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Abstract
Optimization of noisy non-linear problems plays a key role in

engineering and design problems. These optimization problems can't
be solved effectively by using conventional optimization methods.
However, metaheuristic algorithms such as Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) seem very efficient to
approach in these problems and became very popular. The efficiency
of these methods against many new metaheuristic optimization algo-
rithms has been proved in previous works, however a robust compar-
ison between GA and PSO to solve noisy nonlinear problems has not
been reported yet. Therefore, in this paper GA and PSO are adapted
to find optimal solutions of some noisy mathematical models. Based
on the obtained results, GA shows a promising potential in terms of
number of iteration to converge and solutions found so far for either
for optimization of low or elevated levels of noise.
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INTRODUCTION
The optimisation of systems and processes is

of high importance in manufacturing engineer-
ing, computational mechanics and control field.
Optimisation problems are solved by using rig-
orous or approximate mathematical search tech-
niques. Rigorous methods have employed linear
programming, integer programming, dynamic
programming or branch-and-bound techniques to
approach the optimal solution for moderate-size
problems (Yazdi et al., 2016; Chai-ead et al.,
2011). These algorithms are guaranteed to find
for every finite size instance of a combinatorial
problem an optimal solution that exists in
bounded time. Still, for combinational problems
that are NP-hard, no polynomial time algorithm
exists, assuming that P!=NP. Thus, complete
methods might need exponential computation
time in the worst-case scenario. This often leads
to computation times that are usually too high for
being useful in practical purposes (Pal et al.,
2017). To overcome these problems, researchers
have proposed approximate meta-heuristics al-
gorithms to search for near optimal solutions (El-
beltagi et al., 2007).

Metaheuristic optimization techniques have be-
come very popular and applied successfully to
solve optimization problems arise in different in-
dustrial applications. These techniques already
proved their simplicity, flexibility and efficiency
in finding out optimal solutions of many complex
optimization problems (Sai et al., 2016). There-
fore recently, many new metaheuristic optimiza-
tion algorithms such as Grey Wolf Optimizer
(Mirjalili et al., 2014), Firefly Algorithm (Chai-
ead et al., 2011 and Yang & He, 2013), Brain
Storm Optimization algorithm (Zhang et al.,
2012) and Imperialist Competitive Algorithm
(Towsyfyan et al., 2013) were proposed in find-
ing optimal solutions of noisy non-linear opti-
mization problems. Based on the obtained results
of different comparative studies, the efficiency
of these new methods in solving noisy non-linear
optimization problems still needs more of verifi-
cations and improvements (Sai et al., 2016;
Azimi et al., 2017).

This paper aims to compare the Particle Swarm
Optimisation (PSO) with Genetic Algorithm
(GA) for solving noisy non-linear problems. Rest
of the paper is organized as follows. The PSO

and GA algorithms are briefly explained, this is
next followed by a brief explanation of mode-
FRONTIER Software which is used for opti-
mization in this work. Noisy non-linear
mathematical models used for experimentation
are presented in section 4. Experimental settings
and results are then presented in next section.
Last section finally concludes the paper.

EVOLUTIONARY ALGORITHMS &
OPTIMIZATION

Particle swarm optimization (PSO)
PSO is a type of optimisation method that takes

its basic concept from the behaviour of large
groups of social animals. This may be a swarm
of bees looking for a hive location or a flock of
birds looking for food or a place to roost. It is a
stochastic and population-based method. Eber-
hart and Kennedy were the first to check the va-
lidity of this method in optimisation (Eberhart &
Kennedy, 1995). It is found that many problems
of optimisation, as in Genetic Algorithms, can be
worked out through the Particle Swan Optimisa-
tion technique. 

The PSO system depends on the creation of a
number of particles regarded as a swarm that aim
at checking and flying over the hyper-dimen-
sional solution space simultaneously (Kennedy,
2010). The mission of each single particle is to
record their personal best position and read both
local best (lbest) and swarm’s best position
(gbest). The velocity vector in such types of
search is a driving factor that directs the particles
so that they can be improved. For such an aim,
velocity vector is always connected with personal
best position (gbest), local best (lbest) and. An
inertia factor, W, determines the influence that
the previous velocities have on the current one.
Additional factors such as cognitive and social
factors are brought to have control over a particle
and its confidence in itself or in the swarm. The
main duty of the cognitive factor, C1, is to deter-
mine the level of confidence in success for each
particle. The social factor C2 is responsible for
detecting that confidence level. Table 1 shows the
standard PSO nomenclature.
Genetic algorithm

Genetic Algorithm (GA) is an optimisation
method that is non-deterministic and population-
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based. It was Holand who brought this technique
to light (Holand, 1975). What marks this method
is its dependence on imitating natural evolution:
only the fittest will survive. In other words, the
genetic properties of the parents are changed so
that new generation of individuals will be fitter
than the previous ones. For this change, mutation
and crossover are used among other genetic
processes to achieve the desired effect. Of
course, global optimum is the utmost objective
of these genetic operations, so they are modified
and set for this purpose. Fig.1. shows the optimi-
sation process of a GA. Currently, there are four
major genetic operations that create the corner-

stone of genetic algorithm technique: Tourna-
ment Selection, Crossover (Single-point
crossover and Multiple-point crossover), muta-
tion and elitism (Lin et al., 2003). In order to re-
duce the burdens arising from much computation
while improving and increasing the search
process to a greater extent, a number of various
genetic operations and selection criteria for Ge-
netic Algorithm have been examined for many
years to find the most appropriate schemes to fol-
low. The following schemes are the most popular
ones used in the selection process and genetic
modification.
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Symbol Meaning
pi Particle i
xi(t) Particle position at time t
vi(t) Particle velocity at time t
lbest Best position found by

particle
gbest Best position found by

swarm
W Inertia factor
C1 Cognitive factor
C2 Social factor

Table 1: Nomenclature of Particle Swarm Optimisation

Fig. 1. Genetic algorithm flow chart



MODEFRONTIER SOFTWARE
The tool used to undertake the comparison of

optimisation algorithms described above was
modeFRONTIER. This package is a multidisci-
plinary, multi-objective design optimisation
code, written to allow easy coupling to different
commercial computer-aided engineering (CAE)
tools. modeFRONTIER provides an environment
in which product engineers and designers can in-
tegrate their various CAE tools, such as Finite El-
ement Analysis software. The user manual of
modeFRONTIER illustrates how a given prob-

lem can be handled (modeFRONTIER, 2008).
Incorporating the analysis tool within the mode-
FRONTIER framework is reasonably straight
forward with direct interfaces for Matlab and
Simulink and other engineering softwares. In
general, to understand the modeFRONTIER, Fig.
2. may be inspected, which indicates a simple ex-
ample of both process design and optimisation.
With modeFRONTIER three main steps are es-
sential for achieving the goal: parameterise the
problem, set objectives and choose the strategy
for optimisation.
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NOISY NON LINEAR MATHEMATICAL
FUNCTIONS

In this paper, PSO and GA were applied to an-
alyze various types of non-linear mathematical
models taken from literature. The typical natures
of selected surfaces to be used in this study are
the Branin Function, Sphere Function, Six-hump
camel Function and Shubert Function. Consider-
ing the solution space in a certain region of 3D
response surfaces, some models contain global
optimum and multiple local optimums as de-
scribed below.

Branin function
The Branin, or Branin-Hoo (see Fig.3.), has

been investigated in several researches (mode-
FRONTIER, 2008, Molga et al., 2005 and
Picheny et al., 2012). The recommended values
of a, b, c, r, s and t are: a = 1, b = 5.1 ⁄ (4π2), c =
5 ⁄ π, r = 6, s = 10 respectively and t = 1 ⁄ (8π).
This function is usually evaluated on the square

x1 ∈ [-5, 10], x2 ∈ [0, 15] and has three global
minima as follow:

f(x*)=0.397887,at x*=(-π,12.275),(π,2.275)
and (9.42478,2.475) 

(1)

Sphere functions
The Sphere function is continuous, convex and

unimodal function. The plot shows its two-di-
mensional form in Fig. 4. The function is usually
evaluated on the hypercube xi ∈ [-5.12, 5.12],
for all i = 1, …, d and has d local minima except
for the global one. This function has been con-
sidered in several optimization works (Molga &
Smutnicki, 2005; Picheny et al., 2012).

f(x*)=0,at x*=(0,…,0)

Fig.2. General modeFRONTIER process of integration and optimisation
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Six-hump camel function
As shown in Fig. 5. the plot on the left shows

the six-hump Camel function on its recom-
mended input domain, and the plot on the right
show only a portion of this domain, to allow for
easier viewing of the function's key characteris-
tics. The function is usually evaluated on the rec-

tangle x1∈ [-3, 3], x2∈ [-2, 2] and has six local
minima, two of which are global as follows
(Molga & Smutnicki, 2005):

f(x*)=-1.0316,at x*= (0.0898,-0.7126) and
(-0.0898,0.7126)
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Fig.3. Matlab plot for Branin function Fig. 4. Matlab plot for sphere Function

Fig. 5.  Matlab plot for Camelback Function

Shubert function
The Shubert function has several local min-

ima and many global minima. As can be seen
in Fig. 6. the second plot shows the function
on a smaller input domain, to allow for easier
viewing. The function is usually evaluated on
the square xi∈ [-10, 10], for all i = 1, 2,… al-
though this may be restricted to the square xi
∈ [-5.12, 5.12], for all i = 1, 2,… Shubert
function has a global minimum as follows

(modeFRONTIER, 2008):

f(x*)=-186.7309

RESULTS AND DISCUSSION
A careful investigation was carried out to com-

pare the design efficiency of the GA and PSO al-
gorithms. The algorithm parameters were
determined to yield the best results as shown in
Table 2.
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Due to the stochastic nature of the algorithms,
each execution of the algorithm results in a dif-
ferent result, therefore in the entire study the best
solution out of five different executions is pre-
sented as the optimization result. Table3 demon-
strates the iteration process of GA and PSO
method for optimization of four noisy non-linear

functions. GA seems to be absolutely better in
terms of speed of convergence for all target func-
tions. The exact solutions are compared with re-
sults obtained by GA and PSO in Table 4. A
significant accuracy is seen in the performance
of the GA for all target functions.

Fig. 6. Matlab plot for Shubert Function

PSO Parameters GA Parameters

Population Size 20, Sobol 20, Sobol

Max Generation 15, 20, 25, 30, 35 15, 20, 25, 30, 35

Crossover Percent 0.5 0.5

Crossover Percent 0.5 0.5

Table 2: Parameteres used in PSO and GA

Method GA PSO
Function Number of 

Iteration X1 X2 X3 Global Min X1 X2 X3 Global Min

Branin

15
20
25
30
35

-3.14
-3.14
-3.14
-3.14
-3.14

12.275
12.275
12.275
12.275
12.275

-
-
-
-
-

0.397887
0.397887
0.397887
0.397887
0.397887

-3.121
-3.121
-3.121
-3.139
-3.14

12.171
12.171
12.171
12.314
12.301

-
-
-
-
-

0.402903
0.402903
0.402903
0.399921
0.398215

Sphere

15
20
25
30
35

2 E-5
0
0
0
0

2 E-5
0
0
0
0

1 E-5
1 E-5

0
0
0

9 E-10
1 E-10

0
0
0

-0.048
-0.029
-0.033
-0.033
-0.033

-0.039
-0.022
0.0025
0.0025
0.0025

-0.038
-0.024
-0.027
-0.027
-0.027

0.005359
0.001982
0.001882
0.001882
0.001882

Six-Hump Camel

15
20
25
30
35

-0.0898
-0.0898
-0.0898
-0.0898
-0.0898

0.7126
0.7126
0.7126
0.7126
0.7126

-
-
-
-
-

-1.0316
-1.0316
-1.0316
-1.0316
-1.0316

-0.0886
-0.0886
-0.0886
-0.0875
-0.0875

0.7316
0.7316
0.7316
0.7180
0.7180

-
-
-
-
-

-1.0286
-1.0286
-1.0286
-1.0314
-1.0314

Shubert

15
20
25
30
35

-7.708
-7.708
-7.708
-7.708
-7.708

5.482
5.482
5.482
5.482
5.482

-
-
-
-
-

-186.7309
-186.7309
-186.7309
-186.7309
-186.7309

-7.680
-7.680
-7.680
-7.680
-7.712

5.476
5.476
5.476
5.476
5.480

-
-
-
-
-

-184.8377
-184.8377
-184.8377
-184.8377
-186.6680

Table 3: Number of iteration and best solution for both algorithms applied on four noisy non-linear mathematical models



CONCLUSION
In this study, GA and PSO were applied in

order to find the optimal solutions of noisy non-
linear continuous mathematical functions. The
results showed GA has a promising potential to
be used as an effective tool in a variety of noisy
nonlinear problems. GA seems to be absolutely
better in terms of speed of convergence for all
target functions. This might be due to the effect
from generating the completely different random
numbers to be used in the iterative procedures of
the algorithm. When there was no noise on the
process yields, the performance of both algo-
rithms seems to be not so different to approach
to the optimum.  GA tends to be better, especially
on the functions having multi-peaks. Complexity
or difficulty level of the functions had no effect
to the GA as expected.
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