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INTRODUCTION 

   Metrical fixed point theory has significantly 

revolutionized the approaches of mathematics 

through the Banach contraction concept to 

sciences and its applications. This concept is a 

classical and powerful tool in nonlinear analysis 

because of its very useful structure. Coupled fixed 

point theorems have been given in different 

metric spaces. In the case of fixed points of an 

operator 𝑇: 𝑋2 → 𝑋, its stability for fixed point 

iterative procedures was first studied by 

Ostrowski (1967) in the case of Banach 

contraction mappings and this subject was later 

developed for certain contractive definitions by 

several authors, Rhoades (1990, 1993), Osilike 

(1995, 1996), Jachymski (1997), Berinde (2003), 

Imoru and Olatinwo (2003), Owojori (2006), 

Olatinwo, Owojori and Imoru (2006). 

   Banach Principle was applied on partially 

ordered complete metric spaces and starting from 

the results, Bhaskar and Laksmikantham (2006) 

extend this theory to partially ordered metric 

spaces and introduce the concept of coupled fixed 

point for mixed-monotone operators of Picard 

type, obtaining results involving the existence and 

uniqueness of the coincidence points for mixed 

monotone operators 𝑇: 𝑋2 → 𝑋 in the presence of 

a contractive condition. This concept of coupled 

fixed points in partially ordered metric and cone 

metric spaces have been studied by several 

authors, including Ciric and Lakshmikantham 

(2009), Lakshmikantham and Ciric (2009), and 

Sabetghadam, Masiha and Sanatpour (2009), 

Karapinar (2010), Choudhury and Kundu (2010), 

Aniki and Rauf (2019). 

   Berinde and Borcut (2011) obtained extensions 

to the concept of tripled fixed points and tripled 

coincidence fixed points and also obtained tripled 

fixed points theorems and tripled coincidence 

theorems for mappings in partially ordered metric 

spaces. Work on tripled fixed point was advanced 

by Abbas, Aydi and Karapinar (2011), Amini-

Harandi (2012) and Kishore (2011). 

   Recently, Rauf and Aniki, (2020) introduced 

quadrupled fixed point theorems for contractive 

type mappings in partially ordered cauchy spaces. 

Also, following the series, Aniki and Rauf, (2021) 

established the stability theorem and results for 

quadrupled fixed point of contractive type single 

valued operators. On the other hand, by adapting 

the stability concept of the iterative fixed point 

method, Olatinwo (2012) and Timis (2014) tested 

the stability of the related iterative fixed point 

method using several contractive conditions for 

which the existence of a unique coupled fixed 

point has been demonstrated in the literature. 

 

MATERIALS AND METHODS 

   Firstly, we consider some notations that will be 

relevant in demonstrating our main findings. 

If (𝑋, ≤) is a partially ordered set and 𝑑 be a 

metric on 𝑋 such that the pair (𝑋,𝑑) is a complete 

metric space. Then,𝑋4 is a product space with the 

following partial order 

 

(𝑝,𝑞,𝑟,𝑠) ≤ (𝑢,𝑣,𝑤,𝑥) ⇔ 𝑢 ≥ 𝑝,𝑣
≤ 𝑞,𝑤 ≥ 𝑟, 𝑥 ≤ 𝑠 

∀(𝑝,𝑞,𝑟,𝑠),(𝑢,𝑣,𝑤,𝑥) ∈ 𝑋4. 
 

Definition 1 (Rauf & Aniki, 2021). Let (X, ≤) 
be a partially ordered set and T: X4 → X be a 

mapping. We say that T has the mixed monotone 

property if T(u,v,w,x) is monotone 

nondecreasing in u and w, and monotone 

nonincreasing in v and x, that is, for any 

𝒖,𝒗,𝒘,𝒙 ∈ 𝑿, 
𝑢1,𝑢2 ∈ 𝑋,𝑢1 ≤ 𝑢2 ⇒ 𝑇(𝑢1,𝑣,𝑤,𝑥)

≤ 𝑇(𝑢2,𝑣,𝑤,𝑥), 

𝑣1,𝑣2 ∈ 𝑋,𝑣1 ≤ 𝑣2 ⇒ 𝑇(𝑢,𝑣1,𝑤,𝑥)

≥ 𝑇(𝑢,𝑣2,𝑤,𝑥), 

𝑤1,𝑤2 ∈ 𝑋,𝑤1 ≤ 𝑤2 ⇒ 𝑇(𝑢,𝑣,𝑤1,𝑥)

≤ 𝑇(𝑢,𝑣,𝑤2,𝑥), 

and 

𝑥1,𝑥2 ∈ 𝑋,𝑥1 ≤ 𝑥2 ⇒ 𝑇(𝑢,𝑣,𝑤,𝑥1)

≥ 𝑇(𝑢,𝑣,𝑤,𝑥2). 

Definition 2 (Rauf & Aniki, 2021). An element 

(𝑢,𝑣,𝑤,𝑥) ∈ 𝑋4 is called a quadrupled fixed point 

of the mapping 𝑇: 𝑋4 → 𝑋, if  𝑇(𝑢,𝑣,𝑤,𝑥) =
𝑢,𝑇(𝑣,𝑢,𝑣,𝑥) = 𝑣,𝑇(𝑤,𝑢,𝑣,𝑤) = 𝑤, and 

𝑇(𝑥,𝑤,𝑣,𝑢) = 𝑥. 
Definition 3 (Rauf & Aniki, 2021). The mapping 

𝑇: 𝑋4 → 𝑋 is said to be (𝜗,𝜅,𝜆,𝜇) −contraction if 



Iranian Journal of Optimization, 13(4), 231-239, December 2021    

 

233  
    

Samuel Adamariko / Stability and Iterative Procedures… 

and only if there exists four constants 𝜗 ≥ 0,𝜅 ≥

0,𝜆 ≥ 0,𝜇 ≥ 0,𝜗 + 𝜅 + 𝜆 + 𝜇 < 1, such that for 

all 𝑢,𝑣,𝑤,𝑥,𝑝,𝑞,𝑟,𝑠 ∈ 𝑋, 

𝑑[𝑇(𝑢,𝑣,𝑤,𝑥),𝑇(𝑝,𝑞,𝑟,𝑠)]

≤ 𝜗𝑑(𝑢,𝑝) + 𝜅𝑑(𝑣,𝑞) + 𝜆𝑑(𝑤,𝑟)

+ 𝜇𝑑(𝑥,𝑠),                       (1) 

Let 𝐴,𝐵 ∈ 𝑀(𝑚,𝑛)(ℝ) be two matrices. We write 

𝐴 ≤ 𝐵;if 𝛼𝑖𝑗 ≤ 𝛽𝑖𝑗 for all 𝑖 = 1,𝑚̅̅ ̅̅ ̅, 𝑗 = 1,𝑛̅̅ ̅̅ . 

In order to prove the main stability result in this 

research, the next are given; 

Lemma 1. Let {𝛼𝑛}, {𝛽𝑛} be sequences of 

nonnegative numbers and ℎ be a constant, such 

that 0 ≤ ℎ < 1 and 

𝛼𝑛+1 ≤ ℎ𝛼𝑛 + 𝛽𝑛,     𝑛 ≥ 0, 

If lim
𝑛→∞

𝛽𝑛 = 0, then lim
𝑛→∞

𝛼𝑛 = 0. 

Also, given in the next result is the extension of 

Lemma 1 to vector sequences where an inequality 

between vectors means inequalities on its 

elements. 

Lemma 2. Let {𝑝𝑛},{𝑞𝑛},{𝑟𝑛},{𝑠𝑛} be sequences 

of nonnegative real numbers. Consider a matrix 

𝐴 ∈ 𝑀(4,4)(ℝ) with nonnegative elements, such 

that 

(

𝑝𝑛+1
𝑞𝑛+1
𝑟𝑛+1
𝑠𝑛+1

) ≤ 𝐴.(

𝑝𝑛
𝑞𝑛
𝑟𝑛
𝑠𝑛

) + (

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

) ,    𝑛

≥ 0,                                                           (2) 

With 

i. lim
𝑛→∞

𝐴𝑛 = 04, 

ii. ∑ 𝜂𝑘
∞
𝑘=0 < ∞, ∑ 𝜀𝑘

∞
𝑘=0 < ∞, ∑ 𝛿𝑘

∞
𝑘=0 <

∞, 𝑎𝑛𝑑 ∑ 𝛾𝑘
∞
𝑘=0 < ∞. 

If lim
𝑛→∞

(

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

) = (

0
0
0
0

) , then lim
𝑛→∞

(

𝑝𝑛
𝑞𝑛
𝑟𝑛
𝑠𝑛

) = (

0
0
0
0

). 

Proof. For 𝐴 = 04 ∈ 𝑀(4,4), (2) is rewritten with 

𝑛 = 𝑘 and summing the inequalities obtained for 

𝑘 = 0,1,2, … ,𝑛. Then, the following is obtained if 

𝜂, 𝜀, 𝛿, 𝛾 are nonnegative. 

(

𝑝𝑛+1
𝑞𝑛+1
𝑟𝑛+1
𝑠𝑛+1

) ≤ 𝐴𝑛+1. (

𝑝0
𝑞0
𝑟0
𝑠0

) +∑𝐴𝑘
𝑛

𝑘=0

(

𝜂𝑛−𝑘
𝜀𝑛−𝑘
𝛿𝑛−𝑘
𝛾𝑛−𝑘

) , 𝑛

≥ 0,                                                            (3) 

From condition (ii), it follows that the sequences 

of partial sums{Η𝑛},{Ε𝑛},{Δ𝑛},{Γ𝑛} are given 

respectively by Η𝑛 = 𝜂0 + 𝜂1 +⋯+ 𝜂𝑛,Ε𝑛 =

𝜀0 + 𝜀1 +⋯+ 𝜀𝑛,Δ𝑛 = 𝛿0 + 𝛿1 +⋯+ 𝛿𝑛, and 

Γ𝑛 = 𝛾0 + 𝛾1 +⋯+ 𝛾𝑛, for 𝑛 ≥ 0, converge 

respectively to some Η𝑛 ≥ 0,Ε𝑛 ≥ 0,Δ𝑛 ≥ 0, and 

Γ𝑛 ≥ 0 and hence, they are bounded. 

Let 𝑀 > 0 be such that 

(

Η𝑛
Ε𝑛
Δ𝑛
Γ𝑛

) ≤ 𝑀.(

1
1
1
1

) ,   ∀  𝑛 ≥ 0. 

By condition (ii), then ∀𝑒 > 0, there exists 𝑁 =

𝑁(𝑒) such that 𝐴𝑛 ≤
𝑒

2𝑀
. 𝐼4,∀𝑛 ≥ 𝑁,  𝑀 > 0. 

Write 
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∑𝐴𝑘
𝑛

𝑘=0

(

𝜂𝑛−𝑘
𝜀𝑛−𝑘
𝛿𝑛−𝑘
𝛾𝑛−𝑘

)

= 𝐴𝑛 (

𝜂0
𝜀0
𝛿0
𝛾0

)+⋯+ 𝐴𝑁 (

𝜂𝑛−𝑁
𝜀𝑛−𝑁
𝛿𝑛−𝑁
𝛾𝑛−𝑁

)

+ 𝐴𝑁−1(

𝜂𝑛−𝑁+1
𝜀𝑛−𝑁+1
𝛿𝑛−𝑁+1
𝛾𝑛−𝑁+1

)+⋯

+ 𝐼4(

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

) 

But 

𝐴𝑛(

𝜂0
𝜀0
𝛿0
𝛾0

) +⋯+ 𝐴𝑁 (

𝜂𝑛−𝑁
𝜀𝑛−𝑁
𝛿𝑛−𝑁
𝛾𝑛−𝑁

)

≤
𝑒

2𝑀
. 𝐼4 [(

𝜂0
𝜀0
𝛿0
𝛾0

) +⋯

+(

𝜂𝑛−𝑁
𝜀𝑛−𝑁
𝛿𝑛−𝑁
𝛾𝑛−𝑁

)] 

 

=
𝑒

2𝑀
. 𝐼4(

Η𝑛−𝑁
Ε𝑛−𝑁
Δ𝑛−𝑁
Γ𝑛−𝑁

) ≤
𝑒

2𝑀
. 𝐼4. 𝑀 (

1
1
1
1

)

=
𝑒

2
(

1
1
1
1

) , ∀ 𝑛 ≥ 𝑁. 

On the other hand, let 𝑆 = 𝑚𝑎𝑥{𝐼4, 𝐴, … ,𝐴
𝑁−1}, 

the following is obtained 

𝐴𝑁−1(

𝜂𝑛−𝑁+1
𝜀𝑛−𝑁+1
𝛿𝑛−𝑁+1
𝛾𝑛−𝑁+1

)+⋯+ 𝐼4(

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

)

≤ 𝑆 [(

𝜂𝑛−𝑁+1
𝜀𝑛−𝑁+1
𝛿𝑛−𝑁+1
𝛾𝑛−𝑁+1

)+⋯+(

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

)] 

 

= 𝑆(

Η𝑛 − Η𝑛−𝑁
Ε𝑛 − Ε𝑛−𝑁
Δ𝑛 − Δ𝑛−𝑁
Γ𝑛 − Γ𝑛−𝑁

). 

Since 𝑁 is fixed, then lim
𝑛→∞

Η𝑛 = lim
𝑛→∞

Η𝑛−𝑁 =

Η , lim
𝑛→∞

Ε𝑛 = lim
𝑛→∞

Ε𝑛−𝑁 = Ε , lim
𝑛→∞

Δ𝑛 =

lim
𝑛→∞

Δ𝑛−𝑁 = Δ , lim
𝑛→∞

Γ𝑛 = lim
𝑛→∞

Γ𝑛−𝑁 = Γ , which 

shows that there exists a positive integer 𝑘 such 

that 

𝑆(

Η𝑛 − Η𝑛−𝑁
Ε𝑛 − Ε𝑛−𝑁
Δ𝑛 − Δ𝑛−𝑁
Γ𝑛 − Γ𝑛−𝑁

) <
𝑒

2
(

1
1
1
1

) , ∀ 𝑛 ≥ 𝑘. 

Now, for 𝑚 = 𝑚𝑎𝑥{𝑘,𝑁}, the following is gotten 

𝐴𝑛(

𝜂0
𝜀0
𝛿0
𝛾0

) +⋯+ 𝐼4(

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

) < 𝑒(

1
1
1
1

) , ∀ 𝑛 ≥ 𝑚, 

and therefore, lim
𝑛→∞

∑ 𝐴𝑘𝑛
𝑘=0 (

𝜂𝑛−𝑘
𝜀𝑛−𝑘
𝛿𝑛−𝑘
𝛾𝑛−𝑘

) = 0. 

Now, letting limit in (3), as lim
𝑛→∞

𝐴𝑛 = 04, then 

lim
𝑛→∞

(

𝑝𝑛
𝑞𝑛
𝑟𝑛
𝑠𝑛

) = (

0
0
0
0

) , 

as required. 
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MAIN RESUTS 

Definition 4. Let (𝑋,𝑑) be a metric space and 

𝑇: 𝑋4 → 𝑋 be a mapping. For (𝑢0,𝑣0,𝑤0,𝑥0) ∈ 𝑋
4 

the sequence {(𝑢𝑛,𝑣𝑛,𝑤𝑛,𝑥𝑛)} ⊂ 𝑋
4 defined by 

𝑢𝑛+1 = 𝑇(𝑢𝑛,𝑣𝑛,𝑤𝑛,𝑥𝑛),  𝑣𝑛+1
= 𝑇(𝑣𝑛,𝑢𝑛,𝑣𝑛,𝑥𝑛),  𝑤𝑛+1
= 𝑇(𝑤𝑛,𝑢𝑛,𝑣𝑛,𝑤𝑛), 𝑥𝑛+1
= 𝑇(𝑥𝑛, 𝑤𝑛, 𝑣𝑛, 𝑢𝑛)                                       (4) 

with 𝑛 = 0,1,2, … , is the quadrupled fixed point 

iterative procedure. 

Definition 5. Let (𝑋,𝑑) be a complete metric 

space and 

𝐹𝑖𝑥𝑡(𝑇) = {(𝑢
∗,𝑣∗,𝑤∗,𝑥∗)
∈ 𝑋4  𝑇(𝑢∗,𝑣∗,𝑤∗,𝑥∗)⁄
= 𝑢∗, 𝑇(𝑣∗,𝑢∗,𝑣∗,𝑥∗)
= 𝑣∗, 𝑇(𝑤∗,𝑢∗,𝑣∗,𝑤∗)
= 𝑤∗,𝑇(𝑥∗,𝑤∗,𝑣∗,𝑢∗) = 𝑥∗} 

is the set of quadrupled fixed point of 𝑇. 
Definition 6. Let {(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛)} ⊂ 𝑋

4 be an 

arbitrary sequence. For all 𝑛 = 0,1,2, … setting 

𝜂𝑛 = 𝑑(𝑝𝑛+1,𝑇(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛)), 𝜀𝑛 = 𝑑(𝑞𝑛+1, =

,𝑇(𝑞𝑛,𝑝𝑛,𝑞𝑛,𝑠𝑛)), 𝛿𝑛 =

𝑑(𝑟𝑛+1,𝑇(𝑟𝑛,𝑝𝑛,𝑞𝑛,𝑟𝑛)), 𝛾𝑛 =

𝑑(𝑠𝑛+1,𝑇(𝑠𝑛,𝑟𝑛,𝑞𝑛,𝑝𝑛)). 
Then, the quadrupled fixed point iterative 

procedure defined by (4) is 𝑇 −stable or stable 

with respect to 𝑇, if and only if 

lim
𝑛→∞

(𝜂𝑛, 𝜀𝑛,𝛿𝑛,𝛾𝑛) = 0ℝ4 implies that 

lim
𝑛→∞

(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛) = (𝑢
∗,𝑣∗,𝑤∗,𝑥∗). 

Theorem 1. Let (𝑋, ≤) be a partially ordered set 

and suppose there is a metric 𝑑 on 𝑋 such that the 

pair (𝑋,𝑑) is a complete metric space. Let 

𝑇: 𝑋4 → 𝑋 be a continuous mapping having the 

mixed monotone property on 𝑋 and satisfying (1). 

If there exist 𝑢0,𝑣0,𝑤0,𝑥0 ∈ 𝑋 such that 𝑢0 ≤
𝑇(𝑢0,𝑣0,𝑤0,𝑥0),𝑣0 ≥ 𝑇(𝑣0,𝑢0,𝑣0,𝑥0),𝑤0 ≤
𝑇(𝑤0,𝑢0,𝑣0,𝑤0), and 𝑥0 ≥ 𝑇(𝑥0,𝑤0,𝑣0,𝑢0), then 

there exist𝑢∗,𝑣∗,𝑤∗,𝑥∗ ∈ 𝑋 such that𝑢∗ =
𝑇(𝑢∗,𝑣∗,𝑤∗,𝑥∗),𝑣∗ = 𝑇(𝑣∗,𝑢∗,𝑣∗,𝑥∗),𝑤∗ =
𝑇(𝑤∗,𝑢∗,𝑣∗,𝑤∗), and 𝑥∗ = 𝑇(𝑥∗,𝑤∗,𝑣∗,𝑢∗). 
Assuming that for every 

(𝑢,𝑣,𝑤,𝑥), (𝑢1,𝑣1,𝑤1,𝑥1) ∈ 𝑋
4, there 

exist(𝑝,𝑞,𝑟,𝑠) ∈ 𝑋4 that is comparable to 

(𝑢,𝑣,𝑤,𝑥) and (𝑢1,𝑣1,𝑤1,𝑥1). For (𝑢0,𝑣0,𝑤0,𝑥0) ∈
𝑋4, let {(𝑢𝑛,𝑣𝑛,𝑤𝑛,𝑥𝑛)} ⊂ 𝑋

4 be the quadrupled 

fixed point iterative procedure defined by (4). 

Then, the quadrupled fixed point iterative 

procedure is stable with respect to 𝑇. 
Proof. 

Let {(𝑢𝑛,𝑣𝑛,𝑤𝑛,𝑥𝑛)} ⊂ 𝑋
4,  𝜂𝑛 =

𝑑(𝑝𝑛+1,𝑇(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛)),   𝜀𝑛 =

𝑑(𝑞𝑛+1,𝑇(𝑞𝑛,𝑝𝑛,𝑞𝑛,𝑠𝑛)), 𝛿𝑛 =

𝑑(𝑟𝑛+1,𝑇(𝑟𝑛,𝑝𝑛,𝑞𝑛,𝑟𝑛)),  𝑎𝑛𝑑  𝛾𝑛 =

𝑑(𝑠𝑛+1,𝑇(𝑠𝑛,𝑟𝑛,𝑞𝑛,𝑝𝑛)). 

Assume also that lim
𝑛→∞

𝜂𝑛 = lim𝜀𝑛
𝑛→∞

= lim
𝑛→∞

𝛿𝑛 =

lim
𝑛→∞

𝛾𝑛 = 0, 

in order to establish that lim
𝑛→∞

𝑝𝑛 = 𝑢
∗, lim
𝑛→∞

𝑞𝑛 =

𝑣∗, lim
𝑛→∞

𝑟𝑛 = 𝑤
∗, and lim

𝑛→∞
𝑠𝑛 = 𝑥

∗. 

Therefore, using the (𝜗,𝜅,𝜆,𝜇) −contraction 

condition (1), the following is obtained 

𝑑(𝑝𝑛+1,𝑢
∗)

≤ 𝑑(𝑝𝑛+1,𝑇(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛))

+ 𝑑(𝑇(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛),𝑢
∗)

= 𝑑(𝑇(𝑝𝑛,𝑞𝑛,𝑟𝑛,𝑠𝑛),𝑇(𝑢
∗,𝑣∗,𝑤∗,𝑥∗)) + 𝜂𝑛 

≤ 𝜗𝑑(𝑝𝑛,𝑢
∗) + 𝜅𝑑(𝑞𝑛,𝑣

∗) + 𝜆𝑑(𝑟𝑛,𝑤
∗)

+ 𝜇𝑑(𝑠𝑛,𝑥
∗) + 𝜂𝑛,                   (5) 

𝑑(𝑞𝑛+1,𝑣
∗) ≤ 𝑑(𝑞𝑛+1,𝑇(𝑞𝑛,𝑝𝑛,𝑞𝑛,𝑠𝑛))

+ 𝑑(𝑇(𝑞𝑛,𝑝𝑛,𝑞𝑛,𝑠𝑛),𝑣
∗) 

= 𝑑(𝑇(𝑞𝑛,𝑝𝑛,𝑞𝑛,𝑠𝑛),𝑇(𝑣
∗,𝑢∗,𝑣∗,𝑥∗)) + 𝜂𝑛 

≤ 𝜗𝑑(𝑝𝑛,𝑢
∗) + 𝜅𝑑(𝑞𝑛,𝑣

∗) + 𝜆𝑑(𝑟𝑛,𝑤
∗)

+ 𝜇𝑑(𝑠𝑛,𝑥
∗) + 𝜀𝑛 

= (𝜗 + 𝜆)𝑑(𝑞𝑛,𝑣
∗) + 𝜅𝑑(𝑝𝑛,𝑢

∗) + 𝜇𝑑(𝑠𝑛,𝑥
∗)

+ 𝜀𝑛 

= 𝜅𝑑(𝑝𝑛,𝑢
∗) + (𝜗 + 𝜆)𝑑(𝑞𝑛,𝑣

∗) + 𝜇𝑑(𝑠𝑛,𝑥
∗)

+ 𝜀𝑛                                (6) 

𝑑(𝑟𝑛+1,𝑤
∗) ≤ 𝑑(𝑟𝑛+1,𝑇(𝑟𝑛,𝑝𝑛,𝑞𝑛,𝑟𝑛))

+ 𝑑(𝑇(𝑟𝑛,𝑝𝑛,𝑞𝑛,𝑟𝑛),𝑤
∗) 

= 𝑑(𝑇(𝑟𝑛,𝑝𝑛,𝑞𝑛,𝑟𝑛),𝑇(𝑤
∗,𝑢∗,𝑣∗,𝑤∗)) + 𝛿𝑛 

≤ 𝜗𝑑(𝑟𝑛,𝑤
∗) + 𝜅𝑑(𝑝𝑛,𝑢

∗) + 𝜆𝑑(𝑞𝑛,𝑣
∗)

+ 𝜇𝑑(𝑟𝑛,𝑤
∗) + 𝛿𝑛 

= 𝜅𝑑(𝑝𝑛,𝑢
∗) + 𝜆𝑑(𝑞𝑛,𝑣

∗) + (𝜗 + 𝜇)𝑑(𝑟𝑛,𝑤
∗)

+ 𝛿𝑛                                      (7) 

𝑑(𝑠𝑛+1,𝑥
∗) ≤ 𝑑(𝑠𝑛+1,𝑇(𝑠𝑛,𝑟𝑛,𝑞𝑛,𝑝𝑛))

+ 𝑑(𝑇(𝑠𝑛,𝑟𝑛,𝑞𝑛,𝑝𝑛),𝑥
∗) 

= 𝑑(𝑇(𝑠𝑛,𝑟𝑛,𝑞𝑛,𝑝𝑛),𝑇(𝑥
∗,𝑤∗,𝑣∗,𝑢∗)) + 𝛾𝑛 

≤ 𝜗𝑑(𝑠𝑛,𝑥
∗) + 𝜅𝑑(𝑟𝑛,𝑤

∗) + 𝜆𝑑(𝑞𝑛,𝑣
∗)

+ 𝜇𝑑(𝑝𝑛,𝑢
∗) + 𝛾𝑛 

= 𝜇𝑑(𝑝𝑛,𝑢
∗) + 𝜆𝑑(𝑞𝑛,𝑣

∗) + 𝜅𝑑(𝑟𝑛,𝑤
∗)

+ 𝜗𝑑(𝑠𝑛,𝑥
∗)

+ 𝛾𝑛                         (8) 



Iranian Journal of Optimization, 13(4), 231-239, December 2021    

 

236  
 

Samuel Adamariko / Stability and Iterative Procedures… 

/ Presenting a Mathematical … 
From (5)-(8), the following is obtain 

(

 

𝑑(𝑝𝑛+1,𝑢
∗)

𝑑(𝑞𝑛+1,𝑣
∗)

𝑑(𝑟𝑛+1,𝑤
∗)

𝑑(𝑠𝑛+1,𝑥
∗))

 

≤ (

𝜗 𝜅 𝜆 𝜇
𝜅 𝜗 + 𝜆 0 𝜇
𝜅
𝜇

𝜆
𝜆

𝜗 + 𝜇
𝜅

0
𝜗

) .

(

 

𝑑(𝑝𝑛,𝑢
∗)

𝑑(𝑞𝑛,𝑣
∗)

𝑑(𝑟𝑛,𝑤
∗)

𝑑(𝑠𝑛,𝑥
∗))

 

+ (

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

). 

Denote   𝐴 = (

𝜗 𝜅 𝜆 𝜇
𝜅 𝜗 + 𝜆 0 𝜇
𝜅
𝜇

𝜆
𝜆

𝜗 + 𝜇
𝜅

0
𝜗

) , where 

0 ≤ 𝜗 +  𝜅 + 𝜆 + 𝜇 < 1 as in (1). 

In order to apply Lemma 2, we need that 𝐴𝑛 → 0 

as 𝑛 → ∞. 
As a way of simplification, denote 

𝐴 = (

𝑎1 𝑏1 𝑐1 𝑑1
𝑒1 𝑓1 𝑔1 ℎ1
𝑖1
𝑚1

𝑗1
𝑛1

𝑘1
𝑝1

𝑙1
𝑞1

) , 

where 

𝑎1 + 𝑏1 + 𝑐1 + 𝑑1 = 𝑒1 + 𝑓1 + 𝑔1 + ℎ1
= 𝑖1 + 𝑗1 + 𝑘1 + 𝑙1 = 𝑚1 + 𝑛1 + 𝑝1 + 𝑞1
= 𝜗 +  𝜅 + 𝜆 + 𝜇
< 1,                                                                       (9) 

Then 

 

 

 

 

 

 

 

 

 

where 

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 𝑒2 + 𝑓2 + 𝑔2 + ℎ2
= 𝑖2 + 𝑗2 + 𝑘2 + 𝑙2
= 𝑚2 + 𝑛2 + 𝑝2 + 𝑞2
= 𝜗2 + 𝜅2 + 𝜆2 + 𝜇2 + 2𝜗𝜅
+ 2𝜗𝜆 + 2𝜗𝜇 + 2𝜅𝜆 + 2𝜆𝜇
+ 2𝜅𝜇 

= (𝜗 +  𝜅 + 𝜆 + 𝜇)2 < 𝜗 +  𝜅 + 𝜆 + 𝜇
< 1                                      (10) 

Now, proving by induction that 

 

𝐴𝑛 = (

𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛
𝑒𝑛 𝑓𝑛 𝑔𝑛 ℎ𝑛
𝑖𝑛
𝑚𝑛

𝑗𝑛
𝑛𝑛

𝑘𝑛
𝑝𝑛

𝑙𝑛
𝑞𝑛

) , 

where 

𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 + 𝑑𝑛 = 𝑒𝑛 + 𝑓𝑛 + 𝑔𝑛 + ℎ𝑛
= 𝑖𝑛 + 𝑗𝑛 + 𝑘𝑛 + 𝑙𝑛
= 𝑚𝑛 + 𝑛𝑛 + 𝑝𝑛 + 𝑞𝑛 

= (𝜗 +  𝜅 + 𝜆 + 𝜇)𝑛 < 𝜗 +  𝜅 + 𝜆 + 𝜇
< 1        (11) 

Assume that (11) is true, then 

𝐴𝑛+1 = 𝐴𝑛. 𝐴 

= (

𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛
𝑒𝑛 𝑓𝑛 𝑔𝑛 ℎ𝑛
𝑖𝑛
𝑚𝑛

𝑗𝑛
𝑛𝑛

𝑘𝑛
𝑝𝑛

𝑙𝑛
𝑞𝑛

)

∙ (

𝜗 𝜅 𝜆 𝜇
𝜅 𝜗 + 𝜆 0 𝜇
𝜅
𝜇

𝜆
𝜆

𝜗 + 𝜇
𝜅

0
𝜗

) 

Then 

𝑎𝑛+1 + 𝑏𝑛+1 + 𝑐𝑛+1 + 𝑑𝑛+1
= 𝑎𝑛𝜗 + 𝑏𝑛𝜅 + 𝑐𝑛𝜅 + 𝑑𝑛𝜇
+ 𝑎𝑛𝜅 + 𝑏𝑛(𝜗 + 𝜆) + 𝑐𝑛𝜆 + 𝑑𝑛𝜆
+ 𝑎𝑛𝜆 + 𝑐𝑛(𝜗 + 𝜇) + 𝑑𝑛𝜅 + 𝑎𝑛𝜇
+ 𝑏𝑛𝜇 + 𝑑𝑛𝜗 

= 𝑎𝑛(𝜗 + 𝜅 + 𝜆 + 𝜇) + 𝑏𝑛(𝜗 + 𝜅 + 𝜆 + 𝜇)
+ 𝑐𝑛(𝜗 + 𝜅 + 𝜆 + 𝜇)
+ 𝑑𝑛(𝜗 + 𝜅 + 𝜆 + 𝜇) 

= (𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 + 𝑑𝑛)(𝜗 + 𝜅 + 𝜆 + 𝜇) 
= (𝜗 + 𝜅 + 𝜆 + 𝜇)𝑛(𝜗 + 𝜅 + 𝜆 + 𝜇) 

= (𝜗 + 𝜅 + 𝜆 + 𝜇)𝑛+1 
< 𝜗 + 𝜅 + 𝜆 + 𝜇 < 1, 

similarly, 

𝑒𝑛+1 + 𝑓𝑛+1 + 𝑔𝑛+1 + ℎ𝑛+1
= 𝑖𝑛+1 + 𝑗𝑛+1 + 𝑘𝑛+1 + 𝑙𝑛+1
= 𝑚𝑛+1 + 𝑛𝑛+1 + 𝑝𝑛+1 + 𝑞𝑛+1
= (𝜗 + 𝜅 + 𝜆 + 𝜇)𝑛+1 

< 𝜗 + 𝜅 + 𝜆 + 𝜇 < 1. 
Therefore, lim

𝑛→∞
𝐴𝑛 = 04, and having satisfying the 

conditions of the hypothesis of Lemma 2, on 

applying we get  

 



Iranian Journal of Optimization, 13(4), 231-239, December 2021    

 

237  
    

Samuel Adamariko / Stability and Iterative Procedures… 

lim
𝑛→∞

(

𝑝𝑛
𝑞𝑛
𝑟𝑛
𝑠𝑛

) = (

𝑢∗

𝑣∗

𝑤∗

𝑥∗

) , 

So the quadrupled fixed point iteration procedure 

defined by (4) is 𝑇 −stable or stable with respect 

to its operator. 

Corollary 1. Let (𝑋, ≤) be a partially ordered set 

and suppose there is a metric 𝑑 on 𝑋 such that the 

pair (𝑋,𝑑) is a complete metric space. Let 

𝑇: 𝑋4 → 𝑋 be a continuous mapping having the 

mixed monotone property on 𝑋. 
There existℎ ∈ [0,1) such that 𝑇 satisfies the 

following contraction condition 

𝑑(𝑇(𝑢,𝑣,𝑤,𝑥),𝑇(𝑝,𝑞,𝑟,𝑠))

≤
ℎ

4
(𝑑(𝑢,𝑝) + 𝑑(𝑣,𝑞) + 𝑑(𝑤,𝑟)

+ 𝑑(𝑥,𝑠)),                            (12) 
for each 𝑢,𝑣,𝑤,𝑥,𝑝,𝑞,𝑟,𝑠 ∈ 𝑋, with 𝑢 ≥ 𝑝, 𝑣 ≤
𝑞, 𝑤 ≥ 𝑟, 𝑥 ≤ 𝑠.If there exists 𝑢0,𝑣0,𝑤0,𝑥0 ∈ 𝑋 

such that 𝑢0 ≤ 𝑇(𝑢0,𝑣0,𝑤0,𝑥0),𝑣0 ≥
𝑇(𝑣0,𝑢0,𝑣0,𝑥0),𝑤0 ≤ 𝑇(𝑤0,𝑢0,𝑣0,𝑤0), and 𝑥0 ≥
𝑇(𝑥0,𝑤0,𝑣0,𝑢0), then there exists 𝑢∗,𝑣∗,𝑤∗,𝑥∗ ∈ 𝑋 

such that 𝑢∗ = 𝑇(𝑢∗,𝑣∗,𝑤∗,𝑥∗),𝑣∗ =
𝑇(𝑣∗,𝑢∗,𝑣∗,𝑥∗),𝑤∗ = 𝑇(𝑤∗,𝑢∗,𝑣∗,𝑤∗), and 𝑥∗ =
𝑇(𝑥∗,𝑤∗,𝑣∗,𝑢∗).  Assuming that for every 
(𝑢,𝑣,𝑤,𝑥), (𝑢1,𝑣1,𝑤1,𝑥1) ∈ 𝑋

4, there exists 

(𝑝,𝑞,𝑟,𝑠) ∈ 𝑋4 that is comparable to (𝑢,𝑣,𝑤,𝑥) 
and (𝑢1,𝑣1,𝑤1,𝑥1). For (𝑢0,𝑣0,𝑤0,𝑥0) ∈ 𝑋

4, let 

{(𝑢𝑛,𝑣𝑛,𝑤𝑛,𝑥𝑛)} ⊂ 𝑋
4 be the quadrupled fixed 

point iterative procedure defined by (4). Then, the 

quadrupled fixed point iterative procedure is 

stable with respect to 𝑇. 
Proof. Applying Theorem 1 for 𝜗 = 𝜅 = 𝜆 =

𝜇 =
ℎ

4
 

The following is obtained on using the contraction 

condition (1), 

𝑑(𝑝𝑛+1,𝑢
∗) ≤

ℎ

4
𝑑(𝑝𝑛,𝑢

∗) +
ℎ

4
𝑑(𝑞𝑛,𝑣

∗)

+
ℎ

4
𝑑(𝑟𝑛,𝑤

∗) +
ℎ

4
𝑑(𝑠𝑛,𝑥

∗)

+ 𝜂𝑛,                   (13) 
𝑑(𝑞𝑛+1,𝑣

∗)

≤
ℎ

4
𝑑(𝑝𝑛,𝑢

∗) +
ℎ

2
𝑑(𝑞𝑛,𝑣

∗) +
ℎ

4
𝑑(𝑠𝑛,𝑥

∗)

+ 𝜀𝑛                                              (14) 

𝑑(𝑟𝑛+1,𝑤
∗)

≤
ℎ

4
𝑑(𝑝𝑛,𝑢

∗) +
ℎ

4
𝑑(𝑞𝑛,𝑣

∗) +
ℎ

2
𝑑(𝑟𝑛,𝑤

∗)

+ 𝛿𝑛                                             (15) 

𝑑(𝑠𝑛+1,𝑥
∗) ≤

ℎ

4
𝑑(𝑝𝑛,𝑢

∗) +
ℎ

4
𝑑(𝑞𝑛,𝑣

∗)

+
ℎ

4
𝑑(𝑟𝑛,𝑤

∗) +
ℎ

4
𝑑(𝑠𝑛,𝑥

∗)

+ 𝛾𝑛                    (16) 
From (13)-(16), the following is obtain 

(

 

𝑑(𝑝𝑛+1,𝑢
∗)

𝑑(𝑞𝑛+1,𝑣
∗)

𝑑(𝑟𝑛+1,𝑤
∗)

𝑑(𝑠𝑛+1,𝑥
∗))

 

≤

(

 
 
 
 
 
 

ℎ

4

ℎ

4

ℎ

4

ℎ

4
ℎ

4

ℎ

2
0

ℎ

4
ℎ

4
ℎ

4

ℎ

4
ℎ

4

ℎ

2
ℎ

4

0
ℎ

4
)

 
 
 
 
 
 

.

(

 

𝑑(𝑝𝑛,𝑢
∗)

𝑑(𝑞𝑛,𝑣
∗)

𝑑(𝑟𝑛,𝑤
∗)

𝑑(𝑠𝑛,𝑥
∗))

 

+ (

𝜂𝑛
𝜀𝑛
𝛿𝑛
𝛾𝑛

). 

 

Denote   𝐴 =

(

 
 
 
 

ℎ

4

ℎ

4

ℎ

4

ℎ

4
ℎ

4

ℎ

2
0

ℎ

4
ℎ

4
ℎ

4

ℎ

4
ℎ

4

ℎ

2
ℎ

4

0
ℎ

4)

 
 
 
 

, where 0 ≤ ℎ < 1 

as in (1). 

Applying Lemma 2, need that 𝐴𝑛 → 0 as 𝑛 → ∞. 
As a way of simplification, denote 

 

𝐴 = (

𝑎1 𝑏1 𝑐1 𝑑1
𝑒1 𝑓1 𝑔1 ℎ1
𝑖1
𝑚1

𝑗1
𝑛1

𝑘1
𝑝1

𝑙1
𝑞1

) , 

where 

𝑎1 + 𝑏1 + 𝑐1 + 𝑑1 = 𝑒1 + 𝑓1 + 𝑔1 + ℎ1
= 𝑖1 + 𝑗1 + 𝑘1 + 𝑙1
= 𝑚1 + 𝑛1 + 𝑝1 + 𝑞1 = ℎ < 1,  

then 
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𝐴2 =

(

 
 
 
 
 
 

ℎ2

4

5ℎ2

16

ℎ2

4

3ℎ2

16
ℎ2

4

3ℎ2

8

ℎ2

8

ℎ2

4
ℎ2

4
ℎ2

4

5ℎ2

16
5ℎ2

16

5ℎ2

16
ℎ2

4

ℎ2

8
3ℎ2

16 )

 
 
 
 
 
 

= (

𝑎2 𝑏2 𝑐2 𝑑2
𝑒2 𝑓2 𝑔2 ℎ2
𝑖2
𝑚2

𝑗2
𝑛2

𝑘2
𝑝2

𝑙2
𝑞2

) , 

 

where 

𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 𝑒2 + 𝑓2 + 𝑔2 + ℎ2
= 𝑖2 + 𝑗2 + 𝑘2 + 𝑙2
= 𝑚2 + 𝑛2 + 𝑝2 + 𝑞2 = ℎ

2 < ℎ
< 1  

Now, proving by induction that 

𝐴𝑛 = (

𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛
𝑒𝑛 𝑓𝑛 𝑔𝑛 ℎ𝑛
𝑖𝑛
𝑚𝑛

𝑗𝑛
𝑛𝑛

𝑘𝑛
𝑝𝑛

𝑙𝑛
𝑞𝑛

) ,  

where 

𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 + 𝑑𝑛 = 𝑒𝑛 + 𝑓𝑛 + 𝑔𝑛 + ℎ𝑛
= 𝑖𝑛 + 𝑗𝑛 + 𝑘𝑛 + 𝑙𝑛 = 𝑚𝑛 + 𝑛𝑛 + 𝑝𝑛 + 𝑞𝑛
= ℎ𝑛 < ℎ
< 1                                                         (17) 

Assuming that (17) is true for 𝑛, then 

𝐴𝑛+1

= (

𝑎𝑛 𝑏𝑛 𝑐𝑛 𝑑𝑛
𝑒𝑛 𝑓𝑛 𝑔𝑛 ℎ𝑛
𝑖𝑛
𝑚𝑛

𝑗𝑛
𝑛𝑛

𝑘𝑛
𝑝𝑛

𝑙𝑛
𝑞𝑛

) .

(

 
 
 
 
 
 

ℎ

4

ℎ

4

ℎ

4

ℎ

4
ℎ

4

ℎ

2
0

ℎ

4
ℎ

4
ℎ

4

ℎ

4
ℎ

4

ℎ

2
ℎ

4

0
ℎ

4
)

 
 
 
 
 
 

, 

we have 

𝑎𝑛+1 + 𝑏𝑛+1 + 𝑐𝑛+1 + 𝑑𝑛+1
= 𝑒𝑛+1 + 𝑓𝑛+1 + 𝑔𝑛+1 + ℎ𝑛+1
= 𝑖𝑛+1 + 𝑗𝑛+1 + 𝑘𝑛+1 + 𝑙𝑛+1
= 𝑚𝑛+1 + 𝑛𝑛+1 + 𝑝𝑛+1 + 𝑞𝑛+1 

=
ℎ

4
(𝑎𝑛 + 𝑏𝑛 + 𝑐𝑛 + 𝑑𝑛)

+
ℎ

4
(𝑒𝑛 + 𝑓𝑛 + 𝑔𝑛 + ℎ𝑛)

+
ℎ

4
(𝑖𝑛 + 𝑗𝑛 + 𝑘𝑛 + 𝑙𝑛)

+
ℎ

4
(𝑚𝑛 + 𝑛𝑛 + 𝑝𝑛 + 𝑞𝑛)

=
ℎ

4
(ℎ𝑛 + ℎ𝑛 + ℎ𝑛 + ℎ𝑛)

= ℎ𝑛+1 < ℎ < 1. 
Therefore, lim

𝑛→∞
𝐴𝑛 = 04 and now having satisfied 

the conditions of Lemma 2, then 

lim
𝑛→∞

(

𝑝𝑛
𝑞𝑛
𝑟𝑛
𝑠𝑛

) = (

𝑢∗

𝑣∗

𝑤∗

𝑥∗

) , 

which shows that the quadrupled fixed point 

iteration procedure defined by (4) is 𝑇 −stable. 

CONCLUSION 

   This study shows that the quadrupled iterative 

fixed point method for contractile-type mapping 

in a partially ordered metric space with mixed 

monotonic properties is stable. This result is a 

continuation of the results of Timis (2014), from 

triple fixed point stability to quadrupled fixed 

point satisfying various contractive conditions. 
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