in L2[0,1] with respect to

the weight function of Legendre polynomials,
namely

Ilﬂ ()L, (x)dx = On.m nz=m
0 " Qh,+D’ T

where 3, , indicates the Kronecker Delta. The
recursive relation for the MLPs can be written as
L,G)=L, )=k, +LR_1+l)x-""‘[jx_;"‘_an_l(x)dx, x €(0.1].

By assuming A, =ak , k=0,1,...,n which «
is a real constant, the MLPs can be defined on
[0.T ] as

=k

L0)=Y} c0i B,

Theorem 2. If & >0 and x €[0,T |, then

e
La(xio)=Jdp« "(2(3)"-1) ,
n=0,12,...,

1
where Jno’ o 1(X) is the Jacobi polynomial with
parameters 0 and 1 -1.

Proof: Please see [19].
Furthermore, the NMLPs can be defined as
below:

L, (x)=f2¢e, +1L,(x) .

n.m=0.12 ..,

-
_ BT :
e (n_k)![[[)((Hz}ml}.

Operational matrices of the normalized
Mintz-Legendre polynomials

In this subsection, the operational matrices for
NMLPs including the operational matrixes of
integral and product are introduced.

The operational matrix of integral

By a simple calculation, the integration of the

vector L (x) can be derived as

I;(I:(t)dtzP L (x),

where P is the (N+1)x(N+1) operational
matrix of integration. For instance, if N =3 and

1
a:E,then P can be extracted
1 1 1
> ?ﬁ 3—0ﬁ 0
1 1 1
—?\/7 0 Fﬁﬁ gﬁ
1 1 2
_Eﬁ —jﬁﬁ 0 Eﬁ
1 2
0 —gﬁ _Eﬁ 0

The operational matrix of product

Similarly, simple calculations show that he
product of two vector bases of the NMLPS can be
shown as

L)L T (Y =T L (x).

where Yis the (N+1)x1 vector and Y is a
(N+D)x(N+1) matrix that is named the
operational matrix of product. Again if N =3 and

a :% ,then Y can be expressed as
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G Co
33 22
Cy 5 G310 —5-C

=<3
[l

N3 1042
C4 7 C3_ 21 Cy4

EXPLAINING OF THE SOLUTION
METHOD

In order to solve the equation (1) by using the
normalized Miintz-Legendre polynomials,
without loss of generality, consider the following
case

1 x
V() = F(x) +y _[ (g (V) a’!+}v:_|- a(x Dga (Ve dt 0<x=L

0 0

where g, and g, are linear or nonlinear

functions. Now, the approximate solution of the
above integral equation can be considered as a
linear combination of the NMLPs as

N
yx)=Y e, Lty =L ()0 =CT Lix),

n=0

where L,(x),n=0,1,..,N are the NMLPs and

L and C are the following vectors

Also, other expressions of the above equation can
be approximated as

fe)=L ) F=F L(x.
ki.e)=L K, L), i=12,

g eN=LT (), =F, TL(x) i=12.
where F, K; and K, are knownand Y, and Y,

are vectors of elements of the vector C . Inserting
the above approximations into equation (1)

yields
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~16+/2 3J3 36
-Gy + 23> Cy + 532 ¢y
—16+2 33 3./6 =162 16 243
s e3P+ 8e, oo o+ Bl

36 . .53, .16
7 Co + 7 C4+2103

C4

g@c 10 2C4

7 B2
36 5\3 16
7= Cy +335C4 +51C3

~10d2 53 _n
21 2t GthaT77l

Faleste =ff<x>F+11_[D' CT K LN OF Ydi+1af; (T K L@NET @OF p)de.

I () F+1 BT () K T +0 ET ()K 373 P () .
where P and Y , are operational matrices given

in the previous section.

The obtained equations can be solved by a
spectral method such as the Galerkin method.
Therefore, we consider the following
approximation for solving the above system

Tk, KL PLn=Xx"L(n=LT(»x
Thus, one has

LT ()C —LT (X)F=A LT (X)K Y —AoL"
(x)X =0.
Now by using the Galerkin method in the interval
[0,1], the following nonlinear algebraic system is

yielded

C-F-A1KiY1-2»X =0.

Finally, through the use of the Newton’s iterative
method for the above system, the elements of
vector C are determined.

STUDY OF STABILITY AND ERROR
ANALYSIS OF NMLPs METHOD

In this section, the stability, error bound and
convergence of the method based on the NMLPs
are studied.

Theorem 3 (Stability). Suppose that vy (x)and

y (x) are the approximate and exact solutions of
the equation (1). Also, assume that e (x) is the
error of the approximated solution and ry (X) is

the residual function corresponding to the



Saemi et al/ Numerical solution of Fredholm...

approximated solution. If

(‘kl‘nﬁ \xz ‘112)<1 then one has,
[E[<n[R],

where n>0 and ||E||—Max

01]H en(X) H and

[Rll= Max | (]

Proof: Itis clear that y (x) and Yy (X)+ey(X)

satisfy the equation (1), accordingly
YN = F@)+ [ ety y @) s [Ny ety y (D)t + ()
)
and
Py ey = F0)+ [ Bt oyd rey@)drt o[ kn(atyy o)t
©)
Subtracting (2) from (3) results in
ex (¥)=-ry () +71 ; (ki xty v (@ +en(®)) -kt y y(©)) de
+1a _[;[:k:(;; Ly +en @) —ky(xtyy@))dt .
Due to the following Lipchitz’s conditions,
[ty 0+ ex@)—FaCxeyn@) < lexta].

Tyt yy (@) +e ()~ T (e () | £n; [ ex@ |

where n; and n, are positive constants, we will

get

[en O <] rn OO+ 2a | [ ket y i @)+ ©) - kl(x,t,yN(t))lldt

2o | [ ko (et yn @ +en @) —ka(x.t,yG @yt

Theorem 4 (The
y (x)ecN*o,1],
approximation is obtainable as follows:

lex G l=]¥ )=y (ﬂ"i;i)r

error bound). If

then error bound for its

where M :Max‘y(N +1)(x)‘ for xe[0,1] and

C is a constant that to come later.

Proof: Suppose Yy (X)is the best approximation
of y(x) based on NMLPs and also, the Taylor
expansion of y (x ) around ae[O,l] as follows

& a) G-y
n! ’

Pr(x)=y(a)+y'(@)x—a)+y "@—2 4 +3(a)

Therefore,

|_);_’ —a | N+
1) — Py (%) | <M T

where M = Max

Ee(a,x)
property of least square orthogonal polynomials
[20], then

[s0-y 30| = [ 3-ry0)

y(N+D (g)‘ . According to the

,Il( Y09 =Py () dr

N1y 2

[1 M(x—a) M2

: | dx= )fl(xfa)l\“dx.
o) (mno

Thus where

Y00 -y (O£ T 1),

2N +3 a2N+3
||(J

2N +3

HrN(x)H+ ‘M‘ j TMHeN(t) Hdt+‘x2 H n;"’wg(epn(ﬂ (Convergence). Suppose functions

I £ = Max
x<[0.1]

IRl|= I\/Eg)f H ry (X) H then one has,

[EI<IRI+ (|21 [ne+ P2|nz) IE]-
Thus | E| <n||R|, where
1

1=(|2a[n+[22]n2)

H ey (X) H and

1’]:

k, and k , satisfy in the following conditions

D ket y0) ket yy @) | < B D -2v D |-

<Py @) -y x @)

If N tend to infinity, then

Proof: Because Yy (X) satisfy in equation (1),
one has

y )=y y ()| -o0.
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CRNC R R e s OL S WSS MOL S ON

By subtracting equations (1) and (4), we will
have:
;-(x>—;-_\-(x>=—r_\-<x>+11_[;[jk1(x=x=;-(r>)—fq(xx:,r_\-(x))f]dx

+2a [ (st 20 Ry .. v () ) e

Therefore,
|3 Gy=0 3 |2 GO | [ enCe oy €0 s et e 000
+2a | [ | aery ) =leaGety o () |
vl [l feir@-y vola+ o] [paly -y @]
By using the previous theorem
len ()| < |y (x)\+m+
(N +1)!

%, |B2CM

(N +1)!

Because ‘ ry (X) ‘ — 0, when N — oo, then the

prove is complete.
IMPROVED SOLUTION IN LINEAR CASE
Now, we can improve the approximate solution

using error estimation, provided that the g, and
g, are linear functions and suppose ey (x) as

Miintz's approximation error function. So that
yn (x) applies in equation (1) with residual
function, ry (X).Then,

oy Gy 1 s (@ 0 O - 2100y OD)el = ) K3 0) (g2 0 () -2 20 0t =ry ().

(4)

Therefore

ex @) fokiten g ex )i —hs [ Ky (e ga (e ) =ry (). )
By solving Equation (12) by NMLP method, we
obtain gain an approximate solution (ey \ (X))

for the e (x), that can be used to improve the

approximate solution equation (1). Therefore
Yn v (X) is the better than'y (x ), such that,

YnmX)=ynX)+ey pm (X).
NUMERICAL APPLICATIONS

In this section, to illustrate the numerical
application of this method, some examples are
given and comparison of the absolute error of the
proposed method with some methods is given. All
results are computed with the mathematical
software MAPLE 18 with ten significant digits.
Also, some of numerical results discuss the

Iranian Journal of Optimization, 14(1), 1-13, March 2022

performance of our method, we have obtained the
absolute error and E, error defined as follows

erroryrpay (0 =| Y00 — ¥aagear (9 -

, 1
Ex ={ [,( 50 -ymazpa9) e |

Example 1. consider the following Vollterra-
Fredholm integral equation,

y () =F )+ [ (x ~t)y 2yt + [ (x +1)y ),
(6)

6,104 42,9, 5 o4
372

where f (x):—3—10x +§x —X

the exact solution is y (x) =x 2_2,
According to the method presented, we have

y(x)=L" (x)C, f(x)=L" (x)F ,
y 2t) =Yy L(x),
x —t=L" (x)K L),
X+t =L"T (X)K,L(t).
By replacing the above relations in equation (6),
for aa=1, N =8 ,the following linear algebraic

system is obtained,

LT (x)C LT (x)F-LT (x)K,Y;PL(x)-

LT (x)K,C =0,
By using the newton method, the unknown vector

C is obtain as following
C=[-1.666666666,0.2886751348,0.07453559916,

~1.979927054 %1071, 6.842772931x107*2,
~3.399236740x10713,-1.737992881x10713,

—3.233116770x107%°,1.820681636 %10 *°].

As a result, the approximation solutions will be as
follows
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y (x) =9.661332292x10711x 8 —3.434784486 x1010x ’ —
9.82223417x1071%% © +

1.120175776x10~°x ® + 2.088806711x10 0% 4 —
3.516999999x10%x 3 +

1.0000000002x % +1.289433624x10°x —
2.0000000000.
In Tables 1, the NMLPs approximate and exact
solutions of y(x) for a:l,l, l 1 N =8, for
2 3 4
some values of X are presented and absolute error

of the suggested method have been reported in
Tables 2 and also in Tables 3, the error E, of

NMLPs method have been compared with the hat
functions method (HFM) [21], modification of hat
function method (MHFM) [22] and Triangular
functions method (TFM) [23]. It is clear that the
NMLPs method is better the other method for
n=8. In Figure 1, the plot of exact and present
solutions and also absolute error function of
approximate solution has been shown.

Table 1: Numerical results of Y gy v (X) for N =8 and various values of X in Example 1.

X Y nweew (X), Y nweem (X)), Y nweem (X)), Y nmeem (X)), Y et (X)
a=1/2 a=1/3 a=1/4 a=1
0.0 | -1.996109585 | —2.011381672 | -2.239843426 | —1.999999999 | -2
02 | -1.959623863 | -1.959858038 | -1.957842584 | -1.959999999 | —-1.96
0.4 | -1840393993 | -1.840015706 | -1.840385935 | —1.839999998 | —-1.84
0.6 | -1.640062945 | -1.640076207 | -1.641842162 | —1.6399999998 | -1.64
0.8 | -1.359485799 | -1.359931226 | -1.360332139 | -1.359999998 | —-1.36
1 | -1.001161497 | -1.000304068 | —0.9984295801 | —0.999999999 -1
Table 2: The absolute error of Y, oy (X) for N =8 and various values of x in Example 1.
X erroryy ey (Y(X)) | errory, ey (Y(X)) | erroryey (Y(X)) | errory ey (Y(x)),
a=1% a=3 a=z a=1
0 | 3.8904155x10° | 1.13816726x107 0.239843672 1x107°
0.2 | 3761376x10™ 1.419624x10" | 2.1569069x107° | 1.451851106x107°
0.4 3.9398971x10™ 1.57058x10™ 3.865289x10™* | 1.800481328x107°
06 |  6.29449%10°° 7.620733x10™ | 1.84287083x107° | 1.909342474x107°
08 | 5142012x10™ 6.87739x107 3.330277x10™ | 1.692821891x107°
1| 11614974x10° | 3040675x107% | 1.5693407x107° | 1.088144573x107°

Iranian Journal of Optimization, 14(1), 1-13, March 2022
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Table 3: Assessment of the E2 error for Example 1 with other methods.

Example 2. In this example, study the following
nonlinear Fredholm- Volterra integral equations

;uj=aﬂ—ewhug—n+LfI

with  h(xX)=In(x+1) and exact

Y s
gl-h

1 .
y@m—h&h

solution

y(x) =e™*. Solving above equation by NMLPs

N=5 and a=1, the unknown
vectors C can be derived as

method for

C = [0.6321315468,—0.1794982362,0.02301041819,

—0.001947002095,

Thus

Iranian Journal of Optimization, 14(1), 1-13, March 2022

0.0001283429039,—-0.00007488634086].

HF method , [21] | TF method,[23] | MHF method , [22] present method , N =8
E, | m=8, 12x10? | m=8, 27x10°| m=8, 6x10* o=1, 6.947814781x107%°
, m=16, 3x10° | m=16, 7.1x10* | m =16, 7.6x10° a=1, 3863388797x10

m =32, 7.5x10™* — -3 _ -5
m=32, 3.8x10 m =32, 1.0x10 a:%, 1613652090 x10~4
a=1 1.842321063x10~*
Plots of exact and approximate solutions
o 02 o5 values o . Plot of absolute error
i ; | A . 1.9 10-21
/ 1.8=10-24
-1.2 : 1.7 x10-21
/“ 16=x10-2
L4 ,/ _____ = §1_5x1u-5-
% .‘/ — - mew-g_ t
= s 3
1.6 /' 1.3=10-2 $
/ 1.2=10-2 E‘
184 // 1.1=10-24 :3
e
/ 1.=10-2
3

0 02 04 06 03 1
x values

Fig.. 1: Plots of exact and approximate solutions and absolute error for oo =1 in Example 1.

Y e (X ) = —0.062589213435x ° +0.1834250433x 4 —
0.2960168274x >

+0.5500659176 X 2 —1.007484357x +
1.000269153.

In Tables 4 and 5, the obtained approximation
solutions for some values of a=1,%,%,% have
been compared with exact solution, and also, the
absolute errors of NMLP method have been
compared with the TFM method [24]. Plots of
exact and approximate solutions and absolute
error for oo =1 will be shown in Fig. 2.
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Table 4 : Numerical results of y(x) for various values of X in Example 2.

X Y nwewm (%), Y nwewm (X)), Y nweem (X)), Y nmeem (X); Y evect (X)
a=1/2 a=1/3 a=1/4 a=1

0.0 | 1.000246877 0.011787150 1.033032457 1.000253867 1

0.2 | 0.8187307531 | 0.8185871686 | 0.8183380787 | 0.8186821113 | 0.8187307531
0.4 | 0.6703083206 | 0.6702346418 | 0.6701956364 | 0.6703905575 | 0.6703200460
0.6 | 0.5488085704 | 0.5489285954 | 0.5490568918 | 0.5487712487 | 0.5488116361
0.8 | 0.4493785786 | 0.4492446600 | 0.4490879803 | 0.4493792537 | 0.4493289641
1 0.3677367931 | 0.3675004027 0.366625778 | 0.3676879637 | 0.3678796612

Table 5: Comparison of absolute error of y(x) with method in [24] for various values of X in Example 2.

X | errorye (¥(x)) | errory o (¥(x)) | errory, o, (¥(x)) | erron, o (y(x). | errore, (y(x).
a=1% a=3 a=; a=1
0 2.46877x10™ 1.1787150x10° | 3.3032457x1072 2.56867x10™* | 2.270623x107*
0.2 |  231046x10° 1.435845x10™" | 3.026744x107* | 4.86418x107° | 2.981265x107*
04 | 1.17254x10° 8.54042x10™ 1.244096 %107 7.05115x10™° | 4.427352x107
06 |  3.0657x10° 1.169593x10™ 2.452557x10% | 4.03874x107° | 3.760377x10*
08 |  4.95545%10°° 8.43041x10™ 2.409838x10™* | 5.02896x10™° | 2.095614x107*
1 | 1.426481x10°* 3.790385x10™% | 1.2536632x107° | 1.914775x10* | 2.159911x107*

Plots of exact and approximate solutions

I.D-\
0.9 \

0.8+ \

w values

4

0.00025 4

0.00020 1

0.000154

=
2]
R
W values

0.6 N,

0.54

0.4

0 02 04

T T
0.6 0.8 1

x values

0.000104

o 0 o & & © ® ¢ ¥ o ¢ ¥

L]
-
g.ooo0s4 0 *°
®
®

Plot of absolute error

04 06
* values

Fig. 2: Plots of exact and approximate solutions and absolute error for a. =1 in Example 2

Iranian Journal of Optimization, 14(1), 1-13, March 2022

9



Saemi et al/ Numerical solution of Fredholm...

Example 3. Pay attention to the nonlinear
Fredholm-Volterra integral equation

) _1 1 _I] x —:.-':(I} _ 1 .:
}(x}—gx+;xe +-[ere dt _[Dx} ()dt

i

where exact solution is y(x)=x. Using this

method, the unknown vector C is obtained as
follows for N =5 and a =1.
C =[0.4999836222,0.2886612833, —

0.000007431701592,—-0.0000006384896657,

—0.000005304690537,—0.000002649341547].
Also the following approximate solution would

be achieved.

Table 7;

Y ies (X ) = —0.002214291707 x ® +
0.004421744255x 4 —0.003030535185 °
+0.0001200553650 X 2 +0.9999036855x -+

7.61030612x107" .
In Table 6, the computed solutions for some
values of a=1%,1 have been compared with

exact solution and also, in Table 7, the absolute
errors of NMLP method have been compared with
method in [25]. Plots of exact and approximate
solutions and absolute error will be showed Fig.
3

Table 6 : Numerical results of y(x) for various values of X in Example 4.

a=1/2

y NMLPM (X )!

a=1/3

y NMLPM (X )’

yNMLPM (X)’
a=1

yexact (X )

0.0

0.0048225456

0.0036075686

7.61030612x10~7 0

0.2 0.2007172

671

0.0.2002835014

0.1999964222 0.2

04 | 0.3997371

331

0.3999064981

0.3999900122 0.4

0.6 0.5994398

261

0.5996192782

0.5999844714 0.6

0.8 | 0.8001797

156

0.7994538177

0.7999824781 0.8

1 1.002008398

0.9993982454

0.9999014193 1

Comparison of absolute error of y(x) with method in [25] for various values of X in Example 4.

err-cerMLPM ( y ( X))

-1
a_Z

er-rorNMLPM ( y ( X))

—1
a_S

err-OrNMLPM (y(X))i
a=1

error (y (x)), [25]

48225456 %107

3.6075686x107°

7.61030612x10~"

0

0.2

7.17267042x10™*

2.8350140x10™*

3.577718808x10°°

6.66696141x1072

0.4

2.6286691x10™

9.350194x10°

0.98785698x107°

1.20842155x107*

0.6

5.6017398x10™

3.8072182x10™*

1.55286057 x10™°

1.43213404x107%

0.8

1.7971560x107*

5.4618227 x10™*

1.75218105x10™°

1.14769599x107*

2.008398x10

6.017546x10~%

9.8580741x10™*

2.59596401x1072
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in this work by using the NMLPs method.
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Fig. 3. Plots of exact and approximate solutions and absolute error for a.=1 in Example 3.
Example 4. One of the most important equations
in physics is the Love equation, which is solved

11+ (x—1)?

To change the integral
following variable change,

1) V=%a+n.

, 1
X'==(x +
2(

We have the following equivalent equation,

N 20
v Tc-[01+4(x'—t')2

y(t)

=1,

-1<x <1,

interval, using the

dt' =1,

0<x' <1.

By choosing ao=1 and N =10, the following

approximate solution will be obtained.
Table 8: The approximate solutions and value of residual function for y (X )in Example 4.

Y nmLem (X) =-0.001493476576 x 10-
0.00195268387 x 8+1x 107% 7+0.0201293310 x
8.0x 1071 ® +0.0157152220 x *+

3.9 x107%9% 3-0.3117398584 x 2

+1.34 x107°x +1.919032343 .

The comparison between Chebyshev
approximation method (CHAM) [24] and our

approximation for Y(X) have been reported in
Table 8 and also value of residual function for
a =1, 2 and some values of x are presented in

this table. The plots of these functions are shown
in the Fig. 4.

X1 Yoram ) | Yiwew (X) Yaaen (X) | Res(y o (x)) | Res(y . (X))
a=1 o=2 a=1 a=2

0 1.91903 | 1916156219 | 1.92784695 4.808x10~" 277584 %1073
0.2 | 1.90659 | 1906589107 | 1.904352046 1.71x10~7 221696x10~°
04 | 186964 | 1869637235 | 1.871303721 4.6659x10~" 1.6834x10°°
0.6 | 1.80974 | 1809740139 | 1.807932625 0.48x10~" 1.7924 %103
0.8 | 173075 | 1730744439 | 1.732697079 1.3480x107° 1.9656x10~°

1 1.63969 | 1639690334 | 1.632140508 4.8864x107° 7.5338x10°

Iranian Journal of Optimization, 14(1), 1-13, March 2022

11



Saemi et al/ Numerical solution of Fredholm...

Residual function for alpha=2
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Fig.4. Plots of Residual function for oo =1 and o =2 in Example 4.

CONCLUSION
In this work, we present a new method for
solving Fredholm-Volterra integral equations
based on the Miintz—Legendre polynomials. This
method has two benefits: first, Solving the
equation turns into an algebraic system by using
operational matrices and Galerkin method, which
is easier to solve, Secondly, due to normalized
polynomials, the calculations will be simpler and
faster. These advantages are confirmed by same
illustrative examples. Also some example is
compared with other method therefore it can be
seen that the NMLPs method is better.
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