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Abstract
Conventional data envelopment analysis (DEA) assists decision

makers in distinguishing between efficient and inefficient decision
making units (DMUs) in a homogeneous group. However, DEA does
not provide more information about the efficient DMUs. One of the
interesting research subjects is to discriminate between efficient DMUs.
The aim of this paper is ranking all efficient (extreme and non-extreme)
DMUs based on defining the new index which is obtained from basic
definitions of models. The proposed method has been able to remove
the existing deficiencies in some ranking methods and therefore makes
a new contribution to DEA ranking.
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INTRODUCTION
Data envelopment analysis (DEA) is a mathe-

matical programming technique that evaluates
the relative efficiency of a homogeneous group
of operating decision making units (DMUs), such
as schools, hospitals, or sales outlets. The DMUs
usually use a set of resources, referred to as input
indices, and transform them into a set of out-
comes, referred to as output indices. DEA suc-
cessfully divides them into two categories:
efficient DMUs and inefficient DMUs. The
DMUs in the efficient category have identical ef-
ficiency scores. Therefore, the efficiency meas-
ure obtained by DEA can be used for ranking
DMUs, but this ranking cannot be applied to ef-
ficient units. In other words, DEA does not pro-
vide more information about the efficient DMUs.
However, it is not appropriate to claim that they
have the equivalent performance in actual prac-
tice. One of the interesting research subjects is to
discriminate between efficient DMUs. Several
authors have proposed methods for ranking effi-
cient DMUs. Andersen and Petersen (1993) have
presented a model that has named AP for ranking
of efficient DMUs. Their proposed method re-
moves the DMU under assessment from the set
of DMUs and evaluates the distance (possibly)
new efficient frontier as its rank score. Infeasi-
bility of the model in some cases and inability to
rank non-extreme efficient DMUs are two of the
problems of this method. Jahanshahloo et al.
(2007) presented a new ranking system for ex-
treme efficient DMUs based upon the omission
of these efficient DMUs from reference set of the
inefficient DMUs. In their method, the efficiency
change of DEA inefficient units is measured be-
fore and after the DEA efficient unit is excluded
from their reference set. The DEA efficient unit
that can cause the biggest efficiency change of
DEA inefficient units when it is removed from
their reference set is deemed as the most impor-
tant DMU. For this reason, this method has
named changing the reference set. In this paper,
we intend to propose an alternative DEA ranking
approach. However, the new proposal enables an
efficiency ranking for both extreme and, in par-
ticular, non-extreme efficient DMUs. What’s
more the infeasibility problem that may arise in
mentioned methods is eliminated as well. Khod-
abakhshi and Ariavash (2012) offered a method

to rank DMUs. In their method, the maximum
and minimum efficiency value of each DMU are
measured by considering the sum of all efficien-
cies equal one. Finally, the rank of each DMU is
determined in proportion to a convex combina-
tion of its minimum and maximum efficiency
values. Jahanshahloo et al. (2017) modified this
method by applying the optimistic and pes-
simistic optimal weights of all DMUs in ranking
of the evaluated DMU. Ziari and Ziari (2016) in-
troduced a model for ranking efficient DMUs
based on the minimizing the coefficient of vari-
ation for inputs-outputs weights. Ziari and Shar-
ifzadeh (2017) proposed a DEA-based approach
for benchmarking and ranking extreme efficient
units using the idea of super efficiency model and
comb  ining 1 and ∞ norms with constant and
variable returns to scale.

The cross-evaluation method can be utilized to
rank DMUs using cross-efficiency scores (Sex-
ton et al., 1986). The main idea of cross-evalua-
tion is to use DEA in a peer evaluation instead of
a self-evaluation mode. However, the non-
uniqueness of the DEA optimal weights may re-
duce the usefulness of cross-efficiency as
reported in Doyle and Green (1994).  Hence
choosing weights between alternative optimal so-
lutions as part of a procedure for ranking DMUs
is an important problem. See for example Green
et al. (1996), Liang et al. (2008), Cooper et al.
(2007; 2009), Wu et al. (2009).

In the same way, this paper is concerned with
the selection of weights between the alternative
optimal solutions of the dual multiplier model for
a complete ranking of DMUs. The basic idea in
this method is to compare the DMUs by first ef-
ficiency score and second a new index which is
obtained from basic definitions of models.
Hence, this paper is organized as follows. In sec-
tion 2, we review the cross-efficiency evaluation
approach proposed by Sexton. Our new method
for complete ranking of DMUs is introduced in
section 3. Two numerical examples are docu-
mented in section 4. Finally concluding remarks
are summarized in the last section.

SEXTON METHOD: CROSS-EFFI-
CIENCY EVALUATION

Suppose that we have n DMUs, where each
DMUj, j=1,…,n, produces s different outputs
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yrj=(r=1,…,s) using m different inputs xij=(i=1,…
,m)  . Also, we assume that all the inputs and out-
puts are non-negative and at least one input and
one output of each DMU is strictly positive.

To estimate a DEA efficiency score of the spe-
cific pth DMU, we use the following original
DEA model:

(1)

where u_rp and v_ip represent the ith input and
rth output weights for DMUP. The constraints
mean that the ratio of "virtual output" vs. "virtual
input" should not exceed 1 for every DMU. The
objective is to obtain weights  v_ip and  u_rpthat
maximize the ratio of DMUP, the DMU being
evaluated. By virtue of the constraints, the opti-
mal objective value  E_pp^*is at most 1. 

The cross-efficiency of DMUt, using the
weights that DMUp has selected in model (1), is
then

(2)

Where (*) denotes optimal values in model

(1). The values obtained from (2) can be organ-
ized in a matrix which is called cross-evalua-
tion matrix as illustrated in Table 1. 

For DMUt (t=1,…,n), the average of all
Ept(p=1,…,n),                     ,referred to as the
cross-effciency score for DMUt. By using this
column average of cross-evaluation matrix, Sex-
ton proposed a method for ranking DMUs.

THE PROPOSED METHOD
We point out that DEA model (1) can be trans-

formed equivalently into the following linear
programming (see Charnes & Cooper, 1962)
where the optimal value of the objective function
indicates the relative efficiency of DMUp. The
reformulated linear programming problem, also
known as the CCR model (Charnes et al., 1978),
is as follows:

(3)

In evaluating DMUp, ∑r=1s urp*yrj and ∑i=1m wip*xij

is referred to as the total revenue and total cost
for jth DMU, respectively. Hence first restriction
calculates (i.e.,  ∑r=1s urp* yrj -∑i=1m wip* xij≤0)
the pure profit for DMUj (See Alirezaee &
Afsharian, 2007) for a detailed discussion).

(4)

The model (4) can be rewritten as follows: 

(5)
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DMU1 DMU2 .            .
. DMUn

DMU1 E11 E12 .            .
. E1n

DMU2 E21 E22
.            .

. E2n

.

.

.

.

.

.

DMUn En1 En2 .            .
. Enn

Table 1: Cross-evaluation matrix



where Epp* is the optimal value of the objective
in (3).

Now, we employ a new index of DMUp in the
cross-evaluation matrix as shown in Table 2. For
each DMUp (p=1,…,n) , the sum of row quanti-
ties of other DMUs,                             , is used for
ranking. Hence among the DEA-efficient DMUs,
the higher the H p̅ value, the better the rank of
DMUp. Specially, DMUl has a better rank than
DMUk, if Both DMUs are the same in efficiency
score and H l̅>H k̅.

Since in real-world applications the probability
that two real numbers with decimal digits be-
come equal, is zero, no DMUs receive the same
indexes. This only happens if all DMUs lie on
the same efficient hyperplane, which is not a re-
alistic situation.  

While the results from the AP method can be
infeasible, the proposed model is always feasible.
This method can also be used to rank all efficient
(extreme and non-extreme) DMUs. For this
usage, the method is less problematic than other
ranking methods (Andersen and Petersen, 1993;
Jahanshahloo et al., 2007)

NUMERICAL EXAMPLE
In this section we are going to ranking the data

listed in Table 3. we are also going to rank the
Iranian bank branches by our proposed method.

Fictional data
Table 3 shows 5 DMUs with 2 inputs and 1 out-

put where the output value is scaled to 1 for each
DMU. Also, Fig. 1 describes these 5 DMUs. The
initial results are given in Table 4, where in the
lines we have DMUs and in the columns we have
the efficiency of the CCR model and the optimal

weights of (3). The new index and order of effi-
cient DMU are calculated through (5) and they
are listed in Table 5. 

Real data
We, now, describe the advantages of our pro-

posed method by using the inputs and outputs of
20 Iranian bank branches which are presented in
Table 6. The data reported here are taken from
Amirteimoori and Kordrostami (2005). Note that
the data are scaled. As can be seen in the last col-

Iranian Journal of Optimization, 10(2): 93-99, 201896

Table 2: The new cross-evaluation matrix

DMU1 DMU2 .            .
. DMUn

DMU1 H11 H12 .            .
. H1n

DMU2 H21 H22
.            .

. H2n

.

.

.

.

.

.

DMUn Hn1 Hn2 .            .
. Hnn

Table 3: DMUs’data (extracted from Alirezaee
and Afsharian, 2007)

DMU            A B C D E
Input 1 4 7 8 4 2
Input2          3 3 1 2 4
Output          1 1 1 1 1

Fig. 1. The Farrel Frontier

Table 4: The optimal weights of model (3)
DMU Efficiency w1 w2 µ
A 0.8571 0.1429 0.1429 0.8571
B 0.6316 0.0526 0.2105 0.6316

C 1.0000 0.0833
0

0.3333
1.0000

1.0000
1.0000

D 1.0000 0.1667
0.0833

0.1667
0.3333

1.0000
1.0000

E 1.0000 0.1667
0.5000

0.1667
0

1.0000
1.0000

Table 5: The new index and order of efficient MUs
DMU New index Rank
C -1.4157
D -0.7498
E -1.3344
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umn of Table 6, DMUs 1, 4, 7, 12, 15, 17 and 20
are CCR efficient. Table 7 presents the results of
Sexton ranking using some of the optimal
weights obtained from (3) that summarized as
follows:

DMU1:
A) w1=0, w2=0, w3=6.4516130, μ1=1.7062960,

μ2=1.1176250, μ3=0.3191844
B) w1=0, w2=0, w3=6.4516130, μ1=2.6539210,

μ2=0.9515451, μ3=0
C) w1=0.2374179, w2=0, w3=4.9964710,

μ1=2.1199880, μ2=1.0406650, μ3=0.1877674
DMU4:
A) w1=1.0951080, w2=0, w3=0.2511046, μ1=0,

μ2=0, μ3=1.0000000
B) w1=0, w2=0, w3=4.7619050, μ1=0, μ2=0,

μ3=1.0000000
C) w1=1.1143090, w2=0, w3=0.1720109,

μ1=0.7570253, μ2=0, μ3=0.8538941
DMU7:
A) =1.3908210, =0, =0, =0, =1.1111110, =0
B) =0, =1.6666670, =0, =0, =0.7679909,

=0.4312964
C) w1=1.1725710, w2=0, w3=0.4483462, μ1=0,

μ2=0.4611661, μ3=0.8169701
DMU12:
A) w1=1.0084500, w2=0, w3=0.7143018, μ1=0,

μ2=1.0834240, μ3=0
B) w1=0.2900087, w2=0, w3=2.9992270, μ1=0,

μ2=0.8494963, μ3=0.3438135
C) w1=0.8656812, w2=0, w3=1.1683630, μ1=0,

μ2=0.7140431, μ3=0.5428952
DMU15:
A) w1=0, w2=1.0526320, w3=0, μ1=1.0000000,

μ2=0, μ3=0
B) w1=1.4598540, w2=0, w3=0, μ1=1.0000000,

μ2=0, μ3=0
C) w1=1.3254440, w2=0, w3=0.2046027,

μ1=0.9004628, μ2=0, μ3=1.0156860
DMU17:
A) w1=0.7412812, w2=0, w3=1.2620430, μ1=0,

μ2=1.0000000, μ3=0
B) w1=0, w2=0, w3=4.8780490, μ1=0,

μ2=1.0000000, μ3=0
C) w1=0.6516252, w2=0, w3=1.6993890,

μ1=0.972008
3, μ2=0.9125193, μ3=0
DMU20:
A) w1=1.7152660, w2=0, w3=0, μ1=0.9340329,

μ2=0.6871794, μ3=0.6212579
B) w1=1.7152660, w2=0, w3=0, μ1=0, μ2=0,

μ3=1.3089010
C) w1=1.7152660, w2=0, w3=0, μ1=1.0616650,

μ2=0, μ3=1.1560430
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Branch 
Inputs Outputs CCR 

efficiencyStaff Computer terminals Space (m2) Deposits Loans Charge
DMU1 0.950 0.700 0.155 0.190 0.521 0.293 1.000
DMU2 0.796 0.600 1.000 0.227 0.627 0.462 0.833
DMU3 0.798 0.750 0.513 0.228 0.970 0.261 0.991
DMU4 0.865 0.550 0.210 0.193 0.632 1.000 1.000
DMU5 0.815 0.850 0.268 0.233 0.722 0.246 0.899
DMU6 0.842 0.650 0.500 0.207 0.603 0.569 0.748
DMU7 0.719 0.600 0.350 0.182 0.900 0.716 1.000
DMU8 0.785 0.750 0.120 0.125 0.234 0.298 0.798
DMU9 0.476 0.600 0.135 0.080 0.364 0.244 0.789
DMU10 0.678 0.550 0.510 0.082 0.184 0.049 0.289
DMU11 0.711 1.000 0.305 0.212 0.318 0.403 0.604
DMU12 0.811 0.650 0.255 0.123 0.923 0.628 1.000
DMU 13 0.659 0.850 0.340 0.176 0.645 0.261 0.817
DMU14 0.976 0.800 0.540 0.144 0.514 0.243 0.470
DMU15 0.685 0.950 0.450 1.000 0.262 0.098 1.000
DMU16 0.613 0.900 0.525 0.115 0.402 0.464 0.639
DMU17 1.000 0.600 0.205 0.090 1.000 0.161 1.000
DMU18 0.634 0.650 0.235 0.059 0.349 0.068 0.473
DMU19 0.372 0.700 0.238 0.039 0.190 0.111 0.408
DMU20 0.583 0.550 0.500 0.110 0.615 0.764 1.000

Table 6: Real data and their CCR efficiencies



As can be seen, the existence of alternative op-
timal weights for these efficient DMUs leads to
multiple cross-efficiency scores and hence the
ranking of units is not possible and this is the
main problem of this method. For example, in the
second column, DMU7 achieves the top ranking,
whilst in the third column, it has the 3th rank
amongst DMUs. DMU17, which is ranked in the
last position by the fourth column, gets the fourth
rank according to third column and so on. The
question is: which of these efficient DMUs must
be located in the higher position. As a result, in
this case the decision maker (DM) cannot decide
by considering different ranks.

Now, we rank these seven efficient DMUs ac-
cording to the AP and changing the Reference set
methods. Table 8 presents the ranking related
scores assigned to DMUs by these methods. In
Table 9, the suggested method ranks the DMUs.
As can be seen in Table 9, the first position is as-
signed to DMU15. It can be seen in Table 8 that
this unit gets the most ranking related score by
the above mentioned methods. DMU1, which is
located in the last position by the proposed
method, gets the lowest ranking related score by
using earlier methods. It is obvious that the rank-
ing results for these methods are consistent with
our methodology results.
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Branch Ranking based on
weight A

Ranking based on
weight B

Ranking based on
weight C

1 7 5 6
4 3 1 1
7 1 3 2
12 2 2 3
15 6 7 5
17 5 4 7
20 4 6 4

Table 7: Results of Sexton ranking based on alternative optimal weights

Branch AP Changing the reference
set

1 1.100470 0.1958082
4 1.933270 0.205381
7 1.172494 0.2024802
12 1.110409 0.1963884
15 4.902439 0.2291681
17 1.347673 0.1963884
20 1.184034 0.1972586

Table 8: Ranking related scores assigned to DMUs by ranking methods

Branch New index The proposed Rank

1 -19.298 7
4 -4.3356 3
7 -4.2443 2
12 -5.7494 5
15 -2.8645 1
17 -4.731 4
20 -8.1474 6

Table 9: Results of ranks by proposed method

CONCLUSION
The existence of alternative optimal weights for

the efficient DMUs leads to multiple cross-effi-

ciency scores and hence the ranking of units is
not possible with the Sexton method, as can be
seen in Table 7. First, we have introduced a new
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index which is obtained from basic definitions of
models and then compared the proposed method
with the methods developed by Andersen and Pe-
tersen (1993) and Jahanshahloo et al. (2007). It
has been shown whereas the ranking results for
the AP and changing the reference set methods
are consistent with the present study results, the
new proposal enables an efficiency ranking for
both extreme and, in particular, non-extreme ef-
ficient DMUs. What’s more, the infeasibility
problem that may arise in mentioned methods is
eliminated as well. For this reason, our method
is superior to these methods in removing their de-
ficiencies and therefore makes a new contribu-
tion to DEA ranking. What we should point out
here is that the computational complexity of our
method can increase with increase of the number
of DMUs, so how to provide better method is an
interesting issue for future research.
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