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Accepted: 07 August 2017 Irrigation water management is crucial for agricultural production and
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Over the past decades, controversial and conflictladen water-allocation
issues among competing municipal, industrial and agricultural interests
have raised increasing concerns. Particularly, growing population, vary-
ing natural conditions and shrinking water availabilities have exacer-
bated such competitions. Shrinking water availabilities can result in
reduced water supplies, while growing population can lead to increased
water demands, these two facts can further intensify the water shortage.
Stochastic programming methodology is applied in this paper to a capital
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INTRODUCTION

Stochastic programming deals with situations
where some random parameters appear in a formu-
lation of a mathematical program. Decision models
of stochastic programming have been designed to
treat the cases when a decision has to be chosen be-
fore a realization of random parameters can be ob-
served. Examples of stochastic programming are
athematical programs resulting from such problems
as optimizing the stochatic inflows of a reservoir
power system (Trezos & Yeh, 1987) using proba-
bilistic models in the design and operation of a
reservoir system (Arunkumar & Yeh, 1973) reser-
voir management and operations models (Yeh,
1985) and others. This paper addresses an applica-
tion of stochastic programming to a water resource
system with a dual-purpose of generating electricity
and supplying water for agricultural irrigation. This
paper aims to formulate the dual-purpose water re-
source system ss a change-constrained explore the
use of recursive least squares filtering (Geib, 1974)
in the model, and examine and discuss properties
of the model.

With limited water resources for agriculture irri-
gation, managers tried to identify desired alterna-
tives through raising irrigation productivity to
realize optimal water allocation (Ma et al., 2014; Li
etal., 2015; Wang et al., 2015) Two-stage stochastic
programming (TSP) is effective to deal with prob-
lems for which an analysis of policy scenarios is de-
sired and the uncertainties can be expressed as
probabilistic distributions. In TSP, an initial decision
(first-stage decision) is made based on uncertain fu-
ture events, then an action can be taken after the pre-
regulated disclosure of random variables
(second-stage decision) (Li et al., 2006). This im-
plies that TSP can minimize the expected costs of
all applicable decisions taken over the two periods.
TSP has been widely applied to water resources
management over the past few decades (Magsood
et al.,2005; Wang & Huang, 2011).

Generally, in the design and operation of any
water reservoir system, the stochastic nature of in-
flows must be taken into consideration. A multitude
of techniques have been employed to model the sto-
chastic inflows to water reservoir systems. In the
literature, most researchers have applied stochastic
dynamic programming (SDP) for single or multi-
reservoir operation optimization. This is because
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SDP permits integration of stochastic elements in
the model and the sequential nature of the problem.
Each optimization technique has its own restriction
on the type of constraints it can handle. For in-
stance, a linear program entails all constraints in a
linear form, whereas a dynamic program entails that
they be expressed as functions of the present, and
be independent of the previous variables (see, for
example, (Butcher, 1971; Stedinger et al., 1987). In
the study by Stedinger et al. (1984), SDP wss used
to calculate optimal single reservoir operation.

In this instance, SDP can derive reservoir operat-
ing policies which are subject to reliability con-
straints. A different approach to modeling the
system has been applied by Askew (1974), who for-
mulates the problem as a chance-constrained dy-
namic program (CCDP), an SDP which has the
resources to confine the probability of given vari-
ables taking on values outside a fixed range. Askew
(1974) has also considered the trade-off of benefits
and risks associated with long-term reservoir oper-
ations. He discusses reliability-constrained dynamic
programm-ing that provides control over the prob-
ability of failure of the modeled reservoir system.
His formulations are based on dynamic program-
ming with discounting. Butcher discusses a multi-
purpose single reservoir system extensively. He has
devised a deterministic optimal operating policy
based on dynamic programming. In his models, sets
of deterministic streamflows recur in a Monte Carlo
study. Butcher employs a backward dynamic recur-
sive equation using Bellman’s Principle of Optimal-
ity. The following general forulation is developed
by Butcher:

fi(8005+1) = maax[R (d) +ng;xp(qa|qi+1)- firs(si+ g —d - enq:')]

for all values of sir the storage at the start of the
second time period and all possible values of inflow
during the preceding period q _(i+1). There exists a
value of the released d which makes the right-hand
side of the model 1 a maximum. This general for-
mulation uses the fact that the inflow in any month
is connected to the flow in the preceding month by
the conditional probability, P(q; |q(i+1) ).R(d) is the
return obtained by releasing a quantity of water d
in the ith time period, and e 1 is the loss of water in
storage by evaporation. Therefore, the general for-
mulation gives f; (s;,q (i+1) ), which is the expected



return from the optimal operation of a system which
has time periods to the end of the planning period.

Taylor and Karlin (1984) employ a Markov deci-
sion model to a water resource system by specifying
the law of motion, ¢(s’, g;y ; ). This is a function
given when the probability of a particular state s™
being chosen as a joint result of the current state s
and the chosen action a. In their study, they have
defined S_n, to be the level of water at period n, A
the amount released during the period, and 1, the
input to the storage system during period n and
based on the probability distribution, Pr (1,,=k)=
p(k) fork=0,1,... . Assumptions are made so that a
reservoir has a maximum capacity of M and that
This will lead to the transition law,

q(s's,a)=Pr{l,=s"s+a/=p(s-s+a, if0< s'<M

and
qMls, a) =Pr{l, > M-s + a}=} v-u p(s-st+a).

We shall analyze a water resource system sim-
ilar to that of Taylor and Karlin (1984). Noneth-
eless, a different approach will be taken to
formulate the problem.

TWO-STAGE STOCHASTIC
PROGRAMMING

Two-stage stochastic programming (TSP)
refers to a tradeoff between predefined strategies
and the associated adaptive adjustments. In TSP,
an initial first-stage decision must be made be-
fore the random variable is observed, then an ac-
tion can be taken after the pre-regulated
disclosure of second-stage decision . TSP cannot
only handle uncertainties expressed as random
variables but also provide an effective linkage
between the pre-regulated policies and the
associated economic implications caused by im-
proper policies. Generally, a TSP model can be
formulated as follows:

min f = ex — E[Q(x, )] (1)

s.t. Ax < b, x =0

Where x is the first-stage decision made before
the random variable is observed, & is the random

variable ((E€Q), and Q(x, &) is the optimal value
of the following nonlinear programming:

min q(y, §)

()
s.t. W)y =h()-T()x xz0

where y is the second-stage adaptive decision,
which depends on the realization of the random
variable. ¢g(y, £) denotes the secondstage cost
function, while {T(S), W), h()| EQ} are
random model parameters with reasonable
dimen-sions, which are functions of the random
variable &. The first-stage decision is made before
the random variable is observed. Then, when the
random variable is observed, the discrepancy that
may exist between A(¢) and T(E)x corrected by
recourse action that minimizes ¢(y, {) and
satisfies W(&)y=h($)-T(E)x, y>0. The pre-regu-
lated cost and the potential penalty can thus be
taken into account. Therefore, model 1 can be
reformulated as follows:

max f = ex — E [min{g(, DITEx + W)y = he)]
- 3)

st Ax = b,

x=0.

Let the random variable & take discrete values
€y with a probability level py, where I=1, 2,..., n.

It is assumed that pj> 0 and 3 ;— ;" p;=1 The ex-
pected value of the second-stage optimization
problem can be expressed as:

EQ(x) = E[QCx, w)] =X, pmQ(x, &) (4

For each realization of random variable ¢; a
second-stage decision is made, which is denoted

by ¢ . The second-stage optimization problem
can then be written as:

minq(y, &)
s.t. W(&y=h(&)-TE)x, Vi=12,..n (5)
Vi = 0

Through combining models 4 and 5, model 3
can be reformulated as follows:

maxf = cx — Xis1 P q(vy, &)

5. L. Ax = b, (6)
TEDx+WEDy =h(&), VI=12,..n
y=0
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LINEAR PROGRAMMING MODEL TO
MAXIMIZE TOTAL PROFIT

This stochastic programming formulation
considers probability conditions on constraints.
This formulation was first proposed by Revelle
et al. (1969) for optimization of a reservoir
system. We should use this formulation for a
water reservoir system with a dual-purpose of
generating electricity and supplying water for
agricultural irrigation. The following are defini-
tions of parameters in the system:

L,,:the water level (quantity) at the start of the
period n","

Q,,: the amount of water released during period
n"," i.e., the outflow of water, and

I,,: rainfall to the water reservoir system during

period n"," i.e., the inflow.

It is assumed that /,, is a random variable
independent from period to period. In addition,
it will be treated as if it is deterministic. To
achieve an equilibrium in the system, the follow-
ing

equation must affirm:

New Level= Old Level + Inflow — Outflow. (7)
Mathematically
Ly 7Lyt O (8)
or
Lyy-Ly-Op=1y )

Assuming that the reservoir has a maximum cpacity
it follows that

L,<M, forall n=1,2,.., N (10)
and thus,
Ly j=min{M, L, +1,-Q, } (11)

It is also assumed that there exists a target water
level of e units per period for electrical genera-
tion, and that there is no income value for ex-
ceeding the target level. Let E be the unit income
for electrical use and K be the unit penalty for
electrical shortages. Hence, the profit from elec-
trical generation, E. P(n+ 1) in period n+ 1, is
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EP, ;=Emin{L, |, e}-Kmax{0, e-L, 1} (12)

It is assumed that water released for irrigation
has a unit value of W. The profit from irriga-
tion in period n+ 1, IP(n+ 1) is dependent on the
outflow of water during period n. This relation-

ship is depicted as follows:
P, =W0Q, (13)
Therefore, the expected total profit in period

nt1, TP, ; is sum of model 12 and 13 Mathe-
matically, it is written as follows:

TP =E.By+IP,, = Eminfl, e} - K.max{0,e - L} +W.0,
(14)

We can then formalize the optimization prob-

lem given the objective function in model 14 and

constraints in 9 and 10. Therefore, the formula-
tion of water reservoir program is

maxTP,,; = EP,, +1P, = Emin{l,.; e} - K.max{0e - L} + W.0,

s.t. LnH._ LR+Q" =
L <M,
Ouly Lyl 20, n=1,.N
(15)

However, the objective function in model 2 is
not linear. Hence, to 15 , we shall define

W, j=min{L, . 1.e}, (16)
so that

Wt < Lyt 17
and

Wyr1<e (18)
Also, by defining

X, 4 j=max{0, e-Ly | }, (19)
It follows that

Xy+120, (20)
and



Xpt1ZeLptp @1
Holds. Given the new characterizations, 15 be-
come a simple LP model. Consequently,

max TP‘J’l'l'l =l m1+1 —K. Xn+1 +W. O—n
s. L. Ln+1_Ln+O?1:Lm
Knt1+Llpyn 26
Wit1 < e,
L, <M,

O?U W?i'.-l-lJ Ln; 1[“!’?.-I-lJ XTH-lr n= 1] rN-

UNCERTAINTY ABOUT PARAMETERS

OF A THEORETICAL DISTRIBUTION

In our previous discussion, we have treated I,
as deterministic. However, in this case, we are
considering rainfall /,, to be a random variable
with an arbitrary distribution with mean p and
variance o° and that the observations are inde-
pendent. Therefore, summing the following con-
straint

Lysj-Ly+ O=1, (23)

from 1 to some will result in the following
equation

ﬁ:l( Lpes —Ln + On) — Eﬁ:lln (24)
B, ~ Ly T (O S B B (25)
For a sufficiently large k, },~;"/,, is normally
distributed by the Central Limit Theorem. Divid-

ing both sides of model 25 by k, we shall obtain
the following result:

Lpyq1—L; 1 1
% —I_EZﬁ:l OT! = E g:l ‘rn (26)

We can further simplify model 26 to

—LM;_Ll + 0, =1 (27)
where
B= N 0 (28)
T==< 5k o
[ n=1"'n (29)

Given these criteria, kindependent and identi-
cally distributed random variables, 22 can be rep-
resented as a linear system with linear
constraints, the presumption of maximum admis-
sible probabilities of inflows can be managed by
chance-constrained linear rogramming (CLP)
techniques. These techniques were first consum-
mated by Charnes and Cooper (1963) and have
been illustrated by Revelle et al. (1969):

maxZ=c’ x,
s.t. Ax=b,
P[Tx>p] >a,
x>0

(CLP)

Where P[0 | denotes probability, a is a con-
stant vector, c is cost coefficient vector, b is a
right-hand side vector, 4 and T are coefficient
matrices, and lastly, x is a decision vector.

THE PROBABILISTIC MODEL
For a dual-purpose water reservoir system, a
chance-constrained stochastic program is appro-
priate and is formulated as follows:

max TPk-I-l = Wk+l_K'Xk+l ‘|‘W Ok;
5.t Pllig1 + 0k STyl Vi) 21— ¢,

Xivr +Lps1 2 €, (PWRP)

Wi <e,
Wietr = L1 <0,
Ly =M,

Lk+ll Xk+ll Ok = 0: k = 1:21

where yi.; is equal to Y »-1*"0,-L jand is con-
stant because sample data are known. 1-a is the
level of significance.

The above probabilistic water reservoir
program (PWRP) is equivalent to a deterministic
model which is a linear program.

THE DETERMINISTIC MODEL

Our procedure in using rainfall data samples to
estimate the parameter p will follow the recursive
least-squares approach. This algorithm will en-
able us to recursively revise the estimate at time
k to reflect the most recent data sample obtained
in period k+1. The parameter cr, on the other
hand, is estimated from the maximum likelihood
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formula for nonoverlapping blocks of data sam-
ples as shown below. Given most recent esti-
mates of the parameters, we then use this
information to formulate a deterministic model.

Since there may be zero rainfalls for several pe-
riods, the variance estimate should be based on
a sufficiently large block of data. To compute the
variance of the rainfall variable for every block
of some k data points, we use the maximum like-
lihood estimation formula

1 P
JIE == Ezﬁzl(‘!ﬂ = Ik)z
2

i - 30
O3 = EfoikuUn ~ L)% (30)
where
- 1
L, = ;Efﬁikﬂ L. (31)

Assume that we have a historical (a priori) es-
timate of the variance, and that the updating will
be done at the sample periods 7 , k=1, 2, 3 and
so on. A simple method for updating the sample
variance for period t from the last available value
ou-17° is through the exponential smoothing for-
mula

of = 0§ + A(of — a}),
0} = of + Ao, — of),

(32)

0f = 0f 1 + A(O_tzk =iy Yy

where is the smoothing constant which as-
sumes a value in the range [0,1].

The recursive least-squares method for updat-
ing the mean parameter pof the rainfall distribu-
tion does not require normality in the data. The
properties of the updated estimates x5, (+) are
unbiasedness and minimum variance. The plus
symbol in x 7, (+) denotes that it is a posterior
estimate. Thus the prior estimate, before the
measurement I_n is received, is denoted by u 7,
().

The recursive updating formula for the mean is
given as follows:

() = An(2) + 3 {1 — in(), (33)

where o7 is the most recent estimate of the
variance by the block approach in Eq. 32 and S°
(F)=E [u, (+)-u] ° posterior error variance of
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the mean estimate S.° (+) can be recursively
computed from the prior, S.” (-)=E [u;, (-)-u]° by
the recursive equation

L . T g o
%_Sﬁ(—)—i_a?’ =120k

(34)

and =0 for n<k, =1 for k<n<2k,... .

To start the recursive algorithm, we need some
unbiased estimates S,” (-), u"; (-) and co>. We
will employ the posterior estimate, p7, (+), and
o¢ in the deterministic model for sequential
planning of the dual-purpose water resource sys-
tem.

We can now proceed to formulate a determin-
istic model in terms of the posterior estimates
from the above algorithm:

max TPy =EW,,-KX,, +W.0,

St Lyss 4 Op 20fly(+) + Z140V00: — Yy,
Knvitlunn2e (DWRP)
Wi <e,

Wass = Lnt1 £0,

Ly sM,

Lyvs, Xy, Op 20, n=12,..k...2k, ...

=0forn <k, =1 for k< n< 2k and so on,
and where 2(]-q) is the standard-ized 100(1-o)™®
normal quantile.

CONCLUSIONS

This paper provides an analytical framework
for the evaluation of electricity generation and
water supply for agricultural irrigation. The op-
timal total profit was determined by a chance-
constrained linear program. We believe that
through the incorporation of Recursive Least-
Squares (RLS) estimates and the variance updat-
ing procedure in the model, it enables more
accurate estimates of the uncertain rainfall
process parameters. Further, the RLS procedure
makes it easy to extend beyond the (assumed) in-
dependently, identically distributed rainfall meas-
urements to random walk and Gauss-Markov
processes. Then we could transform our CLP into
a probabilistic model which is equivalent to a de-
terministic model. Another exten-sion is possible
through using other formulations such as stochas-



tic linear programming with recourse. In this pro-
gram, the solution is obtained by making deci-
sions in multiple stages. This modeling approach
permits random variables to be incorporated in the
constrained set of an LP problem. Hence, this ap-
proach is applicable to our water resource system
problem. Future research is needed to test the ap-
plicability of our models under various condi-
tions.
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