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INTRODUCTION 

   Initial and boundary value third-order 

ordinary differential equations (ODE) 

emerges in the modelling of real-life 

situations in areas of physical and applied 

sciences especially in mathematical 

representations of problems in 

electromagnetic waves, gravity-driven 

flows, problems related to thin films flow of 

viscous fluid, and quantum mechanics 

(Ahmed, 2017; Bernis & Peletier, 1996; Guo 

& Tsai, 2005; Morlando, 2017; Tuck & 

Schwartz, 1990). Solutions to this kind of 

problem is important in understanding the 

properties, and behaviours of the physical 

phenomenon under study (Cole & Tiamiyu, 

2019). Most often, available analytical 

methods fail, in most cases, in finding exact 

solution to a general third-order ODE. 

Hence, numerical methods which find 

approximate solution to the equations is 

crucial in finding solution to the initial and 

boundary value problems of third-order 

ODE arising in computational fluid 

dynamics, sciences and engineering 

(Tiamiyu et al., 2021). 

In this research, we propose a backward 

differentiation formula of hybrid block 

linear multistep method to the third-order 

initial or boundary value problems of the 

form;  

 

𝐷{𝑦(𝑥)} = 𝑓 (𝑥, 𝑦(𝑥),
𝑑𝑦(𝑥)

𝑑𝑥
,
𝑑2𝑦(𝑥)

𝑑𝑥2
) ,    𝑋

∈ (𝑥0, 𝑥𝑁)                                        (1) 

Couple with any of the initial or boundary 

conditions: 

y(x0) = y0 ,   
dy(x0)

dx
= z0 ,     

d2y(x0)
dx2 = w0            (2)

y(x0) = y0 ,   
dy(x0)

dx
= z0,     y(xN) = yN                (3)

y(x0) = y0 ,   
dy(x0)

dx
= z0 ,     

dy(xN)
dx

= zN              (4)

 

where 𝐷 =
𝑑3

𝑑𝑥3 , 𝑥0, 𝑦0, 𝑧0, 𝑤0, 𝑥𝑁 , 𝑦𝑁 , and 𝑧𝑁 ∈

 ℝ, 𝑦(𝑥) ∈ ℝ𝑛 and 𝑓 is a continuous-valued 

function. The Eq. 1 with 2 is a third-order 

initial value problem, while Eq. 1 coupled 

with either 3 or 4 is a third-order boundary 

value problem. Eq. 1 and 3 will be termed 

boundary value problem of type 1 while Eq. 

1 and 4 will be termed boundary value 

problem of type 2.  

In this research, we will focus on numerical 

solution of 1 at three different cases of 2, 3 

and 4. Various researchers have addressed 

from the three cases of 1 and 2, 3 or 4. The 

theory of third order-ordinary differential 

equations was presented in Padhi & Pati 

(2014), by analysing the existence and 

uniqueness of solutions at different cases. 

Semi-analytic and numerical solutions of the 

initial value problem of type 1 with 2 have 

been studied by a number of authors 

including Adeyeye & Zurni (2019), Agboola 

et al. (2015), Allogmany & Ismail (2020), 

Saqlain et al. (2018), and Sunday (2018). 

Likewise, various authors like Abdulsalam 

(2019), Ahmed (2017), Jator (2009), Khan & 

Aziz (2002) and Taha & Khlefha (2015) 

have also worked on the boundary value 

problems coupled with different types of 

boundary conditions. Methods of solution 

utilized by these authors include finite 

difference method, variational iterative 

method, differential transformation method, 

Runge-Kutta method, and linear multistep 

method. Mohammed et al. (2019) developed 

a three-step hybrid linear multistep with one-

off step collocation point for direct solution 

of boundary value problems using 

collocation approach. However, the 

limitations of these methods are the low 

degree of accuracy and low step number. 

The present study is triggered to address the 

limitations in the methods in the literature by 

increasing the step number in both grid and 

off-step points.  

In this research, we develop a continuous 

five-step hybrid linear multistep method 

(HLMM), with three off-step points, for 

direct solution of 1 coupled with one of the 

conditions 2, 3 or 4. The new method will be 

self-starting and with higher order of 

accuracy to obtain a more efficient method 

than the available methods in the literature. 

Basic properties of the method will be 

analysed for stability and convergence. The 

method will handle efficiently both initial 

and boundary value problems of 1 - 4.  
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A brief introduction is presented in section 

1, formulation and development of a 

continuous HLMM is provided in section 2, 

analysis of basic properties of the method is 

presented in section 3, experimentation with 

some numerical problems is presented in 

section 4, and the research will be concluded 

in section 5. 

METHODOLOGY/DEVELOPMENT 

OF THE METHOD 

   In this section, we formulate and develop a 

numerical approximation to 1 by using 

power of the variable 𝑥  as the basis 

functions and applying collocation 

technique. Consider the finite power series  

𝑦(𝑥) = ∑ 𝑎𝑗𝑥𝑗

𝑚+𝑛−1

𝑗=0

                                (5) 

   where 𝑚 is the number of collocation 

points, 𝑛 is the number of interpolating 

points, 𝑥 ∈ [𝑥0, 𝑥𝑁], and 𝑎𝑗s are unknown 

coefficients. The third derivative of 5 is 

𝑦′′′(𝑥) = ∑ 𝑗(𝑗 − 1)(𝑗 − 2)𝑎𝑗𝑥𝑗−3 

𝑚+𝑛−1

𝑗=3

          (6) 

Comparing 1 and 6, then 1 becomes 

𝑓 (𝑥, 𝑦(𝑥),
𝑑𝑦(𝑥)

𝑑𝑥
,
𝑑2𝑦(𝑥)

𝑑𝑥2
)

= ∑ 𝑗(𝑗 − 1)(𝑗

𝑚+𝑛−1

𝑗=3

− 2)𝑎𝑗𝑥𝑗−3                (7) 

We specify the method with 𝑚 = 1, and 𝑛 =
9. Interpolating 5 at 𝑥 = 𝑥𝑛+𝑗; 𝑗 =

0,
1

2
, 1,

3

2
, 2,

5

2
, 3, 4 and collocating 7 at 𝑥 =

𝑥𝑛+5 to obtain a 9 × 9 system of equations. 

The system of equations is further expressed 

in matrix form to obtain the solution of the 

unknown coefficients. The solution of the 

unknown coefficients 𝛼𝑛+𝑗; 𝑗 =

0,
1

2
, 1,

3

2
, 2,

5

2
, 3, 4 and 𝛽5 is obtain through 

matrix inversion method. 

𝛼0 = 𝑦𝑛 , 

𝛼1
2

= −
12206443

2302020

𝑦𝑛

ℎ
+

189824

12789

𝑦
𝑛+

1
2

ℎ

−
2713120

115101

𝑦𝑛+1

ℎ
+

64768

2349

𝑦
𝑛+

3
2

ℎ

−
274055

12789

𝑦𝑛+2

ℎ
+

5867392

575505

𝑦
𝑛+

5
2

ℎ

−
275216

115101

𝑦𝑛+3

ℎ
+

5501

65772

𝑦𝑛+4

ℎ

−
20

38367
ℎ2𝑓𝑛+5 

𝛼1 =
50794333

4604040

𝑦𝑛

ℎ2
−

3134048

63945

𝑦
𝑛+

1
2

ℎ2

+
11670548

115101

𝑦𝑛+1

ℎ2

−
1500736

11745

𝑦
𝑛+

3
2

ℎ2

+
5261863

51156

𝑦𝑛+2

ℎ2

−
28743776

575505

𝑦
𝑛+

5
2

ℎ2

+
6831032

575505

𝑦𝑛+3

ℎ2
−

277429

657720

𝑦𝑛+4

ℎ2

+
103

38367
ℎ𝑓𝑛+5 

𝛼3
2

= −
1773601

147987

𝑦𝑛

ℎ3
+

1080256

16443

𝑦
𝑛+

1
2

ℎ3

−
23462435

147987

𝑦𝑛+1

ℎ3

+
4625216

21141

𝑦
𝑛+

3
2

ℎ3

−
3037225

16443

𝑦𝑛+2

ℎ3

+
13661056

147987

𝑦
𝑛+

5
2

ℎ3

−
3309169

147987

𝑦𝑛+3

ℎ3
+

17194

21141

𝑦𝑛+4

ℎ3

−
527

98658
𝑓𝑛+5 

𝛼2 =
44513677

5919480

𝑦𝑛

ℎ4
−

3817064

82215

𝑦
𝑛+

1
2

ℎ4

+
36619231

295974

𝑦𝑛+1

ℎ4

−
19464304

105705

𝑦
𝑛+

3
2

ℎ4

+
10781395

65772

𝑦𝑛+2

ℎ4

−
62811464

739935

𝑦
𝑛+

5
2

ℎ4

+
31195147

1479870

𝑦𝑛+3

ℎ4

−
669013

845640

𝑦𝑛+4

ℎ4
+

268

49329

𝑓𝑛+5

ℎ
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𝛼5
2

= −
8316629

2959740

𝑦𝑛

ℎ5
+

307360

16443

𝑦
𝑛+

1
2

ℎ5

−
15773329

295974

𝑦𝑛+1

ℎ5

+
1778240

21141

𝑦
𝑛+

3
2

ℎ5

−
1292869

16443

𝑦𝑛+2

ℎ5

+
31321376

739935

𝑦
𝑛+

5
2

ℎ5

−
3204983

295974

𝑦𝑛+3

ℎ5
+

35779

84564

𝑦𝑛+4

ℎ5

−
305

98658

𝑓𝑛+5

ℎ2
 

𝛼3 =
129553

211410

𝑦𝑛

ℎ6
−

50312

11745

𝑦
𝑛+

1
2

ℎ6
+

270731

21141

𝑦𝑛+1

ℎ6

−
2233936

105705

𝑦
𝑛+

3
2

ℎ6
+

48352

2349

𝑦𝑛+2

ℎ6

−
1215464

105705

𝑦
𝑛+

5
2

ℎ6
+

321113

105705

𝑦𝑛+3

ℎ6

−
26353

211410

𝑦𝑛+4

ℎ6
+

7

7047

𝑓𝑛+5

ℎ3
 

𝛼4 = −
2549

35721

𝑦𝑛

ℎ7
+

2048

3969

𝑦
𝑛+

1
2

ℎ7
−

56986

35721

𝑦𝑛+1

ℎ7

+
1984

729

𝑦
𝑛+

3
2

ℎ7
−

10868

3969

𝑦𝑛+2

ℎ7

+
56384

35721

𝑦
𝑛+

5
2

ℎ7
−

15350

35721

𝑦𝑛+3

ℎ7

+
95

5103

𝑦𝑛+4

ℎ7
−

2

11907

𝑓𝑛+5

ℎ4
 

𝛽5 =
17552

5179545

𝑦𝑛

ℎ8
−

14432

575505

𝑦
𝑛+

1
2

ℎ8
+

82220

1035909

𝑦𝑛+1

ℎ8

−
14656

105705

𝑦
𝑛+

3
2

ℎ8
+

16444

115101

𝑦𝑛+2

ℎ8

−
436832

5179545

𝑦
𝑛+

5
2

ℎ8

+
121748

5179545

𝑦𝑛+3

ℎ8
−

788

739935

𝑦𝑛+4

ℎ8

+
4

345303

𝑓𝑛+5

ℎ8
 

 

   The continuous HLMM of backward 

differentiation formula is obtained as; 

𝑦(𝑥) = ∑ 𝛼𝑗(𝑥)

𝑘−1

𝑗=0

𝑦𝑛+𝑗 + 𝛼1
2

𝑦
𝑛+

1
2

+ 𝛼3
2

𝑦
𝑛+

3
2

+ 𝛼5
2

𝑦
𝑛+

5
2

+ 𝛽5ℎ3𝑓𝑛+5                         (8) 

   where 𝑘 = 5 is the step number of the 

method. Substituting the results of the 

unknown coefficients 𝛼𝑛+𝑗; 𝑗 =

0,
1

2
, 1,

3

2
, 2,

5

2
, 3, 4 and 𝛽5 and evaluate 8 at 

𝑥 = 𝑥𝑛+5 to obtain the discrete scheme as; 

𝑦𝑛+5

= −
27341

5481
𝑦𝑛 +

25280

609
𝑦

𝑛+
1
2

−
822025

5481
𝑦𝑛+1

+
238720

783
𝑦

𝑛+
3
2

−
228350

609
𝑦𝑛+2 +

1499072

5481
𝑦

𝑛+
5
2

−
542270

5481
𝑦𝑛+3 +

7805

783
𝑦𝑛+4

+
100

1827
ℎ3𝑓𝑛+5                                         (9) 

   We obtain the first and second derivatives 

of 8 and evaluating at 𝑥 = 𝑥𝑛+𝑗;  𝑗 =

0,
1

2
, 1,

3

2
, 2,

5

2
, 3, 4,5. To obtain the sufficient 

schemes required for the backward 

differentiation formula of hybrid block 

LMM, we further obtain the third derivative 

of 8 and evaluating at 𝑥 = 𝑥𝑛+𝑗;  𝑗 =
1

2
,

3

2
,

5

2
, 3, 4. Combining all the 24 schemes 

together to form block method to solve 1, 

and after simplifications to express 

𝑦𝑛+𝑗, 𝑧𝑛+𝑗, 𝑤𝑛+𝑗; 𝑗 =
1

2
, 1,

3

2
, 2,

5

2
, 3, 4,5 as 

the subject of relations. The hybrid block 

method for 𝑦𝑛+𝑗; 𝑗 =
1

2
, 1,

3

2
, 2,

5

2
, 3, 4,5 is;  

𝑦
𝑛+

1
2

 

= 𝑦𝑛 +
1

2
ℎ𝑧𝑛  +

1

8
ℎ2𝑤𝑛 +

1610153

33868800
ℎ3𝑓

𝑛+
1
2

−
448501

5644800
ℎ3𝑓

𝑛+
3
2

+
262033

1612800
ℎ3𝑓

𝑛+
5
2

−
216973

1612800
ℎ3𝑓𝑛+3 +

161461

5644800
ℎ3𝑓𝑛+4

−
128573

33868800
ℎ3𝑓𝑛+5                                    (10) 

𝑦𝑛+1  

= 𝑦𝑛 + ℎ𝑧𝑛  +
1

2
ℎ2𝑤𝑛 +

40807

132300
ℎ3𝑓

𝑛+
1
2

−
9271

22050
ℎ3𝑓

𝑛+
3
2

+
5399

6300
ℎ3𝑓

𝑛+
5
2

−
17863

25200
ℎ3𝑓𝑛+3

+
6637

44100
ℎ3𝑓𝑛+4

−
10561

529200
ℎ3𝑓𝑛+5                                       (11) 

𝑦
𝑛+

3
2

 

= 𝑦𝑛 +
3

2
ℎ𝑧𝑛  +

9

8
ℎ2𝑤𝑛 +

1078299

1254400
ℎ3𝑓

𝑛+
1
2

−
117657

125440
ℎ3𝑓

𝑛+
3
2

+
355833

179200
ℎ3𝑓

𝑛+
5
2

−
295677

179200
ℎ3𝑓𝑛+3 +

8829

25088
ℎ3𝑓𝑛+4

−
58671

1254400
ℎ3𝑓𝑛+5                                       (12) 
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𝑦𝑛+2  

= 𝑦𝑛 + 2ℎ𝑧𝑛  + 2ℎ2𝑤𝑛 +
56738

33075
ℎ3𝑓

𝑛+
1
2

−
16364

11025
ℎ3𝑓

𝑛+
3
2

+
5434

1575
ℎ3𝑓

𝑛+
5
2

−
649

225
ℎ3𝑓𝑛+3

+
6824

11025
ℎ3𝑓𝑛+4

−
2729

33075
ℎ3𝑓𝑛+5                                              (13) 

𝑦
𝑛+

5
2

 

= 𝑦𝑛 +
5

2
ℎ𝑧𝑛  +

25

8
ℎ2𝑤𝑛 +

556375

193536
ℎ3𝑓

𝑛+
1
2

−
446125

225792
ℎ3𝑓

𝑛+
3
2

+
343625

64512
ℎ3𝑓

𝑛+
5
2

−
287125

64512
ℎ3𝑓𝑛+3 +

30875

32256
ℎ3𝑓𝑛+4

−
173125

1354752
ℎ3𝑓𝑛+5                                       (14) 

𝑦𝑛+3  

= 𝑦𝑛 + 3ℎ𝑧𝑛  +
9

2
ℎ2𝑤𝑛 +

21249

4900
ℎ3𝑓

𝑛+
1
2

−
837

350
ℎ3𝑓

𝑛+
3
2

+
5427

700
ℎ3𝑓

𝑛+
5
2

−
17883

2800
ℎ3𝑓𝑛+3

+
6723

4900
ℎ3𝑓𝑛+4

−
513

2800
ℎ3𝑓𝑛+5                                             (15) 

𝑦𝑛+4  

= 𝑦𝑛 + 4ℎ𝑧𝑛  + 8ℎ2𝑤𝑛 +
270112

33075
ℎ3𝑓

𝑛+
1
2

−
6592

2205
ℎ3𝑓

𝑛+
3
2

+
22688

1575
ℎ3𝑓

𝑛+
5
2

−
17392

1575
ℎ3𝑓𝑛+3

+
5408

2205
ℎ3𝑓𝑛+4

−
10768

33075
ℎ3𝑓𝑛+5                                            (16) 

𝑦𝑛+5  = 𝑦𝑛 + 5ℎ𝑧𝑛  +
25

2
ℎ2𝑤𝑛 +

69875

5292
ℎ3𝑓

𝑛+
1
2

−
2875

882
ℎ3𝑓

𝑛+
3
2

+
5875

252
ℎ3𝑓

𝑛+
5
2

−
16375

1008
ℎ3𝑓𝑛+3 +

7625

1764
ℎ3𝑓𝑛+4

−
10625

21168
ℎ3𝑓𝑛+5            (17) 

       where 𝑧𝑛+𝑗 and 𝑤𝑛+𝑗 are the first and second  

derivatives of 𝑦𝑛+𝑗. 

 

 
ANALYSIS 

   In this section, we present the analyses for 

consistency and zero stability of the 

proposed method.  

Consistency 

The proposed method in section 2 is 

commonly written as; 

∑ 𝛼𝑗𝑦𝑛+𝑗

5

𝑗=0

+ 𝛼1
2

𝑦
𝑛+

1
2

+ 𝛼3
2

𝑦
𝑛+

3
2

+ 𝛼5
2

𝑦
𝑛+

5
2

− ℎ3𝛽5𝑓𝑛+5

= 0                                     (18) 
Following Jator (2009), Mohammed et al 

(2019) and Tiamiyu et al. (2021), the local 

truncation error in a linear difference 

operator is defined as; 
𝐿[𝑦(𝑥); ℎ]

= ∑ 𝛼𝑗𝑦(𝑥 + 𝑗ℎ)

5

𝑗=0

+ 𝛼1
2

𝑦 (𝑥 +
1

2
ℎ)

+ 𝛼3
2

𝑦 (𝑥 +
3

2
ℎ) + 𝛼5

2
𝑦 (𝑥 +

5

2
ℎ) − ℎ3𝛽5𝑦′′′(𝑥

+ 5ℎ)                                                               (19) 
We assume that 𝑦(𝑥) is adequately 

differentiable. In Taylor’s expansion about 

the point 𝑥, (19) can be expressed as;  

𝐿[𝑦(𝑥); ℎ] = 𝐶0𝑦(𝑥) + 𝐶1ℎ𝑦′(𝑥)
+ 𝐶2ℎ2𝑦′′(𝑥) + ⋯
+ 𝐶𝑝ℎ𝑝𝑦𝑝(𝑥)

+ 𝐶𝑝+1ℎ𝑝+1𝑦𝑝+1(𝑥)

+ ⋯                    (20) 
The discrete scheme in (9) is said to be 

consistent if 𝑝 ≥ 1 for 𝐶0 = 𝐶1 = 𝐶2 = ⋯ =
𝐶𝑝 = 𝐶𝑝+1 = 𝐶𝑝+2 = 0, 𝐶𝑝+3 ≠ 0 is the 

error constant, and 𝑝 is the order of the 

method (Jator, 2009). Computing for the 

order 𝑝 and error constant 𝐶𝑝+3 for (9) gives 

(𝑝, 𝐶𝑝+3) = (6, −
796595

44198784
). 

Furthermore, we verify the following 

conditions that guarantee consistency of a 

linear multistep method (Tiamiyu et al., 

2021);  

i.) ∑ 𝛼𝑗
5
𝑗=0 + 𝛼1

2

+ 𝛼3

2

+ 𝛼5

2

= 0 

ii.) 𝜌(𝑟) = 𝜌′(𝑟) = 𝜌′′(𝑟) = ⋯ =

𝜌(𝑛−1)(𝑟) = 0 

iii.) 𝜌𝑛(𝑟) = 𝑛! 𝜎(𝑟) 

where 𝑟 = 1 is the principal root and 𝑛 = 3 

is the order of the differential equation, 𝜌(𝑟) 
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is the first characteristic polynomial, and 

𝜎(𝑟) is the second characteristic polynomial 

of the method. From 9 𝛼0 =
27341

5481
, 𝛼1

2

=

−
25280

609
, 𝛼1 =

822025

5481
, 𝛼3

2

=

−
238720

783
,  𝛼2 =

228350

609
, 𝛼5

2

= −
1499072

5481
,   

𝛼3 =
542270

5481
,  𝛼4 = −

7805

783
, 𝛼5 = 1, 𝛽5 =

100

1827
. 

𝜌(𝑟) =
27341

5481
−

25280

609
𝑟

1
2 +

822025

5481
 𝑟

−
238720

783
𝑟

3
2 +

228350

609
𝑟2

−
1499072

5481
𝑟

5
2 +

542270

5481
𝑟3

−
7805

783
𝑟4 + 𝑟5 

𝜎(𝑟) =
100

1827
𝑟5 

Eq. 9 satisfied the above conditions. 

Therefore, the method is consistent.  

Zero Stability 

We start by normalizing the first 

characteristic polynomials 𝜌(𝑟) of the 

proposed discrete schemes in (10) – (17) as;  

𝜌(𝑟)
= det(rA0

− A1)                                                 (21) 

where |𝑟| ≤ 1 and the roots |𝑟| = 1 has a 

multiplicity not exceeding the order 3 of the 

differential equation, A0 is an identity matrix 

of 8 × 8 dimension, and A1 from 10 to 17)is; 

1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

A

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Therefore,  

𝜌(𝑟) = det(rA0 − A1)
= 𝑟7(𝑟 − 1)                                                   (22) 

Since |𝑟| ≤ 1, then the proposed block 

method in 10 to 17 is zero stable.  

Convergence  

The fundamental theorem of  Dahlquist 

states that, “the necessary and sufficient 

conditions for a linear multi-step method to 

be convergent are that it be consistent and 

zero-stable” (Lambert, 1973). By Adeyeye 

& Zurni (2019), Allogmany & Ismail (2020) 

and Tiamiyu et al. (2021), since the proposed 

hybrid block method is consistent and zero 

stable, the condition for convergence is 

satisfied.  

NUMERICAL EXPERIMENTS 

   In this section, some numerical 

experiments will be performed to validate 

the efficiency of the proposed method.  

Numerical Problems 

Problem 1: Initial Value Problem  

Consider the third-order initial value 

problem 
𝑦′′′(𝑥) = −6𝑦′′(𝑥) − 11𝑦′(𝑥) − 6𝑦(𝑥)

𝑦(0) = 1,       𝑦′(0) = 0,        𝑦′′(0) = 0
         (23) 

with the exact solution 𝑦(𝑥) = 3𝑒−𝑥 −
3 𝑒−2𝑥 + 𝑒−3𝑥 

Problem 2: Boundary Value Problem of 

Type 1 

Consider the third-order boundary value 

problem in Abdulsalam & Majid (2019) of 

type 1  
−𝜖𝑦′′′(𝑥) + 𝑦(𝑥) = 81𝜖2 cos(3𝑥) + 3𝜖 sin(3𝑥)

𝑦(0) = 0,       𝑦′(0) = 9𝜖,        𝑦(1) = 3𝜖 sin(3)
  (24) 

with the exact solution 𝑦(𝑥) = 3𝜖sin (3𝑥).  

Problem 3: Boundary Value Problem of 

Type 2 

Consider the third-order boundary value 

problem in Ahmed (2017) of type 2 
𝑦′′′(𝑥) = 𝑥𝑦(𝑥) + (𝑥3 − 2𝑥2 − 5𝑥 − 3)𝑒𝑥

𝑦(0) = 0,       𝑦′(0) = 1,        𝑦′(1) = −𝑒
 

with the exact solution 𝑦(𝑥) = 𝑥(1 − 𝑥)𝑒𝑥.  

Numerical Results 

The numerical results of the selected 

problems are presented in some Tables and 

Figures in this section. Exact and numerical 

solutions are compared in Tables 1, 3 and 6. 
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Table 1: Exact and Computed Results for Problem 1 at ℎ =
1

100
 

𝑛 𝑥𝑛 Exact Solution Computed Solution 

1 0.1 0.9991382155556510096 0.99913821555566816898 

2. 0.2 0.9940437572210541064 0.99404375722112793535 

3. 0.3 0.9825894135036734122 0.98258941350384221868 

4 0.4 0.9641674576674552245 0.96416745766774742614 

5 0.5 0.9390838157720031349 0.93908381577243467435 

6 0.6 0.90815116076705954628 0.90815116076763451979 

7 0.7 0.87242144780239102348 0.87242144780310378013 

8 0.8 0.83301529165711105223 0.83301529165794875761 

9 0.9 0.79101782729678748580 0.79101782729773260849 

10 1.0 0.74741954217235283213 0.74741954217338528978 

 
Table 2: Maximum Absolute Error at distinct ℎ for Problem 1 

Step Sizes Maximum Absolute Error 

ℎ =
1

16
 6.191973979 × 10−8 

ℎ =
1

32
 9.720599132 × 10−10 

ℎ =
1

64
 1.508947299 × 10−11 

ℎ =
1

128
 2.342843261 × 10−13 

 

 

Table 3: Exact and Computed Results for Problem 2 at ℎ =
1

100
 and 𝜖 =

1

16
 

𝑛 𝑥𝑛 Exact Solution Computed Solution 

1 0.1 0.055410038749001170333 0.05541003874900896583 

2. 0.2 0.10587046376156912948 0.10587046376159386594 

3. 0.3 0.14687379555515313534 0.14687379555519484929 

4 0.4 0.17475732861885494056 0.17475732861890705160 
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5 0.5 0.18703030998826020580 0.18703030998831259471 

6 0.6 0.18259643078966159747 0.18259643078970393396 

7 0.7 0.16185175624666383200 0.16185175624668883237 

8 0.8 0.12664934635334079873 0.12664934635334713819 

9 0.9 0.080133727543843112730 0.080133727543837784674 

10 1.0 0.026460001511225104144 0.026460001511225104155 

 

Table 4: Maximum Absolute Error at distinct ℎ for Problem 2 

𝑵 
𝝐 =

𝟏

𝟏𝟔
 𝝐 =

𝟏

𝟑𝟐
 𝝐 =

𝟏

𝟔𝟒
 

10 2.172231625 × 10−7 9.332503559 × 10−8 3.679731874 × 10−8 

20 1.259856162 × 10−9 5.643907071 × 10−10 2.367721200 × 10−10 

40 6.720773823 × 10−12 3.461736523 × 10−12 1.794300141 × 10−12 

80 1.871873102 × 10−13 8.103007583 × 10−14 3.260234521 × 10−14 

100 5.360673354 × 10−14 2.307602360 × 10−14 9.204725212 × 10−15 
 

 

Table 5: Maximum Absolute Error at distinct ℎ for Problem 2 in Abdulsalam & Majid (2019) 

𝑵 
𝝐 =

𝟏

𝟏𝟔
 𝝐 =

𝟏

𝟑𝟐
 𝝐 =

𝟏

𝟔𝟒
 

10 1.9 × 10−5 3.7 × 10−5 7.0 × 10−5 

20 2.6 × 10−6 5.0 × 10−6 9.9 × 10−6 

40 3.4 × 10−7 6.6 × 10−7 1.3 × 10−6 
 

 

Table 6: Exact and Computed Results for Problem 3 at ℎ =
1

100
 

𝑛 𝑥𝑛 Exact Solution Computed Solution 

1 0.1 0.09946538262680828623 0.099465382626807532776 

2. 0.2 0.19542444130562717342 0.19542444130562429872 

3. 0.3 0.28347034959096065184 0.28347034959095453309 

4 0.4 0.35803792743390487627 0.35803792743389466775 
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5 0.5 0.41218031767503203670 0.41218031767501720524 

6 0.6 0.43730851209372215398 0.43730851209370251828 

7 0.7 0.42288806856880006954 0.42288806856877584396 

8 0.8 0.35608654855879481674 0.35608654855876666025 

9 0.9 0.22136428000412546974 0.22136428000409454131 

10 1.0 0.00000000000000000000 −3.19782158 × 10−14 

 
Table 7: Maximum Absolute Error at Distinct ℎ for Problem 3 

Step Sizes Maximum Absolute Error 

ℎ =
1

16
 

2.442839703 × 10−9 

ℎ =
1

32
 

3.331349298 × 10−11 

ℎ =
1

64
 

4.796951000 × 10−13 

ℎ =
1

128
 

7.213700000 × 10−15 

 

 
Fig. 1. Log of Absolute Error at ℎ =

1

𝑁
 for Problem 1 
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Fig. 2. Log of Absolute Error at ℎ =

1

𝑁
 and 𝜖 =

1

16
 for Problem 2 

 
Fig. 3. Log of Absolute Error at ℎ =

1

𝑁
 and 𝜖 =

1

32
 for Problem 2 

 

 
Fig. 4. Log of Absolute Error at ℎ =

1

𝑁
 and 𝜖 =

1

64
 for Problem 2 
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Fig. 5. Log of Absolute Error at ℎ =

1

𝑁
 for Problem 3 

 

Discussion of Results  

   Tables 1 – 7 display the numerical results of 

the third-order initial and boundary value 

problems in examples 1 – 3. Table 1 can be 

used to compare the exact and approximate 

solutions for problem 1 with step-size ℎ =
1

100
. Table 2 displays the maximum absolute 

errors at ℎ =
1

𝑁
; 𝑁 = 16, 32, 64, 128 for 

problem 1. Table 3 shall be used to compare 

the exact and the solution of the proposed 

method with ℎ =
1

100
 and 𝜖 =

1

16
 for problem 

2. Table 4 shows the results of the maximum 

absolute errors of problem 2 for ℎ =
1

𝑁
; 𝑁 =

10, 20, 40, 80,100, in contrast with the results 

of the maximum absolute errors of 

Abdulsalam & Majid (2019) in Table 5. Table 

6 illustrates the comparison results of the 

exact and computed results for problem 3 

from Ahmed (2017) at ℎ =
1

100
. Table 7 

displays the result of maximum absolute 

errors of problem 3 for ℎ =
1

𝑁
; 𝑁 =

16, 32, 64, 128. Figures 1 and 5 show the 

plots of log of absolute errors in Tables 2, 4 

and 7. Figures 2 – 4 show the plots of log of 

absolute errors at ℎ =
1

𝑁
; 𝑁 =

10, 20, 40, 80, 100 and varying 𝜖.  

    From the presented Tables and plots, we 

observe that the computed solutions of the 

proposed method agreed well with the exact 

solutions of the problems attempted in this 

paper. We also confirm that the smaller values 

of step-size, the more accurate approximated 

solution. Also, our proposed method 

performed better than the results in 

Abdulsalam & Majid (2019). The newly 

proposed method has therefore improved the 

numerical results of the problems under study. 

CONCLUSION 

    In this research, we developed a self-

starting backward differentiation formula of 

hybrid block linear multistep method with a 

higher-order of accuracy using collocation 

technique. The newly proposed method is 

aimed to improve the efficiency and accuracy 

of existing LMM by increasing the step-

number both at grid and off-grid points. The 

choice of three off-step points and five step 

points were made in the development of the 

new method. The basic properties of the 

proposed method were analysed for 

convergence. Numerical experiments of 

initial or boundary value problems of type 1 

and type 2 were performed to demonstrate the 

accuracy of the proposed method. The 

numerical results of the problems show the 

efficiency of the proposed methods as the 

computed results agreed well with the exact 

solutions. From the graphs and tabulated 

results, we can conclude that the proposed 

method is an excellent choice for handing 

third-order differential equations with either 

initial or boundary conditions appearing in all 

areas of sciences and engineering. Maple 

2015 was used for all computations.  
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