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INTRODUCTION 

      Integral equations particularly Fredholm and 

Volterra integral equations play a key role in a 

vast area of biology, economics and engineering 

[1–5]. For this reason, integral equations have 

gained a special interest in the last few decades. 

General schemes to solve integral equations are 

classified into two categories of analytical and 

numerical methods. Exact analytical methods are 

usually not available for solving integral 

equations. Consequently, numerical methods 

have been adopted to find approximate solutions 

of integral equations. One of the numerical 

schemes for handling integral equations is to 

apply orthogonal polynomials such as Müntz 

polynomials. In this respect, many researchers 

have utilized the Müntz polynomials to solve 

many equations. For example, In [6], Mokhtari 

and his colleagues used the Tau method on the 

basis of the Müntz-Legendre polynomials to solve 

the fractional differential equations. Esmaeili and 

his colleagues [7] have solved the fractional 

differential equations by using collocation 

method based on the Müntz polynomials. 

Mokhtari [8] solved the second-order Abel 

integral equations in 2016 using Galerkin's 

method based on the Müntz Legendre 

polynomials. Yüzbaşı et al. found the solution of 

the linear Fredholm differential-integral equation 

by exerting a collocation method in terms of the 

Müntz-Legendre polynomials [9]. A fractional 

differential system has been solved by Aghashahi 

and Rasouli [10] by using the Müntz-Legendre 

polynomials. In 2018, Rahim Khani and 

Ordokhany [11] applied the Müntz−Legendre 

polynomials to solve the Bagley-Torvik equation 

in a large interval. Rahimkhani et al. [12] have 

solved the fractional Pantograph differential 

equations using Müntz−Legendre wavelet 

operational matrix [12]. Our focus in the present 

work to solve the Fredholm and Volterra integral 

equations as  
 

 

(1) 

by proposing a new scheme based on the 

normalized Müntz−Legendre polynomial in 

conjunction with a spectral method. It is worthy 

of note that ( )y x  is an unknown, ( )f x  is a known 

function, 1k and 2k  are linear or nonlinear 

functions and 1  and 2  are arbitrary constants.  

The rest of paper is organized as follows: In 

Section 2, the Müntz−Legendre polynomials are 

explained; in the third section, the solution 

method is introduced in detail; several theorems 

regarding the stability, error bound, and 

convergence analysis of the method are presented 

in Section 4; in Section 5, several illustrative 

examples are used to examine the proposed 

methodology and its results and at the end, 

concluding remarks are provided in the last 

section. 

BASIC FORMULATION OF THE MUNTZ 

AND MUNTZ-LEGENDER 

POLYNOMIALS 

In this section, the Müntz polynomials and their 

basic properties are reviewed systematically. 

Further information can be found in [13, 14].  

Müntz−Legendre polynomials 

In this subsection, first the Müntz Theorem [15-

17] which a generalization of Weierstrass’ 

theorem is defined. After that, the relevance of 

Müntz−Legendre polynomials and Jacobi 

polynomials is given in another Theorem.  

Theorem 1 (Müntz’s Theorem). Suppose that 

 
0

k
k




    be a sequence of real numbers such 

that 1
2

infk k    . Then span  0 1, ,x x
 

is 

dense in  2 0,1L  if and only if 
1
2

1
0

k
k



  
   

[18]. 
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It should be mentioned that the Müntz polynomial 

0

kn
kk

c x


  can be orthogonalized on  2 0,1L

. In this regard, the orthogonal Müntz polynomials 

that were first introduced by Armenian 

mathematician can be defined as  

 

in which ( , )nL x  is the orthogonal Müntz 

polynomial of order n  associated with  . 

MLPs are orthogonal in  2 0,1L  with respect to 

the weight function of Legendre polynomials, 

namely 

 

where ,n m  indicates the Kronecker Delta. The 

recursive relation for the MLPs can be written as 

 

By assuming , 0 1k k k = , , ,n    which 

is a real constant, the MLPs can be defined on 

 0,T  as 

 

Theorem 2. If 0   and  0,x T , then 

10, 1
( , ) (2( ) 1)

0 1,2, ,


   x

n n T
L x J   ,          

       n = ,

  

where 
10 , 1

( )nJ x


 is the Jacobi polynomial with 

parameters 0  and 1 1

 . 

Proof:  Please see [19].  

Furthermore, the NMLPs can be defined as 

below: 

 

 

 

 

Operational matrices of the normalized 

Müntz-Legendre polynomials 

In this subsection, the operational matrices for 

NMLPs including the operational matrixes of 

integral and product are introduced. 

The operational matrix of integral 

By a simple calculation, the integration of the 

vector ( )L x  can be derived as 

0
( ) ( ),

x
L t dt P L x  

where P  is the 1 1N N  ( ) ( )  operational 

matrix of integration. For instance, if 3N   and 

1

2
  , then P  can be extracted 

 

The operational matrix of product 

Similarly, simple calculations show that he 

product of two vector bases of the NMLPS can be 

shown as 

 

where Y is the ( 1) 1N    vector and Y  is a 

( 1) ( 1)N N    matrix that is named the 

operational matrix of product. Again if 3N   and 

1

2
  , then Y  can be expressed as 



Iranian Journal of Optimization, 14(1), 1-13, March 2022    

 

4 
 

Saemi et al/ Numerical solution of Fredholm… 

/ Presenting a Mathematical … 

1 2 3 4

3 3 3 3 3 6 3 62 2 16 2 10 2
2 3 1 2 3 2 4 3 45 5 35 5 7 7 21

3 3 3 6 24 3 3 6 5 316 2 16 2 16 16
3 3 2 4 2 1 4 3 2 4 335 5 7 35 21 35 7 7 21

3 6 3 6 5 3 5 310 2 10 216 72
4 3 4 2 4 3 2 3 1 47 21 7 7 21 21 7 77

.

c c c c

c c c c c c c c c

Y
c c c c c c c c c c c

c c c c c c c c c c



 



 
 

     
 
       
 
       

 

 

 

EXPLAINING OF THE SOLUTION 

METHOD 

In order to solve the equation (1) by using the 

normalized Müntz-Legendre polynomials, 

without loss of generality, consider the following 

case 

 

where 1g  and 2g  are linear or nonlinear 

functions. Now, the approximate solution of the 

above integral equation can be considered as a 

linear combination of the NMLPs as 

 

where ( ) , 0,1,...,nL x n N are the NMLPs and 

L  and C  are the following vectors  

 
Also, other expressions of the above equation can 

be approximated as 

 

where F , 1K  and 2K  are known and 1Y  and 2Y

are vectors of elements of the vector C . Inserting 

the above approximations into equation (1)  

yields 

where P  and 2Y  are operational matrices given 

in the previous section. 

The obtained equations can be solved by a 

spectral method such as the Galerkin method. 

Therefore, we consider the following 

approximation for solving the above system 

 
Thus, one has 

1 1 1 2( ) ( ) ( )

( ) 0 .

  



T T T TL x C L x F L x K Y L

x X
 

Now by using the Galerkin method in the interval 

 0,1 , the following nonlinear algebraic system is 

yielded 

1 1 1 2 0 .C F K Y X            

Finally, through the use of the Newton’s iterative 

method for the above system, the elements of 

vector C are determined. 

STUDY OF STABILITY AND ERROR 

ANALYSIS OF NMLPs METHOD  

In this section, the stability, error bound and 

convergence of the method based on the NMLPs 

are studied. 

Theorem 3 (Stability). Suppose that ( )Ny x and 

( )y x  are the approximate and exact solutions of 

the equation (1). Also, assume that ( )Ne x  is the 

error of the approximated solution and ( )Nr x is 

the residual function corresponding to the 
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approximated solution. If 

 1 1 2 2 1       then one has, 

,E R        

where 0   and 
 0,1

( )N
x

E Max e x


  and 

 0,1
( )N

x
R Max r x


 . 

Proof: It is clear that ( )Ny x  and ( ) ( )N Ny x e x  

satisfy the equation (1), accordingly 

 
                                 (2) 

and 

 
                           (3) 

Subtracting (2) from (3) results in 

 
Due to the following Lipchitz’s conditions, 

 
where 1  and 2  are positive constants, we will 

get 

1

1 1 10

2 2 20

1

1 1 2 20 0

( ) ( ) ( , , ( ) ( ) ) ( , , ( ) )

( , , ( ) ( )) ( , , ( ) )

( ) ( ) ( )

N N N N N

x

N N N

x

N N N

e x r x k x t y t e t k x t y t dt

k x t y t e t k x t y t dt

r x  e t dt e t dt  .  

    

   

      





 

 

If 
 0,1

( )N
x

E Max e x


  and 

 0,1
( )N

x
R Max r x


 , then one has, 

 1 1 2 2 .E R  E        

Thus ,E R   where 

 1 1 2 2

1

1
 . 

     
 

Theorem 4 (The error bound). If 

1( ) [0,1]Ny x C  , then error bound for its 

approximation is obtainable as follows: 

 

where ( 1) ( )NM Max y x  for [0,1]x  and 

C  is a constant that to come later. 

Proof: Suppose ( )Ny x is the best approximation 

of ( )y x  based on NMLPs and also, the Taylor 

expansion of ( )y x around [0,1]a  as follows 

 
Therefore, 

 

where ( 1)

( , )
( )N

a x
M Max y 


  . According to the 

property of least square orthogonal polynomials 

[20], then 

 

Thus ( ) ( ) ,
( 1)!

N

C M
y x y x

N
 


 where  

 
2 3 2 31

.
2 3

  




N Na a
C

N
 

Theorem 5 (Convergence). Suppose functions 

1k  and 2k  satisfy in the following conditions  

 
 If N tend to infinity, then 

 

Proof: Because ( )Ny x  satisfy in equation (1), 

one has 
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By subtracting equations (1) and (4), we will 

have: 

 
Therefore, 

 
By using the previous theorem 

1 1

2 2

( ) ( )
( 1)!

,
( 1)!

 
 



 



N N

C M
e x  r x +

N

C M

N

 

Because ( ) 0N r x  , when N  , then the 

prove is complete. 

IMPROVED SOLUTION IN LINEAR CASE 

Now, we can improve the approximate solution 

using error estimation, provided that the 1g  and 

2g  are linear functions and suppose ( )Ne x  as 

Müntz's approximation error function. So that 

( )Ny x  applies in equation (1) with residual 

function, ( )Nr x .Then, 

 
(4) 

Therefore 

 
By solving Equation (12) by NMLP method, we 

obtain gain an approximate solution ( , ( )N Me x ) 

for the ( )Ne x , that can be used to improve the 

approximate solution equation (1). Therefore 

, ( )N My x  is the better than ( )Ny x , such that, 

, ,( ) ( ) ( ).N M N N My x y x e x   

NUMERICAL APPLICATIONS 

   In this section, to illustrate the numerical 

application of this method, some examples are 

given and comparison of the absolute error of the 

proposed method with some methods is given. All 

results are computed with the mathematical 

software MAPLE 18 with ten significant digits. 

Also, some of numerical results discuss the 

performance of our method, we have obtained the 

absolute error and 2E error defined as follows 

 
Example 1.  consider the following Vollterra-

Fredholm integral equation, 
12

0 0
( ) ( ) ( ) ( ) ( ) ( ) ,

x
y x f x x t y t dt x t y t dt           

                                                           (6) 

where 6 4 21 1 5 5
( )

30 3 3 4
f x x x x x       and 

the exact solution is 2( ) 2y x x  . 

 According to the method presented, we have 

2
1

1

2

( ) ( ) , ( ) ( ) ,

( ) ( ),

( ) ( ),

( ) ( ).





T T

T

T

T

y x L x C f x L x F

y t Y L x

x t L x K L t

x t L x K L t

 

By replacing the above relations in equation (6), 

for 1, 8N    ,the following linear algebraic 

system is obtained, 

1 1

2

( ) ( ) ( ) ( )

( ) 0,

  T T T

T

L x C L x F L x K Y P L x

L x K C
 

By using the newton method, the unknown vector 

C is obtain as following 

11 12

13 13

15 15

C [ 1.666666666,0.2886751348,0.07453559916,

1.979927054 10 ,6.842772931 10 ,

3.399236740 10 , 1.737992881 10 ,

3.233116770 10 ,1.820681636 10 ].

 

 

 



  

   

  

 

As a result, the approximation solutions will be as 

follows 
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11 8 10 7

10 6

9 5 10 4

9 3

2 9

( ) 9.661332292 10 3.434784486 10

9.82223417 10

1.120175776 10 2.088806711 10

3.516999999 10

1.0000000002 1.289433624 10

2.0000000000.

 



 





   

 

   

 

  

y x x x

x

x x

x

x x

 

In Tables 1, the NMLPs approximate and exact 

solutions of ( )y x  for 
1 1 1

1, , , , 8
2 3 4

N  , for 

some values of x  are presented and absolute error 

of the suggested method have been reported in 

Tables 2 and also in Tables 3, the error 2E  of 

NMLPs method have been compared with the hat 

functions method (HFM) [21], modification of hat 

function method (MHFM) [22] and Triangular 

functions method (TFM) [23]. It is clear that the 

NMLPs method is better the other method for 

8n . In Figure 1, the plot of exact and present 

solutions and also absolute error function of 

approximate solution has been shown. 

 

 

Table 1: Numerical results of ( )NMLPMy x  for 8N   and various values of x  in Example 1. 

x  ( ),

1/ 2

NMLPMy x


 

( ),

1/ 3

NMLPMy x


 

( ),

1/ 4

NMLPMy x


 

( ),

1

NMLPMy x


 

( )exacty x  

0.0  1.996109585  2.011381672  2.239843426  1.999999999  2  

0.2  1.959623863  1.959858038  1.957842584  1.959999999  1.96  

0.4  1.840393993  1.840015706  1.840385935  1.839999998  1.84  

0.6  1.640062945  1.640076207  1.641842162  1.6399999998  1.64  

0.8  1.359485799  1.359931226  1.360332139  1.359999998  1.36  

1 1.001161497  1 000304068 .  0 9984295801 .  0.999999999  1  

 

Table 2: The absolute error of ( )NMLPMy x  for 8N   and various values of x  in Example 1. 

x  

1
2

( ( ) )NMLPMerror y x

 
 

1
3

( ( ) )NMLPMerror y x

 
 

1
4

( ( ) )NMLPMerror y x

 
 

( ( )),

1

NMLPMerror y x

 
 

0 33.8904155 10  21.13816726 10  0.239843672  91 10  

0.2  43.761376 10  41.419624 10  32.1569069 10  
91.451851106 10  

0.4  43.9398971 10  
41.57058 10  43.865289 10  

91.800481328 10  

0.6  56.29449 10  
57.620733 10  31.84287083 10  

91.909342474 10  

0.8  45.142012 10  
56.87739 10  43.330277 10  

91.692821891 10  

1 31.1614974 10  43 040675 10.  
31 5693407 10.  

91.088144573 10  
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Table 3: Assessment of the 2E  error for Example 1 with other methods. 

 HF method , [21]  TF method ,[23] MHF method , [22] , 8present method N   

2E  

, 

2

3

4

8, 1.2 10

16, 3 10

32, 7.5 10

m

m

m







 

 

 

 

3

4

3

8, 2.7 10

16, 7.1 10

32, 3.8 10

m

m

m







 

 

 

 

4

5

5

8, 6 10

16, 7.6 10

32, 1.0 10

m

m

m







 

 

 

 

10

41
2

41
3

41
4

1, 6.947814781 10

, 3.863388797 10

, 1.613652090 10

, 1.842321063 10









  

  

  

  

 

 

 

 
 

Fig.. 1: Plots of exact and approximate solutions and absolute error for 1   in Example 1. 

Example 2. In this example, study the following 

nonlinear Fredholm- Volterra integral equations 

 
with ( ) ln( 1)h x x   and exact solution 

( ) xy x e . Solving above equation by NMLPs 

method for 5N   and 1  , the unknown 

vectors C  can be derived as 

 [0.6321315468, 0.1794982362,0.02301041819,

0.001947002095,

0.0001283429039, 0.00007488634086].







C
 

Thus 

5 4

3

2

( ) 0.062589213435 0.1834250433

0.2960168274

0.5500659176 1.007484357

1.000269153.

  

  

NMLPsy x x x

x

x x

 

In Tables 4 and 5, the obtained approximation 

solutions for some values of 1 1 1
2 3 4

1, , ,   have 

been compared with exact solution, and also, the 

absolute errors of NMLP method have been 

compared with the TFM method [24]. Plots of 

exact and approximate solutions and absolute 

error for 1   will be shown in Fig. 2.  
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Table 4 : Numerical results of ( )y x  for various values of x  in Example 2. 

x  ( ),

1/ 2

NMLPMy x


 

( ),

1/ 3

NMLPMy x


 

( ),

1/ 4

NMLPMy x


 

( ),

1

NMLPMy x


 

( )exacty x  

0.0  1.000246877  0.011787150  1.033032457  1.000253867  1 

0.2  0.8187307531 0.8185871686  0.8183380787  0.8186821113  0.8187307531  

0.4  0.6703083206  0.6702346418  0.6701956364  0.6703905575  0.6703200460  

0.6  0.5488085704  0.5489285954  0.5490568918  0.5487712487  0.5488116361  

0.8  0.4493785786  0.4492446600  0.4490879803  0.4493792537  0.4493289641  

1 0.3677367931 0 3675004027.  0 366625778.  0.3676879637  0.3678796612  

 

Table 5: Comparison of absolute error of ( )y x with method in [24] for various values of x in Example 2. 

x  

1
2

( ( ) )NMLPMerror y x

 
 

1
3

( ( ) )NMLPMerror y x

 
 

1
4

( ( ) )NMLPMerror y x

 
 

( ( )),

1

NMLPMerror y x

 
 

( ( )),TFMerror y x
 

0 42.46877 10  21.1787150 10  23.3032457 10  
42.56867 10  

42.270623 10  

0.2  52.31046 10  41.435845 10  43.926744 10  
54.86418 10  

42.981265 10  

0.4  51.17254 10  
58.54042 10  41.244096 10  

57.05115 10  
44.427352 10  

0.6  63.0657 10  
41.169593 10  42.452557 10  

54.03874 10  
43.760377 10  

0.8  54.95545 10  
58.43041 10  42.409838 10  

55.02896 10  
42.095614 10  

1 41.426481 10  43 790385 10.  
31 2536632 10.  

41.914775 10  
42.159911 10  

 

 
Fig. 2: Plots of exact and approximate solutions and absolute error for 1   in Example 2 
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Example 3. Pay attention to the nonlinear 

Fredholm-Volterra integral equation 

 
where exact solution is ( )y x x . Using this 

method, the unknown vector C  is obtained as 

follows for 5N   and 1  . 

[0.4999836222,0.2886612833,

0.000007431701592, 0.0000006384896657,

0.000005304690537, 0.000002649341547].

 



 

C

 

Also the following approximate solution would 

be achieved. 

5

4 3

2

7

( ) 0.002214291707

0.004421744255 0.003030535185

0.0001200553650 0.9999036855

7.61030612 10 .

 



  



NMLPsy x x

x x

x x
 

In Table 6, the computed solutions for some 

values of 1 1
2 3

1, ,   have been compared with 

exact solution and also, in Table 7, the absolute 

errors of NMLP method have been compared with 

method in [25]. Plots of exact and approximate 

solutions and absolute error will be showed Fig. 

3. 

Table 6 : Numerical results of ( )y x  for various values of x  in Example 4. 

x  ( ),

1/ 2

NMLPMy x


 

( ),

1/ 3

NMLPMy x


 

( ),

1

NMLPMy x


 

( )exacty x  

0.0  0.0048225456  0.0036075686  77.61030612 10  0  

0.2  0.2007172671  0.0.2002835014  0.1999964222  0.2  

0.4  0.3997371331  0.3999064981  0.3999900122  0.4  

0.6  0.5994398261  0.5996192782  0.5999844714  0.6  

0.8  0.8001797156  0.7994538177  0.7999824781  0.8  

1 1.002008398  0 9993982454.  0.9999014193  1 

Table 7: Comparison of absolute error of ( )y x with method in [25] for various values of x in Example 4. 

x  

1
2

( ( ) )NMLPMerror y x

 
 

1
3

( ( ) )NMLPMerror y x

 
 

( ( )),

1

NMLPMerror y x

 
 

( ( )), [25]error y x
 

0 34.8225456 10  33.6075686 10  77.61030612 10  0  

0.2  47.17267042 10  42.8350140 10  63.577718808 10  
26.66696141 10  

0.4  42.6286691 10  
59.350194 10  69.98785698 10  

11.20842155 10  

0.6  45.6017398 10  
43.8072182 10  51.55286057 10  

11.43213404 10  

0.8  41.7971560 10  
45.4618227 10  51.75218105 10  

11.14769599 10  

1 32.008398 10  46 017546 10.  
49.8580741 10  

22.59596401 10  
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Fig. 3. Plots of exact and approximate solutions and absolute error for 1   in Example 3. 
Example 4. One of the most important equations 

in physics is the Love equation, which is solved 

in this work by using the NMLPs method. 
1

21

1 ( )
( ) 1 ,                      -1 1.

1 ( )

y t
y x dt x

x t
   

 
 

To change the integral interval, using the 

following variable change, 

1 1
( 1) , ( 1) .

2 2
    x x t t   

We have the following equivalent equation, 
1

20

2 ( )
( ) 1, 0 1

1 4( )

y t
y x dt                       x .

x t


     

     

By choosing 1   and 10N , the following 

approximate solution will be obtained. 

10

8 10 7 6

10 5 4

9 3 2

9

( ) -0.001493476576 -

0.00195268387 +1  10 +0.0201293310 

8.0  10 +0.0157152220 +

3.9 10 -0.3117398584 

+1.34 10 +1.919032343 .

















NMLPMy x x

x x x

x x

x x

x

 

The comparison between Chebyshev 

approximation method (CHAM) [24] and our 

approximation for ( )y x  have been reported in 

Table 8 and also value of residual function for 

1, 2  and some values of x  are presented in 

this table. The plots of these functions are shown 

in the Fig. 4. 

Table 8: The approximate solutions and value of residual function for ( )y x in Example 4. 

x  ( )CHAMy x  ( )NMLPMy x  

1   

( )NMLPMy x  

2   

Re ( ( ) )

1

NMLPM
s y x


 

Re ( ( ) )

2

NMLPM
s y x


 

0  1.91903  1.916156219  1.92784695  74.808 10  
32.77584 10  

0.2  1.90659  1.906589107  1.904352046  71.71 10  
32.21696 10  

0.4  1.86964  1.869637235  1.871303721 74.6659 10  
31.6834 10  

0.6  1.80974  1.809740139  1.807932625  79.48 10  
31.7924 10  

0.8  1.73075  1.730744439  1.732697079  51.3480 10  
31.9656 10  

1 1.63969  1.639690334  1.632140508  54.8864 10  
37.5338 10  
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Fig.4. Plots of Residual function for 1   and 2   in Example 4. 
CONCLUSION 

   In this work, we present a new method for 

solving Fredholm-Volterra integral equations 

based on the Müntz−Legendre polynomials. This 

method has two benefits: first, Solving the 

equation turns into an algebraic system by using 

operational matrices and Galerkin method, which 

is easier to solve, Secondly, due to normalized 

polynomials, the calculations will be simpler and 

faster. These advantages are confirmed by same 

illustrative examples. Also some example is 

compared with other method therefore it can be 

seen that the NMLPs method is better. 
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