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A Recurrent Neural Network Model for Solving CCR
Model in Data Envelopment Analysis 

Department of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

Abstract
In this paper, we present a recurrent neural network model for solv-

ing CCR Model in Data Envelopment Analysis (DEA). The proposed
neural network model is derived from an unconstrained minimization
problem. In the theoretical aspect, it is shown that the proposed neural
network is stable in the sense of Lyapunov and globally convergent
to the optimal solution of CCR model. The proposed model has a sin-
gle-layer structure. A numerical example shows that the proposed
model is effective to solve CCR model in DEA.
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INTRODUCTION
DEA is a nonparametric approach in operations

research to estimate the performance evaluation
and relative efficiency of a set of homogeneous
DMUs such as business units, government agen-
cies, police departments, hospitals, educational
institutions and etc. Charnes et al in their seminal
DEA model (CCR model) in 1978 proposed that
the efficiency of a DMU can be obtained as the
maximum of a ratio of weighted outputs to
weighted inputs, subject to the condition that the
same ratio for all DMUs must be less than or
equal to one (Charnes et al., 1979). Linear pro-
gramming is needed to recognize efficient and
inefficient DMUs in CCR models. The dimen-
sion and denseness of the structure of linear pro-
gramming increases as the numbers of DMUs
and numbers of input and output increases, in this
case, the numerical methods become less af-
fected for solving corresponding linear program-
ming. One promising approach to solve CCR
models is to employ the artificial neural networks
based on circuit implementation. Mathematically,
the optimization problem to be solved is mapped
into a dynamical system so that whose state out-
put can give the optimal solution and the optimal
solution is then obtained by tracking the state tra-
jectory of the designed dynamical system based
on the numerical ordinary differential equation
technique. A neural network with a good compu-
tational performance should satisfy threefold.
First, the global convergence of the neural net-
works with an arbitrarily given initial state
should be guaranteed. Second, the network de-
sign preferably contains no variable parameter.
Third, the equilibrium points of the network
should correspond to the exact or approximate
solution (Xia & Wang, 1998). Solving optimiza-
tion problems using recurrent neural networks
has fascinated much attention since seminal work
of Tank and Hopfield (Tank & Hopfield, 1986).
Many neural network for constrained optimiza-
tion problems has been developed during the past
two decades, e.g. see (Hu, 2009; Hu & Zhang,
2009; Kennedy & Chua, 1988; Xia & Wang,
2016; Liu & Wang, 2013; Maa & Shanblatt,
1992; Nazemi, 2014; Nazemi & Nazemi, 2014;
Rodriguez-Vazquez et al., 1990; Tank & Hop-
field, 1986; Wu et al.,1996; Xia, 1996; Xia, 2009;
Xia & Wang, 2000a; Xia & Leung, 2014; Xia &

Wang, 1998; Xia & Wang, 2000b; Xia & Wang,
2000c; Xia & Wang, 2004; Xia & Wang, 2005;
Xia et al.,2004; Xia et al., 2008; Xia et al.,2002;
Xia et al.,2012; Xue & Bian, 2007; Yan, 2014;
Yang & Cao, 2008; Yang et al.,2014; Zhang &
Zhang, 2010) and references therein. To formu-
late an optimization problem in terms of a neural
network, there exist three types of methods. One
approach commonly used in developing an opti-
mization neural network is to first convert the
constrained optimization problem into an associ-
ated unconstrained optimization problem, and
then design a neural network that solves the un-
constrained problem with gradient methods. An-
other approach is to construct a set of differential
equations such that their equilibrium points cor-
respond to the desired solutions and then find an
appropriate Lyapunov function such that all tra-
jectories of the systems converges to some equi-
librium points. The third is Combining the above
two types of the methods. In this paper, we pro-
posed a neural network model based on the third
type. The remainder of this paper is organized as
follows. In Section II, a CCR model and it’s Dual
is described, and a new neural network model is
presented. In Section III, the global stability and
convergence of the proposed neural network is
analyzed. In Section IV, the performance of the
proposed neural network is illustrated. Finally,
the conclusion is drawn in Section V.

NEURAL NETWORK MODEL
The CCR model (input-based), can be ex-

pressed as:

(1)

Where DMUp=(xp,yp) is evaluating DMU,xij

(i=1,2,…,m) and yrj(r=1,2,…,s) are the ith input
and the rth output of DMUj (j=1,2,…,n) respec-
tively. The Dual of 1 is: 

(2)
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For solving 1 and (2) Simultaneously, we de-
fine the following convex energy function to de-
sign our proposed neural network:

(3)

Where

θ is free, (0,0,0) ≤ (λ,u,v) ℝm+n+s, X and Y are
input matrix and output matrix of all DMUs. Let
w=(λ,u,v,θ)t,

So 3 can be rewritten the following form:

(4)

Where Ω and PΩ are defined as follow:

Using gradient method to obtain minimizer of
4, we have the following dynamic system:

(5)

Where α is a scaler parameter, E is the

gradient of E.
The equilibrium points of system described by

Eq. 4 can be applied to identify optimal solution
of 1 and 2.

THEORETICAL ANALYSIS
In this section, we consider global convergence

of 5 under assumption W* ={wΩ | w is mini-
mizer of 3}.
Definition 3.1. The neural network in 5 is said

to be stable in the sense of Lyapunov, globally
convergent and globally asymptotically stable, if
the corresponding dynamic system is so (Xia et
al.,2002).
Definition 3.2. A function F:ℝm → ℝm is said

to be Lipschitz continuous with constant L>0
(Kinderlehrer & Stampacchia, 1980) If  for each
pair of points x,y ℝm

The proposed neural network has the following
basic properties.
Lemma 3.1. The equilibria of the neural net-

work in 5 is equal to solution of 1 and 2. More-
over, for any initial point w0 =w(t0), there exist a
unique continuous solution w(t) for 5 over [t0, ).
Proof. Let w  ̅ be equilibrium of 5 so E(w )̅=0,

since E  is a convex function then w  ̅ be mini-
mizer of E(w). Moreover minimizer of E(w) is
solotion of 1 and 2.

Let 

for any
we have:

by property of projection operator (Kinder-
lehrer & Stampacchia, 1980)  we have:
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By the existence theory of ordinary differential
equations (Miller & Michel, 1982) we see that
for any an initial point taken in Ω, there exists a
unique and continuous solution w(t)   for the
systems in 5 over [t0, T) since the function E(w)
satisfies local Lipschitz conditions. Consider the
following function: 

(6)

So, the time derivative of V along the trajectory
of (6) is as follows:

moreover E(w) is continuously differentiable
and convex on Ω and E(w*), so by property of
convex function (Ortega & Rheinboldt, 1970) we
have:

(7)

Thus:

Where  is a positive constant. So w(t) is
bounded on [t0, T), thus T= +.
Theorem 3.1. The state trajectory of 5 is glob-

ally convergent to W*within a finite time. More-
over, the convergence rate of the neural network
in 5 increases as  increases.
Proof: Eq. 7 yields that the system in 5 is Lya-

punov stable at each equilibrium point.
On the other hand, since limkV(wk)=+

whenever the sequence wk Ω and
limk  ||wk|| =+, by property of level sets

(Ortega & Rheinboldt, 1970) we see that all the
level sets of V are bounded though all level sets
of E(w) are unbounded, thus Ω ̂ ={w∈Ω|
V(w)≤V(w0)} is bounded. Because V(w) is con-
tinuously differentiable on the compact set Ω ̂
and {w(t)|tt0}Ω ,̂ it follows from the LaSalle’s
invariance principle (Miller & Michel, 1982) that
trajectories w(t) converge to K,̂ the largest invari-
ant subset of K=w| dV/dt=0}. Note that if
dV/dt=0 then (w-w*)tE(w)=0, by property of
convex function (Ortega & Rheinboldt, 1970) we

have E(w)=E(w*), so w is an equilibrium point
of the system in (5). Conversely, if dV/dt=0 then
E(w)=0 and (w-w*)tE(w)=0. So

Hence we have K={wΩ ̂| dV/dt=0 }. Finally,
let limk w(tk)= u,̂ then u̂W* Therefore, for
>0 there exists q>0 such that

Eq. (7) holds for each u̂W*, then ||w(t)-u|̂| is
decreasing as t. Thus

So

By (7) we have:

Then we can result that as α increases, the con-
vergence rate of the neural network in 5 in-
creases. This proof is completed.

NUMERICAL EXAMPLE
In this section, we simulate the effectiveness of

the proposed method through one illustrative ex-
amples. The ordinary differential equation solver
engaged in ode23 in matlab 2017.
Example 1. The inputs and outputs of seven

DMUs which each DMU consumes two inputs
(x1, x2) to produce four outputs (y1, y2, y3, y4) is
presented in Table 1.

The results of running our proposed model are
summarized in Table 2 and Table 3. The results
comparison can report that our proposed neural
network model is effective to solve CCR model.
Fig. 1 shows that transient behavior of the neural
network of 5 in terms of . As can be seen from
Fig.1, the proposed neural network model is
globally convergent to the optimal solution.
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DMUs x1 x2 y1 y2 y3 y4
1 2.0 2.0 2.0 2.0 2.0 2.0
2 2.0 2.0 2.0 3.0 2.0 2.0
3 2.0 2.0 2.0 2.0 3.0 2.0
4 2.0 2.0 2.0 2.0 2.0 3.0
5 1.0 1.0 2.0 2.5 3.5 2.0
6 1.0 3.0 2.0 2.0 2.0 4.0
7 2.0 1.0 2.0 2.5 2.25 3.0

Table 1: Data set in Example 1

DMUs λ1 λ2 λ3 λ4 λ5 λ6 λ7 θ
1 0 0 0 0 1 0 0 0.5
2 0 0 0 0 1.2 0 0 0.6
3 0 0 0 0 1 0 0 0.5
4 0 0 0 0 0.25 0.25 0.5 0.75
5 0 0 0 0 1 0 0 1
6 0 0 0 0 0 1 0 1
7 0 0 0 0 0 0 1 1

Table 2: Results of our model to solve CCR model 1 in Example1 

DMUs v1 v2 u1 u2 u3
1 0.1393 0.3607 0.2214 0 0
2 0.3753 0.1247 0 0.2 0
3 0.1909 0.3091 0.25 0 0
4 0.25 0.25 0 0 0
5 0.3398 0.6602 0.2344 0 0
6 0.2877 0.2374 0 0 0.0033
7 0.0369 0.9263 0 0.2285 0.0144

Table 3: Results of our model to solve CCR model 2 in Example 1 

Fig. 1. Transient behavior of (5) in terms of trajectories for evaluating  in example 1
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CONCLUSIONS
In this paper, a recurrent neural network intro-

duced to solve CCR model in DEA. The proposed
model is a one-layer neural network. In the pro-
posed model is used projection operator for non-
negative variables thus respect to the similar
models, the number of neurons reduces so pro-
posed model has lower complexity. It is shown
here that the proposed neural network is stable in
the sense of Lyapunov and globally convergent to
the optimal solutions. Finally, the example is  pro-
vided to show the effectiveness of the proposed
neural network.
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