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Abstract
Obtaining analytical or numerical solution of fractional differential

equations is one of the troublesome and challenging issue among math-
ematicians and engineers, specifically in recent years. The purpose of
this paper Lie Symmetry method is developed to solve second-order
fractional differential equations, based on conformable fractional de-
rivative. Some numerical examples are presented to illustrate the pro-
posed approach.  
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INTRODUCTION
Although solving fractional differential equa-

tions is very important, there are many fractional
differential equations which can’t be solved ana-
lytically. Due to this fact, finding an approximate
solution of fractional differential equations is
clearly an important task. In recent years, many
effective methods have been proposed for finding
approximate solution to fractional differential
equations (Ouhadan & Elkinani, 2014; Elsaid et
al., 2016; Zhanglie, 2015; Yang et al., 2014;
Kumar et al., 2014; Khalil & Rashidi, 2015;
Singh et al., 2016; Gaur & Singh,  2016; Gaur &
Singh, 2016). The purpose of this paper Lie Sym-
metry method is expanding to solve fractional
differential equations, based on conformable
fractional derivative.

The organization of this paper is as follows: In
Section 2, Conformable fractional derivative,
will be described. In Section 3, Lie symmetry
method for second-order fractional equations,
will be explained. In Section 4, devoted to solv-
ing three second-order nonlinear fractional dif-
ferential equations. Finally, discussion will be
given, in section 5. 

CONFORMABLE FRACTIONAL DERIVATION
Recently, conformable fractional derivative is

proposed which removed some of drawbacks the
presented definitions (Khalil et al., 2014; Abdel-
jawad, 2015)

Consider a function f:[0,∞)→ . Then conform-
able fractional derivative of f of order α is defined
by 

for all t>0,α∈(0,1]. If f is α- differentiable in
some (0,a), a>0, and limt→0+ Τα(f)(t) exists, then
one can define Τα(f)(0)=limt→0+ Τα(f)(t).

If the conformable derivative of f ,of order α, ex-
ists then we simply say that f is α- differentiable.

One can easily show that Τα satisfies all the fol-
lowing properties:

Let α ∈ (0,1] and be α-differentiable at a point
t > 0, Then

1. For a, bϵ Τα (af+bg)=a Τα (f)+b Τα (g),
2. For all pϵ Τα (t p)=pt p-α,
3. For all constant functions f(t)=λ,  Τα (λ)=0,

Τα (f.g)=g.Τα (f)+f .Τα (g),
Τα (f/g)=g.Τα (f)-f .Τα (g))/g2,
Τα (f)=t1-α df/dt.

LIE SYMMETRY METHOD FOR SECOND-
ORDER FRACTIONAL DIFFERENTIAL

EQUATIONS
The second-order fractional differential equa-

tions can be as following

ΤαΤαy=G(t,y,Ταy),                                          (1)

where G is a functional operator and y is an un-
known function α-differentable.

Changing  the independent variable as follows
x=1/α tα,  and substitution of into Eq. 1, leads to

y''=F(x,y,y' ), (2)

Eq. 2 is a second-order ordinary differential
equation. 

Consider Eq. 2 is invariant under Lie group

x =̅x+X(x,y)ε+O(ε2),    y =̅y+Y(x,y)ε+O(ε2),  (3)

namely if be confirmed Eq. 2, then

y '̅' =F(x ,̅y ,̅y '̅ ).                                           (4)

Substitution of the infinitesimal transformation
3 and their second-order derivative into Eq. 4 re-
sults in 

(d2y)/(dx2)+(∂2Y/∂x2+[2∂2Y)/∂x∂y-∂2X/∂x2]
dy/dx+[(∂2Y)/(∂y2)-2(∂2X)/∂x∂y](dy/dx)2-∂2X/∂y2

(dy/dx)3-[∂Y/∂y-2 ∂X/∂x]d2y)/dx2-3 ∂X/∂y dy/dx
d 2 y / d x 2 ) ε + Ο ( ε 2 ) = F ( x + X ( x , y ) ε + Ο
(ε2),y+Y(x,y)ε+Ο(ε2),dy/dx+(∂Y/∂x+[∂Y/∂y-
∂X/∂x]dy/dx-∂X/∂y(dy/dx)2)ε+Ο(ε2)) .

Expanding to order Ο(ε2) gives
d2y/dx2+(∂2Y/∂x2+[2∂2Y/∂x∂y-∂2X/∂x2]

dy/dx+[∂2Y/∂y2-2 ∂2X/∂x∂y](dy/dx)2-∂2 X/∂y2

(dy/dx)3-[∂Y/∂y-2 ∂X/∂x] (d2y)/(dx2)-3 ∂X/∂y
dy/dx d2y/dx2)ε+Ο(ε2)=F(x,y,dy/dx)+(X∂F/∂x+
Y∂F/∂y+(∂Y/∂x+(∂Y/∂y-∂X/∂x)dy/dx-∂X/∂y
(dy/dx)2) ∂F/∂y')ε+Ο(ε2).

Discussed Lie group would be valued , if by
using Eq. 2 , the following results be satisfied to
Ο(ε2)
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(∂2Y)/(∂x2)+[2∂2Y/∂x∂y-∂2X/∂x2]dy/dx+[∂2Y
/∂y2-2 ∂2X/∂x∂y](dy/dx)2-∂2X/∂y2(dy/dx)3-[∂Y/∂y-
2 ∂X/∂x] (d2y)/(dx2)-3 ∂X/∂y dy/dx (d2y)/(dx2) =
(5)

X ∂F/∂x+Y ∂F/∂y + (∂Y/∂x+(∂Y/∂y-∂X/∂x) dy/
dx -∂X/∂y (dy/dx)2) ∂F/(∂y').

This is known as Lie’s Invariance Condition,
and for a given F(x,y), any functions X(x,y) and
Y(x,y) that solve Eq. 6 are the infinitesimals.
Thus, if we have the infinitesimals X and Y then
solving equations

X(x,y) ∂r/∂x+Y(x,y) ∂r/∂y=0,  X(x,y)∂s/∂x+Y
(x,y) ∂s/∂y = 1,    (6)

would lead to the production alteration, that Eq.
2 converts of a second-order equation independent
of s (Arrigo, 2015; Hydon, 2000; Olver, 2000).

EXAMPLES
In this section, to illustrate the proposed ap-

proach, three examples will be presented.
Example 1. Consider nonlinear fractional dif-

ferential equation the following

Τα Τα y+3y Τα y+y3=0  (7)

Changing the independent variable as follows
x=1/α tα, and substitution of into Eq. 7 results in

y''+3yy'+y3=0,                                             (8)

where

F(x,y,y')=-3yy'-y3. (9)  

By substitution of 9  into Eq. 5 , we drive 

∂2Y/∂x2+[2∂2Y/∂x∂y-∂2X/∂x2]y'+[∂2Y/∂y2-2
∂2X/∂x∂y](y')2-∂2X/∂y2(y')3+[∂Y/∂y-2∂X/∂x](3
yy'+y3)+ 3 ∂X/∂y y' (3yy'+y3)+Y(3y'+3y2 ) +(∂Y
/∂x+(∂Y/∂y-∂X/∂x) y'-∂X/∂y (y')2)3y=0 .

Setting the coefficients of y',y'2, and y'3 to zero,
gives

(∂2Y)/(∂x2)+2y3∂X/∂x+3y2Y+3y∂Y/∂x-y3 ∂Y/
∂y=0,                    

2(∂ 2 Y)/∂x∂y-(∂ 2 X)/(∂x 2 )+3y∂X/∂x+3y 3

∂X/∂y+3Y=0,
(10)

(∂2Y)/(∂y2)-2 (∂2X)/∂x∂y+6y ∂X/∂y=0,
(∂2X)/(∂y2)=0 .

The solution of the system of Eq.10  leads to
the infinitesimals X and Y as the following

X=(c1+c2x+c3x2+c4x3+c5x4)y+c6+c7 x+c8 x2-2c5 x3

Y=-(c1+c2x+c3x2+c4x3+c5x4)y3+(c2+2c3x+3c4

x2+4c5x3) y2

(11)
-(2c3+c7+(6c4+2c8)x+6c5x2)y+4c4+2c8+4c5 x,

where c1,c2,…c8, are arbitrary constants.
For example if c1=1,c2=c3=⋯=c8=0, then ac-

cording to Eqs. 11, the infinitesimals X and Y as
follows

X=y,  Y=-y3.

Substitution of this infinitesimals of Eq. 6 , and
its solving leads to

r=x- 1/y, s=1/2y2,  (12)

that under this change of variables, Eq. 8 be-
comes 

s''=1. (13)

Example 2. Consider fractional differential
equation the following

αy2ΤαΤαy+2tα(Ταy)3=0 (14)

Changing the independent variable as follows
x=1/α tα, and substitution of into Eq. 14 yields in

y2 y''+2x(y')3=0,  (15)

that

F(x,y,y')=-2x(y')3/y2 (16)

By substitution of 16 into Eq. 5 , we drive 
∂2Y/∂x2+[2∂2Y/∂x∂y-∂2X/∂x2]y'+[∂2Y/∂y2-2

∂ 2 X / ∂ x ∂ y ] ( y ' ) 2 - ∂ 2 X / ∂ y 2 ( y ' ) 3 + [ ∂ Y / ∂ y - 2
∂X/∂x](2x(y')3)/y2)+3 ∂X/∂y y'(2x(y')3)/y2)+X
2(y')3)/y2-Y(2x(y')3)/y3)+(∂Y/∂x+(∂Y/∂y-∂X/∂x) y'-
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∂X/∂y (y')2)(6x(y')2)/y2)=0 
Setting the coefficients of y',y'2, and y'3 to zero,

gives
(∂2Y)/(∂x2)=0,
2 ∂2Y)/∂x∂y-(∂(X)/(∂x2)=0,                         (17)

(∂2Y)/(∂y2)-2 ∂2X/∂x∂y+6x/y2 ∂Y/∂x=0,
-∂2Y/∂y2+8x/y2 ∂Y/∂y-10x/y2 ∂X/∂x+2/y2X-4x/y3

Y=0 .

The solution of the system of Eq. 17 leads to
the infinitesimals X and Y as follows

X=(2c1y+c2/y2)x2+(2c3y3+c4/y3+c5)x+c6 y2+c7/y  
Y=(c1y2-c2/y)x+c3 y4+c8 y-c4/y2 .                      

(18)
where c1,c2,…c8, are arbitrary constants.
For example if c5=1, and other ci=0, according

to Eqs. 18 and 6 , we gives

r=y,  s=lnx,                                                (19)

that under this change of variables, Eq. 15 be-
comes 

r2 s''+r2 (s')2-2=0.

Example 3. Consider the following nonlinear
fractional differential equation

αΤαΤα y+yΤα y+tα y4=0.                              (20)

Changing the independent variable as follows
x=1/α tα, and substitution of into Eq. 20 reads in

y''+yy'+xy4=0, (21)

where
F(x,y,y')=-(yy'+xy4 ). (22)

By substitution of 21  into Eq. 5, we drive 
∂2Y/∂x2+[2 ∂2Y/∂x∂y-∂2X/∂x2]y'+[  ∂2Y/∂y2-2

∂ 2 X / ∂ x ∂ y ] ( y ' ) 2 - ∂ 2 X / ∂ y 2 ( y ' ) 3 - [ ∂ Y / ∂ y - 2
∂X/∂x](yy'+xy4)-3 ∂X/∂y y'(yy'+xy4)+Xy4 +Y
(y'+4xy3)+(∂Y/∂x+(∂Y/∂y-∂X/∂x) y'-∂X/∂y(y') 2)
y =0.

Setting the coefficients of y', y'2, and y'3 to zero,
gives

∂2Y/∂x2-xy4 (∂Y/∂y-2 ∂X/∂x)+y ∂Y/∂x+Xy4+4x y3

Y=0,   
2(∂2Y)/∂x∂y-∂2X/∂x2+y ∂X/∂x+3xy4 ∂X/∂y+Y= 0, 

(23)

∂2Y/∂y2-2 ∂2X/∂x∂y+2y ∂X/∂y=0,
∂2X/∂y2=0 .

The solution of the system of Eq. 17  leads to
the infinitesimals X and Y as follows

X=cx,      Y=-cy . (24)

By setting c=1,  in 24 and substituting this of
Eq. 6 , and  its solving leads to

r=xy,    s=lnx.

In terms of these new variables, Eq. 21 be-
comes

s''=(r4-r2+2r)(s')3+(r-3)(s')2,

that is a second-order differential equation in-
dependent of s.

CONCLUSION
In this paper, Lie Symmetry Analysis method

have been applied for solving fractional differen-
tial equations, based on conformable fractional
derivative. Second-order fractional differential
equations, have been explained by the presented
method. Some examples are given for more ex-
planation and clarification. The results showed
that the presented method is easily applicable for
this kind of equations.
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