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based on the meta-heuristic method is investigated and solved. The 

proposed method and model uses fuzzy values to investigate and solve 

the problem of location allocation. The hypotheses of the problem in 

question are considered as fuzzy random variables and the capacity of 

each facility is assumed to be unlimited. This article covers a modern, 

nature-inspired method called the whale algorithm and the neighborhood 

search method. The proposed method and related algorithm are tested 

with practical optimization problems and modeling problems. To 

evaluate the efficiency and performance of the proposed method, we 

apply this method to our location models in which fuzzy coefficients are 

used. The results of numerical optimization show that the proposed 

method performs better than conventional methods. 

 

 

 

 

 
       

 

 

 

  

 

 

 

Optimization 
Iranian Journal of Optimization 

Volume 13, Issue 3, 2021, 181-189 

Research Paper Islamic Azad University 
Rasht Branch 

ISSN: 2588-5723 
       E-ISSN:2008-5427 

 

https://ijo.rasht.iau.ir/?_action=article&au=2734305&_au=mehdi++fazli
https://ijo.rasht.iau.ir/?_action=article&au=2797631&_au=farzin+mosarres+khiabani
https://ijo.rasht.iau.ir/?_action=article&au=2797631&_au=farzin+mosarres+khiabani
https://ijo.rasht.iau.ir/?_action=article&au=577532&_au=behrooz++daneshian


Iranian Journal of Optimization, 13(3), 181-189, September 2021    

 

182  
 

Fazli et al/ Use whale Algorithm and Neighborhood… 

/ Presenting a Mathematical … 

INTRODUCTION 

   Recently, meta-innovative techniques have 

been used to solve numerical problems and 

optimize complex real-world problems. Many of 

these methods are used by natural factors and 

phenomena and are valuable in solving various 

problems with very high dimensions. In 

particular, they can be used in specific topics 

related to different disciplines. The obvious and 

sometimes unique features of these methods are 

(i) Use of simple concepts and simplicity of 

hypotheses; (ii) No need for complex and 

extensive information; (iii) Don't get caught up in 

local optimism. Nature-inspired methods are used 

to solve problems related to Sari optimization and 

considering all the parameters of the problem. In 

such a way that all the details of the problem are 

considered to reach the optimal answer. In these 

methods, the initial search process begins with a 

group that has evolved randomly in the process 

and over subsequent generations. The bottom line 

is that great people are always coming together to 

form the next generation of improved people. The 

proposed method allows the population to 

produce a better generation during the period. 

The first analysis and study of the dynamic 

location routing (LRP) dates back to the research 

conducted by Laporte and Dejax (1989)(Laporte 

& Dejax, 1989). They studied optimal and 

multiple programming cycles for LRPs, so they 

assumed each location and path in each cycle. 

They also analyzed the mental network profile of 

the problem. With this method, the problem of 

network optimization was solved with precise 

innovative approaches. Salhi and et al 

(1999)(Salhi & Nagy, 1999) assumed that 

problem warehouses and amenities were constant 

and unchanged along the planning route, but as 

the demand for new applicants changed, the 

traffic routes changed. It was also assumed that 

the capacity of each customer had not changed 

significantly. In their work, a number of paths and 

techniques were examined. Ambrosino and 

Scutella (2005)(Ambrosino & Scutella, 2005) 

investigated a multi-dimensional LRP using 

integer and static functional programming and 

practical software to answer real-world integer 

linear programming (ILP) problems. In these 

topics and in general, the problems related to 

location routing are discussed. The goal was to 

determine the capacity of each warehouse as a 

whole, a combination of customer service times 

and the available route from each warehouse to 

each number, to minimize the cost of the entire 

complex. In these methods, it is suggested that 

large examples of possible routing problems be 

solved with accurate and real values. A clustering 

algorithm based on Clark and Wright’s 

algorithms was performed to receive acceptable 

and random hybridization solutions. Finally, the 

proposed method was reviewed in several sample 

sets and the results showed that the proposed 

method was better than the previous methods. 

Sambola et al (2012)(Albareda-Sambola, 

Fernández, & Nickel, 2012) presented the multi 

period routing problem with decoupled time 

scales. In their problem, there are certain 

limitations in which the system is forced to make 

important decisions in the field of routing and 

location. In addition, time scales are considered. 

They also assumed that the capacity and location 

of warehouses could be modified or expanded at 

the time chosen during planning. Given the 

variety and complexity of the model, they provide 

approximations based on vehicle replacement 

paths and warehouse changes and its ability to 

provide high quality solutions to a wide range of 

computational problems. In addition, the method 

of developing and combining these algorithms is 

often used for real applications and increasing the 

efficiency of methods. The whale algorithm is 

also used, which is inspired by nature, and the 

behavior of the predatory whale in pursuit of prey 

is modeled. This method simulates the movement 

of a whale spiral during an attack. And this is one 

of the methods used to optimize real-world 

problems. 

LITERATURE REVIEW 

    We see extensive literature on meta- heuristic 

techniques and their specific methods. And as you 

can see from the studies, most of these methods 

use an algorithm or a hybrid of them.  In addition, 

different types of search algorithms can be used 

to improve the performance of the method in a 

given set. Or avoided problems such as stagnation 

in local optimization and loss of diversity in 
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problem solving. In addition, there are techniques 

that hybridize the two techniques to reduce each 

other's weaknesses. Recently, a classification of 

different topics has been used to examine 

common applications between precision and 

metaheuristic approaches. To clarify each of these 

propositions accurately, the analysis of distinct 

types of compounds may be performed according 

to the introduced classifications. These specific 

categories of optimization problems can be 

divided into design and implementation 

problems. The following are options for problems 

in different departments: 

• Relay, where a set of metaheuristics is applied 

one after another, or Teamwork, in which there 

are many parallel cooperating agents.  

• Homogeneous, in which all hybrid methods use 

a particular heuristic, or heterogeneous, in which 

the system uses other different heuristics.   

•Global, in which the method, algorithms search 

the entire research space, or partial, in which each 

algorithm seeks its own specific search space for 

the optimal answer. 

 •Specialist, which combines methods that solve 

different problems, or general, in which all 

methods of a problem optimize the problem.   

 •Specific, which solves only small and certain 

types of problems at much higher rates and low 

cost or versatility. 

 •Sequential, in which the methods work one by 

one and separately, and in parallel, in which each 

method and algorithm works at the same time as 

the other methods. A more complete study you 

can visit: 

Goldberg and Holland (Goldberg, 1989) Koza 

(Koza, 1992), Simon (Simon, 2008), Alatas 

(Alatas, 2011), Kirkpatrick (Kirkpatrick, Gelatt, 

& Vecchi, 1983), Webster and Bernhard (Webster 

& Bernhard, 2003), Erol and  Eksin (Erol & 

Eksin, 2006), Rashedi et al (Rashedi, 

Nezamabadi-Pour, & Saryazdi, 2009), Kaveh and  

Talatahari (Kaveh & Talatahari, 2010), Formato 

(Formato, 2007), Hatamlou (Hatamlou, 2013) 

Kaveh and Khayatazad (Kaveh & Khayatazad, 

2012), Du and Zhuang (Du, Wu, & Zhuang, 

2006), Moghaddam (Moghaddam, Moghaddam, 

& Cheriet, 2012), Shah-Hosseini (Shah-Hosseini, 

2011), Gao et al (Gao, Sun, & Gen, 2008), 

Tavakkoli-Moghaddam et al (Tavakkoli-

Moghaddam, Safaei, & Sassani, 2009), Drezner 

(Drezner, 2008),  Jaszkiewicz and Kominek 

(Jaszkiewicz & Kominek, 2003) Lee et al(Lee, 

Su, Chuang, & Liu, 2008), Alba et al (Alba, 

Luque, & Troya, 2004), Chiu et al (Chiu, Chang, 

& Chang, 2007). 
  The proposed method is based on improving the 

performance of parts that did not have acceptable 

performance. The following sections describe the 

operation and features of the proposed method. 

The purpose of this study is to present an optimal 

method with good performance to find accurate 

solutions for application in optimization 

problems. 

     In this paper, a new meta-heuristic-based 

technique is presented. This proposal is based on 

the development of WA and the use of local 

search to solve location and routing problems. 

There are several reasons for developing this 

method: 

   • A review and then a detailed study of the 

parameters used in the method is performed. The 

problem population size and the specific 

parameters of each part of the technique are 

examined to obtain the best possible arrangement 

of the answer. 

   • A number of different measurement values of 

the problem are considered.  

   • This proposal is compared with new techniques 

with optimal performance and accuracy among 

other similar methods. 

   • This technique uses fuzzy data to achieve 

acceptable performance compared to similar 

statistical tests and real problems. 

The rest of the discussion is as follows. In Section 

3, after a brief introduction to WA, the proposed 

method for develop this algorithm. In Section 4, 

we discuss the location problem, and we test the 

performance of the proposed method on some 

numerical problems at different scales and with 

numerical tests, we show the efficiency of this 

method. 

MODEL FORMULATION 

whale algorithm and variable neighborhood 

search  
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   An important point about Reino prey whales is 

their special methods of trapping their prey. These 

instinctive behaviors are referred to as their eating 

patterns, which are inspired by nature(Watkins & 

Schevill, 1979). Nevertheless, Goldbogen et al 

(Goldbogen et al., 2013)examined this conduct 

using tag sensors. It should be noted that this 

method of feeding pure bubbles is a special 

treatment that is seen only in some whales. To 

optimize various problems in mathematical 

models, the spiral hunting method is used, which 

is the basis of this research. 

     In the WA method, it is assumed that: The 

current candidate is the optimal or near-optimal 

solution. After determining the best option, other 

problem factors are added and their place in the 

search engine is explored. The following 

equations show this process: 

F⃗ 

= |M⃗⃗⃗ ∙ 𝑇∗⃗⃗⃗⃗ (l)

− T⃗⃗ (l)| 

 (1) 

        T⃗⃗ (l + 1) =

T∗⃗⃗⃗⃗ (l) − N⃗⃗ ∙ F⃗  

 (2) 

where l indicates the current iteration, 𝑇 ∗is the 

position vector of the best solution obtained so 

far,  �⃗⃗� and �⃗⃗� are the coefficient vectors, | | is the 

absolute value,  𝑇⃗⃗  ⃗is the position vector, and · is an 

element-by-element multiplication. In order to get 

the best answer or optimal, 𝑇 ∗ must be updated to 

repeat the problem. The vectors �⃗⃗�  and �⃗⃗�  are 

represented as follows:  

         N⃗⃗ = 2b⃗ ∙

s − b⃗  

 (3) 

M⃗⃗⃗ = 2 ∙ s   (4) 

Where �⃗� is linearly reduced to 0 over the course of 

repeats (in both exploitation phases and 

exploration) and  �⃗⃗�  is a random vector in [0,1]. 
The same concept can be developed in the n-

dimensional problem search space, and search 

agents are over-searching around the optimal 

solution. According to what we mentioned in this 

section, predatory whales attack their designated 

targets. This particular method of mathematical 

optimization is as follows: 

 Two specific methods have been investigated to 

model the net bubble behavior of humpback 

whales in the face of predation: 

1. Specific method of contractile encirclement: 

This conduct is achieved by decreasing the 

amount of 𝑏 ⃗⃗⃗  in equation. The fluctuation domain 

of 𝑁 ⃗⃗⃗⃗ is also changed by �⃗� .  

Nevertheless, 𝑁 ⃗⃗⃗⃗  ⃗ is a random value in the interval 

[ −𝑧 , 𝑧 ] where z decreases to 0 during iterations. 

By hypothetical random values for 𝑁 ⃗⃗⃗⃗ in[ −1,1], 
the new position of a search agent can be defined 

anywhere in between the main position of the 

agent and the position of the best current agent. 

Results show the possible locations from 

( 𝑇 , 𝑌 )towards( 𝑇∗,𝑌∗) that can be attained by 

0 ≤ 𝐶 ≤ 1 in a 2-dimensional space. 

2. Spiral updating location: This approach first 

calculates the distance between the whale placed 

at (T, Y) and prey placed at ( 𝑇 ∗, 𝑌∗). In the next 

step, in order for the spiral motion to mimic the 

shape of the humpback whales, the spiral equation 

between the location of the whale and the prey is 

created as follows: 

 

�⃗� (l + 1) = F́ ∙ ert ∙ cos(2πt) + T∗⃗⃗⃗⃗ (l)         (5) 

Where  �́� = |𝑇∗⃗⃗⃗⃗ (𝑘) − �⃗� (𝑘)| and shows the 

distance of the ith whale to the prey, r is a 

constant value for defining the shape of the 

logarithmic spiral, is an element-by-element 

multiplication, and t is a assumptive number in 

[−1,1]. Note that these whales move around a hunt 

in a limited circle along the spiral path. We 

assume that the probability of choosing between 

the helical model or the siege mechanism to 

update the whale position during optimization is 

50%, to model this behavior. The model is 

described below: 

�⃗� (l + 1)

= {
T∗⃗⃗⃗⃗ (l) − N⃗⃗ . F⃗                                    if    p < 0.5

F́ ∙ ert ∙ cos(2πt) + T∗⃗⃗⃗⃗ (l )          if    p > 0.5
 

(6) 

Here p is an assumptive number in [0,1]. 

Humpback whales also search for prey at random, 

and the math search model is below: 
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𝐹 = |�⃗⃗� . 𝑇𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗� |               (7) 

�⃗� (𝑙 + 1) = 𝑇𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗⃗� . 𝐹       (8) 

Usually in the initial repetitions of the whale 

method, significant parts of the problem space 

may not be searchable. Therefore, implementing 

WA on existing population members may 

increase execution time without achieving 

significant improvement.So, the proposed method 

is to use (variable neighborhood search) VNS in 

the WA method, which is less time to achieve the 

desired result. have. Then, as we recognize the 

optimal solution space confidence interval, we 

slowly increase the likelihood of using VNS, 

called 𝑃𝑉𝑁𝑆, on the population.  Since the issue of 

extending the WA method was considered, we 

expanded the developed method called WAVNS. 

In this method, this method uses the following 

update rule: 

𝑃𝑉𝑁𝑆  ←  𝛽𝑉𝑁𝑆𝑃𝑉𝑁𝑆                            (9) 

where 𝛽𝑉𝑁𝑆 >  1 (𝑖𝑓 𝑃𝑉𝑁𝑆 >
 1, 𝑡ℎ𝑒𝑛 𝑤𝑒 𝑠𝑒𝑡 𝑃𝑉𝑁𝑆 =  1) 

Algorithm WA with neighborhood search 

Exploration model implemented in WA ( T ∗is the position vector of the best solution obtained so far). 

Initialize the Whales collection Ti(i = 1, 2, ..., n) 

 Compute the fitness of each search factor 

T∗=the best search factors 

While (l< maximum value of iterations) 

       for each search factor 

      Update b, N, M, t, and p 

if1(p<0.5) 

if2(|N|< 1) 

Update the location of the current search factor by Eq.  

else if2(|N| ≥ 1 ) 
Select a assumptive search factor (Trand) 

Update the location of the current search factor by Eq.Error! Reference source not 

found. 

Perform the VNS on the best individual of Ptemp (if there are several, select one randomly) 

with probability PVNS. 

end if2 

elseif1(p ≥ 0.5) 

Update the location of the current search by Eq.  

end if1 

end for 

Check if any search factor goes beyond the search space and amend it 

Compute the fitness of each search factor 

Update T∗ if there is an optimal solution 

l=l+1 

end while 

return T∗ 
 

NUMERICAL EXPERIMENTS 

This section describes a specific case of location 

and allocation problems. As you can see, the 

proposed method and algorithm will be very 

effective. In numerical optimization programs, 

the assumptions of a practical and real problem, 

such as the exact amount required and the results, 

are often incorrect. In fact, to avoid this problem, 

we examine the location of the facility with fuzzy 

values for these hypotheses and provide a degree 

of freedom for the decision maker that allows for 

uncertainty in the input data and assumptions. A 



Iranian Journal of Optimization, 13(3), 181-189, September 2021    

 

186  
 

Fazli et al/ Use whale Algorithm and Neighborhood… 

/ Presenting a Mathematical … 

special natural technique for describing unreliable 

data is the use of variables and fuzzy data. Hence, 

here we describe a location allocation formula, i.e. 

fuzzy station location allocation, with setup costs 

and associated applicants. To test the proposed 

algorithm, we created some environmental 

problems to test the large-scale fuzzy location 

problem (FLP). Similar to the mathematical 

formula of the place problem as an integer 

programming question (16), the FLP formula by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Consider that the limitations (4.2) guaranty that 

when node 𝑖 ∈  𝐼 is selected as a point or terminal 

(yi =  1), next it can service and cover all the 

node sin 𝐽 + 𝑖, while the limitation (4.3) controls 

the numeral of the needed terminals. 

Often, all node locations and their terminals in the 

range [-10, 10] × [-10, 10] were assumed and 

selected with uniform distribution. Consider that 

𝑚 = |𝐼|, 𝑛 =  |𝐽| For each node of the 

problem, 𝑗 ∈  𝐽,�̃�𝑗 =  (𝑎𝑗
𝐿 ,𝑎𝑗

𝐿 + 𝑡𝑗 , 𝛼𝑗 , 𝛽𝑗), 𝑗 =

 1,…, 𝑛, is a trapezoidal fuzzy value, where 

𝛼𝑗 ,𝛽𝑗 ∼  𝑈[10, 50],𝑎𝑗
𝐿 ∼ 𝑈[500, 2500], and 𝑡𝑗 ∼

 𝑈[0, 100]. Here considered the function of 

𝐽𝑖
+(𝑖 =  1, ….𝑚) as follows: 

μJi
+(j) = μij =

{
 

 
1,                                               cij ≤ r

1 +
r − cij

dr
,            r ≤ cij ≤ r + dr,

0,                                     cij >  r + dr

 

                                                 (15) 

Shrinking encircling mechanism is achieved by 

decreasing the value of  𝑏 ⃗⃗⃗   in Equation. Note that 

the fluctuation range of  𝑁 ⃗⃗⃗⃗ is also decreased by  �⃗� . 

Additionally, in all runs, we set 𝑟 =  1 and 𝑑𝑟 =
 0.1 in (4.6)  
In numerical problems was set m = 

250,500,750,1000 and n = 4m. We conducted our 

calculations in the MATLAB 9.0 programming 

setting on a computer, Intel(R) Core (TM)i7-

7500U CPU@ 2.90 GHz, with 12 GB of RAM. 

We developed the whale method with the help of 

local search and fuzzy values. Therefore, the 

performance of all similar methods is observed 

using the same execution time. The names and 

specifications of the test problems and the 

processing time required for the methods are 

given in Table 1. 

In each applied problem, the numerical result of 

the number 1 is assigned to find the best solution, 

ie the solution and the answer that has the least 

relative error. And the solution or solution that has 

the most relative error, ie the worst solution, will 

take the number 0, and the rest of the numerical 

answers, depending on how close it is to the best 

solution, take the values from 0 to 1. In simpler 

terms, if the maximum relative error value 

obtained from all methods in the particular 

problem j is denoted by ej, and the relative error 

obtained for the corresponding method and 

algorithm i in the problem j is denoted by 𝑒𝑖𝑗, we 

consider 1 − 
𝑒𝑖𝑗

𝑒𝑗
  as the numerical result for 

algorithm 𝑖 on problem 𝑗. Table 2 shows the 

numerical results obtained.  

To test and demonstrate WAVNS's 

competitiveness in achieving appropriate and 

optimal quality solutions, we implemented and 

tested other algorithms on all applied 

experimental problems using higher values for 

time constraints. We set all other related methods 

and algorithms to the2 × 𝑇𝑊𝐴 time limit. In the 

next step, for a certain method in the test problem, 

we considered the score as the following formula. 
si(alg) =

{
2,     alg  could find a better solution than WAVNS  
1,    alg  could find the WAVNS  solution,                    

0,                 O.W.                                                                            
(16) 

   Numerical results demonstrate that WAVNS, 

HGAVNS (Hybrid genetic and variable 

neighborhood search) and MVNS methods have 
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found the best solution in 89.64%, 6.92% and 

3.45%, but other methods cannot reach the best 

solution. Compared to GA, MSA and MVNS 

methods, only MVNS and GA achieved the best 

solution in 70% and 30% of cases, respectively, 

and HGAVNS was better than NHGASA, Lin and 

HGASA, and MSA (multistart simulated 

annealing algorithm) was the worst. 

Fig. 1 shows the efficiency of the proposed 

method and this value has been compared with 

other similar methods. 

 

 
Fig.1. Shows the scores of the methods calculated by 

(16) 

Table 1: Test problems specifications. 
Problem Category n kmin kmax Time (s) 

1 1 250 25 50 0.1036 

2 2 250 25 50 0.163339 

3 3 250 25 50 0.101057 

4 1 250 50 100 0.093915 

5 2 250 50 100 0.093915 

6 3 250 50 100 0.093915 

7 1 250 100 125 0.107203 

8 2 250 100 125 0.106835 

9 3 250 100 125 0.101188 

10 1 500 50 100 0.206169 

11 2 500 50 100 0.141496 

12 3 500 50 100 0.135905 

13 1 500 100 200 0.116595 

14 2 500 100 200 0.144836 

15 3 500 100 200 0.147267 

16 1 500 200 250 0.127699 

17 2 500 200 250 0.133205 

18 3 500 200 250 0.139434 

19 1 750 75 150 0.160926 

20 2 750 75 150 0.153569 

21 3 750 75 150 0.148119 

22 1 750 150 300 0.137819 

23 2 750 150 300 0.146553 

24 3 750 150 300 0.150449 

25 1 750 300 375 0.140989 

26 2 750 300 375 0.145201 

27 3 750 300 375 0.147101 

28 1 750 100 200 0.169967 

29 2 1000 100 200 0.165532 

30 3 1000 100 200 0.166014 

31 1 1000 200 400 0.168161 

32 2 1000 200 400 0.171869 

33 3 1000 200 400 0.171738 

34 1 1000 400 500 0.163274 

35 2 1000 400 500 0.161609 

36 3 1000 400 500 0.158127 

Table 2: Numerical results (performances) 
Problem WAVNS HGAVNS NHGASA HGASA GA MSA MVNS Hong Lin 

1 0.8262 0.6504 0.8022 0.0682 0.8128 0 0.0217 0.7432 0.6185 

2 0.9755 0.8702 0.8553 0 0.7484 0.0255 0.8231 0.8609 0.8376 

3 0.9321 0.9204 0.8544 0.1847 0.571 .0 0000 0.8423 0.6752 0.6978 

4 0.9832 0.8314 0.9426 0.1151 0.9628 0 0.6881 0.8921 0.8534 

5 0.9537 0.9678 0.8413 0.0458 0.6229 0 0.9766 0.7904 0.6903 

6 0.9429 0.9131 0.8234 0.0481 0.3336 0 0.9415 0.8469 0.7465 

7 0.9641 0.739 0.8243 0.1544 0.7829 0 0.7888 0.8123 0.7424 

8 0.9728 0.8423 0.8147 0.0683 0.5075 0 0.8623 0.7967 0.7321 

9 0.9514 0.8629 0.8135 0.1102 0.3095 0 0.8637 0.7836 0.7023 

10 0.9347 0.4568 0.7848 0.0341 0.7871 0 0.1461 0.7601 0.7287 

11 0.9218 0.0016 0.2608 0.2121 0 0.0129 0.2338 0.1918 0.2004 

12 0.8853 0.7518 0.7382 0.0301 0.343 0 0.7999 0.7534 0.8625 

0

10

20

30

40
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13 0.9375 0.8095 0.8406 0.347 0.8829 0 0.8015 0.8666 0.8209 

14 0.9632 0.8875 0.7766 0 0.4512 0.1079 0.9191 0.6954 0.6217 

15 0.9844 0.9432 0.7493 0.1025 0.2385 0 0.9175 0.6578 0.6625 

16 0.9729 0.8348 0.7745 0.0229 0.6362 0 0.8332 0.651 0.6019 

17 0.9587 0.8687 0.7407 0.0465 0.2544 0 0.8836 0.5025 0.4867 

18 0.9712 0.9062 0.7354 0.0548 0.214 0 0.9161 0.5298 0.4806 

19 0.9486 0 0.9334 0.7336 0.9204 0.7177 0.8166 0.9253 0.9237 

20 0.7994 0.6902 0.717 0.0386 0.7845 0 0.6549 0.6327 0.6416 

21 0.9861 0.7553 0.6508 0 0.2921 0.0127 0.7928 0.5907 0.3718 

22 0.9943 0.895 0.8077 0.047 0.8171 0 0.9103 0.7583 0.7509 

23 0.9872 0.9662 0.5348 0 0.0116 0.0168 0.8975 0.3287 0.2953 

24 0.9328 1 0.6229 0.0404 0.1464 0 0.9109 0.5698 0.5512 

25 0.9239 0.871 0.7323 0.0515 0.5605 0 0.8932 0.7012 0.619 

26 0.9873 0.9035 0.6574 0.0418 0.2405 0 0.9043 0.6423 0.583 

27 0.9956 0.9168 0.6626 0.0396 0.1508 0 0.9255 0.6217 0.6021 

28 0.9327 0.8758 0.9164 0.5427 0.9204 0 0.8536 0.8709 0.8841 

29 0.7985 0.5291 0.7495 0.0254 0.6807 0 0.4136 0.709 0.6823 

30 0.7838 0.494 0.7563 0.0328 0.6597 0 0.4127 0.7713 0.7384 

31 0.9871 0.9111 0.7315 0.0363 0.7752 0 0.985 0.7465 0.6982 

32 0.9126 0.9926 0.7203 0.0246 0.8017 0 0.8453 0.781 0.7267 

33 0.9877 0.9089 0.747 0.0134 0.8123 0 0.9583 0.7606 0.7724 

34 0.9749 0.9018 0.6636 0.0608 0.4948 0 0.8785 0.5763 0.6081 

35 0.9623 0.8663 0.6061 0.0296 0.4784 0 0.8911 0.4792 0.421 

36 0.9539 0.8629 0.6232 0.0212 0.4604 0 0.8647 0.5691 0.5258 

Average 0.9411 0.7788 0.7445 0.0951 0.5407 0.0248 0.7796 0.6901 0.6522 
 

CONCLUSIONS 

   In this research paper, we develop and implement a 

meta-heuristic method to solve a location problem 

that uses fuzzy values. We also compare it with 

recently implemented methods and algorithms to 

prove the efficiency and effectiveness of our 

technique. A model with fuzzy values also had a 

fuzzy number of node-related applicants, with lower 

limits and a predefined limit for the number of 

stations. We tested the proposed method and related 

algorithm on various fuzzy station problems with 

several random variables in which the cost of the 

fuzzy value system is considered. The fuzzy target 

value in this problem was converted to an explicit 

value using a ranking equation. As can be seen, 

numerical experiments on real-size application 

problems have a desirable and acceptable 

effectiveness. 

REFERENCES 

 

Alatas, B. (2011). ACROA: Artificial Chemical 

Reaction Optimization Algorithm for global 

optimization. Expert Syst. Appl., 38(10), 13170–

13180. doi:10.1016/j.eswa.2011.04.126 

Alba, E., Luque, G., & Troya, J. M. (2004). Parallel 

LAN/WAN heuristics for optimization. Parallel 

Computing, 30(5-6), 611-628.  

Albareda-Sambola, M., Fernández, E., & Nickel, S. 

(2012). Multiperiod location-routing with 

decoupled time scales. European journal of 

operational research, 217(2), 248-258.  

Ambrosino, D., & Scutella, M. G. (2005). 

Distribution network design: New problems and 

related models. European journal of operational 

research, 165(3), 610-624.  

Chiu, Y. C., Chang, L. C., & Chang, F. J. (2007). 

Using a hybrid genetic algorithm–simulated 

annealing algorithm for fuzzy programming of 



Iranian Journal of Optimization, 13(3), 181-189, September 2021    

 

 

189  
     

Fazli et al/ Use whale Algorithm and Neighborhood… 

 
reservoir operation. Hydrological Processes, 

21(23), 3162-3172.  

Drezner, Z. (2008). Extensive experiments with 

hybrid genetic algorithms for the solution of the 

quadratic assignment problem. Computers & 

Operations Research, 35(3), 717-736.  

Du, H., Wu, X., & Zhuang, J. (2006). Small-world 

optimization algorithm for function 

optimization. Paper presented at the International 

Conference on Natural Computation. 

Erol, O. K., & Eksin, I. (2006). A new optimization 

method: big bang–big crunch. Advances in 

Engineering Software, 37(2), 106-111.  

Formato, R. (2007). Central force optimization: A 

new metaheuristic with applications in applied 

electromagnetics. Progress in electromagnetics 

research. PIER 77, 425–491. In. 

Gao, J., Sun, L., & Gen, M. (2008). A hybrid genetic 

and variable neighborhood descent algorithm for 

flexible job shop scheduling problems. 

Computers & Operations Research, 35(9), 2892-

2907. 

doi:https://doi.org/10.1016/j.cor.2007.01.001 

Goldberg, D. E. (1989). Genetic Algorithms in 

Search, Optimization and Machine Learning: 

Addison-Wesley Longman Publishing Co., Inc. 

Goldbogen, J. A., Friedlaender, A. S., 

Calambokidis, J., Mckenna, M. F., Simon, M., & 

Nowacek, D. P. (2013). Integrative approaches to 

the study of baleen whale diving behavior, 

feeding performance, and foraging ecology. 

BioScience, 63(2), 90-100.  

Hatamlou, A. (2013). Black hole: A new heuristic 

optimization approach for data clustering. 

Information sciences, 222, 175-184.  

Jaszkiewicz, A., & Kominek, P. (2003). Genetic 

local search with distance preserving 

recombination operator for a vehicle routing 

problem. European journal of operational 

research, 151(2), 352-364.  

Kaveh, A., & Khayatazad, M. (2012). A new meta-

heuristic method: ray optimization. Computers & 

structures, 112, 283-294.  

Kaveh, A., & Talatahari, S. (2010). A novel 

heuristic optimization method: charged system 

search. Acta Mechanica, 213(3-4), 267-289.  

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. 

(1983). Optimization by simulated annealing. 

science, 220(4598), 671-680.  

Koza, J. R. (1992). Genetic Programming II, 

Automatic Discovery of Reusable Subprograms: 

MIT Press, Cambridge, MA. 

Laporte, G., & Dejax, P. J. (1989). Dynamic 

location-routeing problems. Journal of the 

Operational Research Society, 40(5), 471-482.  

Lee, Z.-J., Su, S.-F., Chuang, C.-C., & Liu, K.-H. 

(2008). Genetic algorithm with ant colony 

optimization (GA-ACO) for multiple sequence 

alignment. Applied Soft Computing, 8(1), 55-78.  

Moghaddam, F. F., Moghaddam, R. F., & Cheriet, 

M. (2012). Curved space optimization: a random 

search based on general relativity theory. arXiv 

preprint arXiv:1208.2214.  

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. 

(2009). GSA: a gravitational search algorithm. 

Information sciences, 179(13), 2232-2248.  

Salhi, S., & Nagy, G. (1999). Consistency and 

robustness in location-routing. Studies in 

Locational Analysis(13), 3-19.  

Shah-Hosseini, H. (2011). Principal components 

analysis by the galaxy-based search algorithm: a 

novel metaheuristic for continuous optimisation. 

International Journal of Computational Science 

and Engineering, 6(1-2), 132-140.  

Simon, D. (2008). Biogeography-Based 

Optimization. Trans. Evol. Comp, 12(6), 702–

713. doi:10.1109/tevc.2008.919004 

Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, 

F. (2009). A memetic algorithm for the flexible 

flow line scheduling problem with processor 

blocking. Computers & Operations Research, 

36(2), 402-414.  

Watkins, W. A., & Schevill, W. E. (1979). Aerial 

observation of feeding behavior in four baleen 

whales: Eubalaena glacialis, Balaenoptera 

borealis, Megaptera novaeangliae, and 

Balaenoptera physalus. Journal of Mammalogy, 

60(1), 155-163.  

Webster, B., & Bernhard, P. J. (2003). A local 

search optimization algorithm based on natural 

principles of gravitation. Retrieved from.  

 

https://doi.org/10.1016/j.cor.2007.01.001

