
*Correspondence E_mail: alalinezhad@gmail.com 

Control Chart Recognition Patterns Using Fuzzy    
Rule-Based System

1 Associate Professor, Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin 
Branch, Islamic Azad University, Qazvin, Iran 
2 Department of Industrial Engineering, Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad 
University, Qazvin, Iran

Alireza Alinezhad1* and Ali Taherinezhad2

Abstract 
Control Chart Patterns (CCPs) recognition is one the most important 
concepts in control chart application. Relating the patterns exhibited 
on the control chart to assignable causes is an ambiguous and vague 
task especially when multiple patterns co-exist. In this study, a fuzzy 
rule-based system is developed for X ̅ control charts to prioritize the 
control chart causes based on the accumulated evidence. To demon-
strate the reasonable performance of the proposed fuzzy rule-based 
system, the case studies are performed and the results are analyzed.
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INTRODUCTION 
Statistical Process Control (SPC) techniques 

have been widely used for many years to control 
the quality characteristic of a process. These 
techniques are not limited to their context. Many 
statistical process control techniques have the po-
tential to be developed with separate research in 
other fields, such as Data Envelopment Analysis 
(Alinezhad, Makui, & Kiani Mavi, 2007; Mir-
mozaffari, & Alinezhad, 2017), Supply Chain 
(Sarrafha, Kazemi, & Alinezhad, 2014), etc., 
which has been researched in recent years (Jain, 
Triantis, & Liu, 2011; Metzner et al., 2019). SPC 
techniques have played a crucial role in process 
monitoring and quality control since the 1920s 
(Lu, Wang, & Dai, 2020). Statistical process con-
trol chart or control charts are the representation 
of a process in the form of a graph. It shows how 
a process changes over time. Control charts are 
used to routinely monitor quality of a process. 
Typically, A single quality characteristics is cal-
culated and plotted in the control chart with re-
spect to the sample number or time (Chowdhury, 
& Janan, 2020).  Statistical signals in science of 
SPC are able to find variations in manufacturing 
process, recognize the source of variation, effi-
ciency development and to keeping the process 
in a highlevel quality. As a signifcant tool for the 
SPC a control chart plays an important role in the 
manufacturing quality control, wherein it is 
widely used to monitor whether the machining 
process is in control or not (Zan et al., 2020). 
Control chart, as a primary tool in statistical 
process control, is utilized to monitor the produc-
tion process in complex manufacturing and serv-
ice industries. It is built on the statistical 
hypothesis test principle, recording and monitor-
ing the production process by the fuctuations of 
the main quality characteristics. Control chart 
patterns (CCPs) recognition is benefcial to ex-
plore the causes of the abnormal patterns and de-
velop a corresponding treatment program (Zhang 
et al., 2020). Adequate recognition of CCPs is a 
crucial task since abnormal or irregular patterns 
displayed in a CCP collaborate with specific at-
tributable factors influencing the process (Kalteh, 
& Babouei, 2019). Control charts are one of the 
most practical tools in SPC that was first time 

proposed in 1920s by Shewhart. Control charts 
are used as a tool to monitor the variation of 
process. These variations have two causes: 1. 
Random causes and 2. Assignable causes that 
refer a specific reason in process that should be 
recognized and removed until variations remain 
between control limits. Abnormal patterns of 
Control chart can able to detect assignable cause 
variations. Western-Electric (1956) and Nelson 
rules (1984) are traditional sensitizing rules for 
checking abnormal pattern in control charts. Ex-
istences an abnormal pattern in control chart can 
be associated with specific assignable causes ad-
versely affecting the process stability and they 
must be recognized and removed (Montgomery, 
2015). Control charts are provided and per-
formed in two phases. In first phase data is gath-
ered from producing process and determined 
initial control limits. After depicting samples data 
in control charts, if the process was out of con-
trol, outward spots must be removed and new 
control limits calculated. In the second phase, 
final calculated control limits are used for con-
trolling process situation. In second phase, using 
sensitizing rules can reduce the probability of 
wrong alarms and Average Run Length (ARL). 
Each abnormal pattern in control charts has a set 
of separate assignable causes. Avoid using sensi-
tizing rules reduce ability of CCPs recognition. 

In practice cases, recognition of multiple CCPs 
simultaneously in a control chart and identify re-
lated assignable causes would be so difficult. 
However, recognition of abnormal CCPs is 
jointed with uncertainty and ambiguity There-
fore, quantifying the uncertainty to indicate the 
measure of each abnormal patterns and the de-
gree of each associated cause can be valuable for 
decision making. Because of that many re-
searchers suggested fuzzy logic for solving this 
problem in CCPs recognition area. Fuzzy logic 
presented in middle 1990s. 
 

RESEARCH BACKGROUND 
Kahraman et al. (1995) implemented triangular 

membership functions for defining different ab-
normal patterns. Zalila et al. (1998) proposed a 
fuzzy supervision method for SPC which by 
using visual signals alerts operators on the 
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process condition. They designed visual signals 
by using fuzzy logic. Tannock (2019) used two 
fuzzy sets namely centered fuzzy set and random 
fuzzy sets to recognize three common patterns 
namely shift, trend and cyclical pattern. Senturk 
and Erginel (2019) developed fuzzy control lim-
its in control charts (X ̅,R)  and (X ̅,S). Zarandi 
et al. (2018) increased sensitivity of control 
charts with using hybrid fuzzy sampling and run 
rules. In aforesaid research fuzzy logic was used 
for analyzing process condition by CCPs recog-
nition and detecting of source of assignable cause 
has not been considered. But it is valuable and 
important to diagnosis and prioritizes the assign-
able causes from the existence patterns in control 
charts. Hsu and Chen (2011) developed a hybrid 
method of fuzzy logic and genetic algorithm to 
identify source of assignable causes. Many re-
searches hybridized fuzzy logic and other con-
cepts such as artificial neural networks (ANNs) 
(Tontini, 1996; Tontini, 1998; Wang, & Row-
lands, 2017) in order to assignable cause diagno-
sis. Some research attempted to use 
Computational Intelligence techniques for CCPs 
recognition problem.  Lu et al (2018) hybridized 
independent component analysis (ICA) and Sup-
port Vector Machine (SVM) for CCPs recogni-
tion.  Du et al. (2019) developed a hybrid 
approach of integrating wavelet transform and 
improved particle swarm optimization-based 
support vector machine (P-SVM) for on-line 
recognition of CCPs. Ebrahimzadeh et al. (2013) 
proposed a hybrid intelligent method for CCPs 
recognition problem. Their method included the 
feature extraction module, the classifier module 
and optimization module modules.  Addeh et al. 
(2013) investigated an efficient system that in-
cludes feature extraction module and classifier 
module modules. And then a hybrid heuristic 
based on Cuckoo Optimization Algorithm (COA) 
algorithm to improve the generalization perform-
ance of the classifier was introduced. 
Ebrahimzadeh et al. (2018) used Control chart 
pattern recognition using K-MICA clustering and 
neural networks for CCPs recognition. Gu et al. 
(2015) proposed an approach based on Singular 
Spectrum Analysis (SSA) and learning vector 
quantization network to identify concurrent 

CCPs. Bag et al (2018) proposed an expert sys-
tem for CCPs recognition with using decision 
three techniques for extracting rules. 

ANNs are powerful tools for classifying data 
and pattern recognition. However, for applying 
them, large number of real data is required. 

As previous mentioned one of Shewhart con-
trol chart’s disadvantage was recognition of ab-
normal patterns from control charts and diagnosis 
source of assignable causes. In practice several 
abnormal patterns may exist simultaneously in a 
control chart, therefore CCPs recognition and in-
tensity estimation of each pattern hold in uncer-
tainty condition. As each CCP has own 
assignable causes, thus in order to reform process 
to in control state, estimation of each abnormal 
intensity is necessary. 

In this paper an integrated fuzzy system based 
on fuzzy rules for CCPs recognition is developed 
and prioritization of assignable causes is applied. 

 
RESEARCH METHODOLOGY 

When a process is in-control, depicted data in 
a control chart are following a random pattern 
based on a normal distribution. When a process 
is out-of-control, normal behavior of data on the 
chart change and some of abnormal patterns ap-
pear on the control chart. Following is the list of 
some remarkable ab normal patterns: 

1. Out of Control (OCL): One or more point 
falling beyond 3σ control limits. 

This is the conventional rule for concluding 
that process has gone out-of-control. For a nor-
mal distribution curve, 99.73% of all points fall 
within 3σ limits. Hence, the probability of a point 
falling beyond 3σ control limits is 0.0027. 

2. Freak: this pattern is divided into two parts. 
2.1. FR1: four out of five consecutive points 

fall beyond 1σ limit on the same side of the cen-
ter line. 

From the properties of normal distribution 
curve, the probability of observing a point be-
yond on 1σ is 0.16. Hence, the probability of ob-
serving four out of five consecutive points 
beyond 1σ is given by: 

Pr(4 out of 5 beyond 1σ)= 
5(0.16×0.16×0.16×0.16×0.84) 
=0.0028 

Iranian Journal of Optimization, 12(2), 149-160, December 2020 151

Alinezhad and Taherinezhad /Control Chart Recognition Patterns...



2.2. FR2: two out of three consecutive points 
fall beyond 2σ limits on the same side of center 
line. 

From the properties of normal distribution, the 
probability of observing one point beyond 2σ 
limits, is 0.023. Hence, the probability of observ-
ing two out of three consecutive points beyond 
2σ limits is given by: 

 
Pr (2 out of 3 beyond 2σ)= 
3(0.023×0.023×0.997)=0.0016 
 
3. Run (R): Eight or more consecutive points 

on one side of centerline. 
From the properties of normal distribution 

curve, the probability of observing a point on one 
side of centerline is 0.5. Hence, the probability 
of observing eight consecutive points beyond on 
one side of centerline is given by: 

 
Pr (8 points on one side)=(0.5)8 
=0.0039 
 
4. Trend (T): Sven or more points continually 

increasing or decreasing. 
The probability of seven consecutive points   

increasing (or decreasing) can be calculated as 
follows: 

 
Pr (7 increasing)=Pr (1st>based point) 
×Pr (2nd>1st) ×…×Pr (7th>6th) 
Where,Pr (1^st>based point)<0.5, 
Pr (2nd>1st )<0.5 and 
finally Pr (7th>6th) <0.5 
Therefore,Pr (7 increasing)<(0.5)7 
=0.008 
 
5. Cycle: Repetitive forms of patterns observed 

on the control chart over a period of time. 
This kind of pattern exhibits systematic 

changes in the process. There is an indication of 
an assignable cause because a characteristic of a 
random pattern is that it does not repeat. 

In this paper, OCL, FR1, FR2, Run and Trend 
patterns as most commonly used pattern have 
been considered for modeling. Since, there is no 
generally definition for some patterns like cycle, 
instability, etc. and modeling of them is difficult 

then we do not have considered them in our 
model. 

When the pattern is not natural, something is 
existent in the process that has an effect on the 
control chart pattern. All unnatural patterns need 
to be investigated to determine the causes. Each 
unnatural pattern exhibits presence of certain set 
of causes. The relation between assignable 
causes and chart patterns is established by clas-
sifying the domain of assignable causes based on 
the each, cause influence on the process mean. 
The effect of the causes to make certain patterns 
has been collected by (Smith, 2014; Doty, 1996; 
Montgomery, 2015). Accordingly, assignable 
causes are categorized in to three divisions based 
on three modes of shift exhibited by the unnatural 
patterns. They are: 

1) Isolated causes:  
It is happened when a single sample will be 

fluctuated intensely and specially one point fallen 
outside the control limits such as an OCL pattern. 
The possible causes that comes under this cate-
gory are: 

 
• A mistake in measurement, recording or plotting. 
• Damage in handling. 
• Defect in raw-material used for that unit alone. 
• False alarm. 
 
2) Shift causes: 
When a considerable shift in the process mean 

is occurred, shift causes must be considered. 
Most influence patterns in shift causes are Freaks 
and Run patterns on the control chart. They show 
some assignable causes have been occurred in 
process that caused a sudden shift in the mean. 
These shifts may result from the some, causes 
are: 

• Tool break. 
• Change in raw-material or supplier. 
• Change in inspection methods or standards. 
• Adjustments made in machine settings. 
• Introduction of new workers or inspectors. 
• change in either the skill, attentiveness, or 

motivation of the operators. 
 
3) Gradual causes: 
Gradual causes are defined as a long series of 
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points that lack a change of direction. There is a 
continuous movement of points up or down this 
chart. Points will be on one side of the centerline, 
followed by points on the other side. Gradual 
causes are identified by the trend pattern. Typical 
causes of trend patterns are: 

• Gradual introduction of new raw-material. 
• Loosening fixtures. 
• Operator fatigue. 
• Machine tool wear. 
• Gauge wear. 
• Environmental changes. 
• settling or separation of the components of a 

mixture in chemical processes. 
• seasonal influences, such as temperature. 
assignable causes can be modeled as Fig. 1. 
 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Relationship chart between abnormal pattern and 
assignable causes 

 
Based on Fig. 1, we can find out OCL pattern 

indicates isolated causes (C1), FR1, FR2 and 
Run patterns indicate shift causes and T pattern 
indicates gradual causes. OCL patterns, in addi-
tion to C1, it also affects on C2 and C3. 

 
Proposed fuzzy system 

In this section, a fuzzy system based on fuzzy 
rules is designed. Fuzzy system is applied for 
CCPs recognition and then intensity estimation 
and Prioritization of assignable cause are per-
formed. In order to design proposed fuzzy system 
following stage are carried out: 

 
Input and output variations 

In this paper four abnormal pattern including 
1) Out of control (OCL), 2) Freak (FR1, FR2), 
3) Run (R) & 4) Trend (T) are considered. In 

order to design proposed fuzzy system, Fig. 1 as 
a relationship chart between abnormal patterns 
and assignable causes is used. 

Proposed fuzzy system includes 5 input vari-
ables can be measured from control chart and 
also includes 3 output variables, can be exhibited 
quantized intensity of each assignable causes. 

Input variables are: 
1) OCL: indicates the intensity of out-of-con-

trol abnormal pattern and is calculated as: 
 

(1) 
 

Where, x ̅i is the mean of ith sample measure-
ment plotted on the control chart, μ and σ denote 
the mean and standard deviation respectively. It 
is noticeable about OCL variable that, this vari-
able can influence simultaneously in C1, C2 and 
C3. But it is realizable from fig.1 that that pres-
ence of OCL pattern indicates isolated causes 
(C1). However, but presence of OCL alone can-
not confirm the presence of C2 or C3. 

Then, fuzzy set of OCL variable should be de-
signed as: when |xi-μ| is greater than or equal 3σ, 
OCL would have the most influence in C1. 

However, Influence of OCL on C2 and C3 
would be about 0.6 (Demirli & Vijayakumar, 
2017). Therefore, two separated variables called 
"OCL_C1" and "OCL_C2,C3" for OCL are in-
troduce to support different influence of OCL on 
C1 and also on C2 and C3. 

Thus, OCL_C1 input must have the highest 
membership function for OCL_C1≥3 and for 
smaller than 3 the amount of related function 
must be decreased (Fig. 2). Also OCL_C2,C3 
input for OCL_C2,C3≥3 must be around 0.6 and 
for smaller than 3 the amount of related function 
must be decreased (Fig. 3). 

 
 
 
 
 
 
 
 

Fig. 2. Fuzzy membership function of OCL_C1 
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Fig. 3. Fuzzy membership function of OCL_C2,C3≥3 
 

2) FR1: Number of data of 5 consecutive data 
in a control chart which are beyond the 1σ in 
same side of central line. Whenever four data of 
five consecutive spots locate beyond 1σ then re-
lated assignable cause will have the most 
strength. So fuzzy membership function (Fig. 4) 
of the FR1 variable must be designed to have 
highest amount for FR1≥4 and decrease for 
smaller amounts. 

 
 
 
 
 
 
 

Fig. 4. Fuzzy membership function of FR1 
 
3) FR2: Number of Data of 3 consecutive data 

that fall beyond 2σ in same side of central line. 
Whenever 2 data of  3 consecutive data fall be-
yond 2σ in same side of central line, related as-
signable cause will have the most strength. 
Therefor fuzzy membership function of FR2 
must have the biggest amount for FR2≥2 as Fig. 
5 and for amounts smaller than 2, membership 
function should be decreased. 

 
 
 
 
 
 

Fig. 5. Fuzzy membership function of FR2 
 
3) FR2: Number of Data of 3 consecutive data 

that fall beyond 2σ in same side of central line. 
Whenever 2 data of  3 consecutive data fall be-
yond 2σ in same side of central line, related as-

signable cause will have the most strength. 
Therefor fuzzy membership function of FR2 
must have the biggest amount for FR2≥2 as Fig. 
5 and for amounts smaller than 2, membership 
function should be decreased. 

 
 
 
 
 
 

Fig. 6. Fuzzy membership function of R 
 
Whenever 7 consecutive data are increased or 

decreased, then related assignable cause will 
have the most strength. So, the related fuzzy 
membership function must be designed as Fig. 7 
to have the biggest amount for T≥7 and should 
decrease for smaller than 7. 

 
 
 
 
 
 

Fig. 7. Fuzzy membership function of T 
 
Considered output variables for proposed fuzzy 

system are C1, C2 and C3. These variables       
express the effect of isolated cause, shift causes 
and gradual causes respectively. Fuzzy member-
ship functions of output variables are designed 
as Fig 8. 

 
 
 
 
 
 

Fig. 8. Membership function of output variables 
 
In this membership function, if the membership 

degrees of input variables have highest value 
(means the amount of 1); then, it will have the 
highest defuzzified intensity in output variables 
(means the amount of 1). To do so, a customized 
defuzzification method is developed. In this 
method area of fuzzy membership function that 
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is based on involved membership degree of in-
puts is considered and calculated as crisp amount 
of output. As indicated in Fig. 9-a, it is confirmed 
that the highest value of output variable is 1. The 
other example is shown as Fig. 9-b. 

 

Fig. 9-a. an example of defuzzification 
 

Fig. 9-b. an example of defuzzification 
 

Proposed fuzzy rule-based and fuzzy inference 
As it was indicated in Fig. 1, each of C1, C2 

and C3 variables are influenced by some abnor-
mal patterns. With using relations between ab-
normal patterns and assignable causes (Fig. 1), a 
fuzz system including 3 fuzzy rules is developed. 
In this fuzzy system each fuzzy rule is designed 
to estimate the intensity of each assignable cause, 
namely C1, C2 and C3. 

Rule 1: This rule is established for estimating 
intensity of isolated cause (C1). As it is denoted 
in Fig. 1, C1 was only connected to OCL abnor-
mal pattern. As mentioned in previous subsec-
tion, input variable of OCL_C1 was considered 
for this connection. Therefore, rule1is designed 
as: 

Rule 1: 
if  (OCL-C1  is  A)     Then      (C1  is    I) 
Implication of Rule1 is pictorially represented 

in Fig. 10. In the Fig.10 amount of μOCL_C1  
is calculated as: 

 
(2) 

 

Rule 2: This rule is established for estimating 
intensity of shift cause (C2). As shown in Fig. 1, 
C2 is affected by some abnormal patterns includ-
ing FR1, FR2, R and also OCL. Rule 2 is de-
signed as: 

 
Rule 2: 
if (FR1  is  B)  or  (FR2  is  C)  or  (R  is  D) 
then   (C2  is   I) 
Fig. 11 demonstrates the implication of Rule 2. 
μFR1,μFR2,μR,μFOCL_C2,C3 are calculated 

as following equations: 
 
 
 
 
 
 
 
 
 
 
 
 

(3) 
 

 
In order to calculate the final membership de-

gree of Rule 2, a customize method is proposed 
as Eq.4 that is contained logical relation indicated 
in Fig. 1. 

 
 
(4) 
 

 
As it is specified in Rule 2, relation between 

input variable is type of "OR", thus a t-norm op-
erator is applied. As presence of abnormal patterns 
of FR1, FR2 and R alone can confirm the presence 
of C2; therefor firstly max operator is applied be-
tween them. 

In addition, presence of abnormal pattern of 
OCL can provides additional evidence to presence 
of C2. Then this evidence also has to be added to 
confirm presence of C2. Hence algebraic sum op-
erator (⨁) is used to aggregate the evidence from 
OCL_C2, C3 and Max of FR1, FR2 and R. 
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Rule 3: This rule is established for estimating 
intensity of gradual cause (C3). As shown in Fig. 
1, C3 is affected by some abnormal patterns in-
cluding T and also OCL. Rule 3 is designed as: 

 
Rule3: 
If  (T  is  G)  OR  (OCL-C2,C3  is   A)    
Then  (C3   is   I) 
Performance and implication of Rule 3 is 

demonstrated in Fig. 12. 
In this rule μT is calculated similar to  μR. 

Also, like to reasons that mentioned forμC2, 
similarly μC3  is calculated as: 

 
                μC3=μT⨁μOCL_C3                    (5) 
 

Fig. 10. Implication method in Rule 1 
 

Fig. 11. Implication method in Rule 2 
 

Fig. 12. Implication method in Rule 3 
 

RESULTS 
In order to evaluate and vindicate our proposed 

method, in this section we present a case study 
as Fig. 13 in phase II of control charts. In this 
process mean is 50, Standard deviation is 1 and 

sample size is 5 to depict X ̅ chart. 

Fig. 13. A case study of X ̅  control chart 
 
Results of prioritize of assignable cause for 

sample number 8-12 in shown in Table 1. 
In order to apply proposed method, firstly value 

of input variables should be calculated. Then pro-
pose fuzzy system is carried out to achieve inten-
sity value of C1, C2 and C3. Then C1, C2 and C3 
are sorted in descending order toward its intensity 
value. Therefore, looking for source of assignable 
cause is done. Finally, to CCP recognition we will 
follow this process. If  C1 is the biggest one, ab-
normal pattern would be out of control pattern 
(OCL). If C2 has biggest value, membership de-
gree of μFR1, μFR2, μR must be checked. Each 
on them that consist highest value, its related pat-
tern would have the highest effect. If C3 the 
biggest one, then R pattern would happen. 

      For instance, we explain the computations 
of 10th sample. First, we should calculate OCL, 
FR1, FR2, R and T input variables based on con-
trol chart that are 0.35, 3, 1, 5 and 1 respectively. 
For example, to calculate FR1 we consider 6th, 
7th, 8th, 9th and 10th samples and the number of 
spots that placed beyond 1σ will be counted and 
would be considered as FR1. After calculation 
input variable from control chart, calculated val-
ues are involved into fuzzy rule-based system. 
Thus, value of OCL that are 0.35 is involved into 
Rule1 and μOCL_C1 calculated as μC1=0.12 
that is membership degree of Rule 1. Then, 
μC1=0.12 is imported into related output of Rule 
1, namely, C1 and highlighted area (similar to 
Fig. 10) is obtained as C1*=0.22. Next, for cal-
culating C2* value of input variables Rule 2 are 
involved into their fuzzy sets and membership 
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degree of each input are calculated as μFR1=0.75 
,μFR2=0.5  ,μR=0.71 and  μOCL_C2=0.07. 
Then μC2 would be calculated by Eq.4 to do so 
Max (0.75,0.5,0.71)=0.75 is obtained and then 
μC2=0.75+0.07-0.75×0.07=0.767 is calculated. 
Finally, μC2=0.767 is imported into output vari-
able of C2 and highlighted area (similar Fig. 11) 
is calculated equal to C2*=0.94. Ultimately, Rule 
3 is applied to calculate intensity value of C3*. 
To do so, like to Rule 2, μT=0.14 and 
μOCL_C2,C3=0.07 are calculated and then with 
using Eq.5 μC3=0.14+0.07-0.14×0.07=0.20 is 
obtained. 

Finally, obtained value of μC3 is imported into 

output variable of C3 and highlighted area (sim-
ilar to Fig. 12) is calculated and equal to 
C3*=0.25 as crisp value of intensity. The So, we 
have C1= 0.22, C2=0.94 and C3=0.25 and prior-
ity of assignable causes will be as C2 >> C3 >> 
C1. Therefore, assignable cause of C2 as shift 
cause will have the most priority and isolated 
cause as C1 will have the least one. Now, to re-
move source of variation should be focus on de-
tailed causes of shift cause. In order to more 
analysis of results, 9 other examples are consid-
ered as Fig. 14 and numerical results are summa-
rized as table 2 in appendix. 

 

CONCLUSION 
Control charts in addition to determine presence 
of abnormal, can present useful information to 
identify type of variation with using happened 
patterns in manufacturing process. It is possible 
that some abnormal patterns presence simultane-
ously in a control chart, therefore CCPs recogni-
tion and the most intensity assignable cause are 

dealt with uncertainty and ambiguity.    
Because if that a fuzzy system method based on 
relationship between abnormal patterns and as-
signable causes has been proposed. Three fuzzy 
rules are used in proposed fuzzy system that each 
of them can be used to estimate the intensity of 
assignable causes. In this proposed fuzzy system 
intensity of each assignable cause is calculated 

Iranian Journal of Optimization, 12(2), 149-160, December 2020 157

Alinezhad and Taherinezhad /Control Chart Recognition Patterns...

Sample Number 8 9 10 11 12

Input variables

OCL 0.96 2.34 0.35 2.34 3.58
FR1 2 3 3 3 3
FR2 0 1 1 2 2

R 3 4 5 6 7
T 1 1 1 1 2

Membership Degree of Each 
Input variables

μOCL-C1 0.32 0.78 0.12 0.78 1
μFR1 0.5 0.75 0.75 0.75 0.75
μFR2 0 0.5 0.5 1 1
μR 0.43 0.57 0.71 0.86 1

μOCL-C2 0.19 0.46 0.07 0.46 0.6
μT 0.14 0.14 0.14 0.14 0.29

μOCL-C3 0.19 0.46 0.07 0.46 0.6

Out puts
C1* 0.537 0.951 0.219 0.951 1
C2* 0.836 0.982 0.945 1 1
C3* 0.443 0.757 0.258 0.757 0.885

Cause priority
C2 C2 C2 C2

C1,C2,C3C1 C1 C3 C1
C3 C3 C1 C3

recognized Pattern FR1 FR1 FR1 R OCL,FR2,R

Table 1: Results of applied proposed method



based on abnormal patterns presence in control 
chart. When manufacturing process become out-
of-control, attempt for finding the variation 
source is started. In order to increase accuracy, 
proposed fuzzy system prioritizes most intensity 
of assignable cause and recognizes related CCP. 
The So, we would search source of causes that 
have most intensity instead of all. For future re-
search other abnormal patterns such as cyclic can 
be considered in proposed fuzzy system. 
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Fig A1. Applied more cases of control charts (Demirli and Vijayakumar, 2017)

Case Number 1 2 3 4 5 6 7 8 9

Input Variables

OCL 3.58 0.64 2.30 3.58 3.58 2.75 3.02 3.58 3.02
FR1 3 2 2 3 4 4 4 3 3
FR2 1 0 1 3 2 2 2 1 1

R 3 7 4 3 4 5 5 6 4
T 1 2 7 3 2 7 7 1 6

Out puts
C1* 1 0.38 0.94 1 1 0.99 1 1 1
C2* 0.99 1 0.94 1 1 1 1 0.99 0.99
C3* 0.88 0.61 1 0.91 0.91 1 1 0.88 0.997

Cause priority
C1 C2 C3 C1,C2 C1,C2 C2,C3 C1,C2,C3

C1 C1
C2 C3 C1,C2 C2 C3
C3 C1 C3 C1 C3 C3 C2

Recognized  
Pattern OCL Run Trend OCL, 

FR2

OCL, 
FR1, 
FR2

FR1, 
FR2, 
Trend

OCL, 
FR1, 
FR2, 
Trend

OCL OCL, 
Trend

Table A1: Results of other applied examples

APPENDIX


