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Abstract
In this paper, convex semi-infinite programming is converted to an

optimal control model of neural networks and the optimal control
model is solved by iterative dynamic programming method. In final,
numerical examples are provided for illustration of the purposed
method.
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INTRODUCTION
Semi-infinite programming models apply in

mathematics, engineering, physics, social and
other sciences when some processes or systems
depend on a finite dimensional variable and are
described with the help of an infinite number of
constraints. In the last decades, semi-infinite op-
timization has become a topic of a special interest
due to a number of practical applications and the
relationship with other mathematical fields (Het-
tich et al., 1993; Polak, 1983; Weber, 2002).

Many optimization problems are naturally cast
as semi-infinite problems; for instance, continu-
ous time, optimal control problems subject to all
time state constraints. A study of explicit opti-
mality conditions as well as a comparison of
these conditions with the known optimality con-
ditions of convex semi-infinite programming
(CSIP) (Ben Tal et al., 1980; Hettich et al., 1993;
Kortanek et al., 2005) is the subject of a separate
investigation (Kostyukova et al., 2006).

In (Song et al., 1998), the mechanism of the op-
timization neural networks is studied from the
point of view of control systems. It is shown that
an optimization neural network can be modeled
as an optimal control problem. We show how
CSIP by using of method told in (Song et al.,
1998) will transform to an optimal control prob-
lem and then it is solved by iterative dynamic
programming (IDP) method. The initial ideas on
IDP were developed and tested by (Luus, 1990)
and then refined (Luus, 1989) to make the com-
putational procedure much more efficient. IDP
method provided a very convenient way of in-
vestigating the effect of the choice of the final
time in optimal control problems (Luus, 1991),
also numerical convergence properties of that can
see in (Lin et al., 1998; Luus, 2000; Luus, 1996).
We show how the IDP method was applied to
solve this specific problem.

CONVEX SEMI-INFINITE PROGRAMMING
Formulation problem

In this section we consider the mathematical
program

(1)

where  is a convex function and gi(x, s),
(i=1,...m) are concave functions with respect to
the first argument. Under these assumptions (1)
is a CSIP. It is also assumed that , gi, bi (i=1,...m)
are twice continuously differentiable.

Transformation of CSIP to optimal control
problem

Now problem (1) transform to an optimal con-
trol model. If consider Hopfield network or
Kennedy and Chua's network in state linear
(Kennedy et al., 1987; Maa et al., 1992; Song et
al., 1998) thus the Hopfield and the Kennedy and
Chua’s networks are equivalent to state feedback
control systems. Now, the mechanism of those
optimization neural networks can be formulated
as follows: The optimization neural networks are
equivalent to state feedback control systems; the
dynamics of the system is determined by the ob-
jective function; the control action exists only
when constraint violation takes place and the
control signal is determined by the magnitude of
the violations. This can be shown true for the
general case.

In general, if (x) is non-linear and if the
penalty method (Luenerger, 1984) is applied to
solve (1), then we can obtain an unconstrained
optimization problem

(1)

where k is a positive number and

Let us define the control system

(3)

where u � n is an control variable and (x)/
x=(/ x1, / x2,…, / xn)T.

Proposition 2.1. If for any k, (2) has an optimal
solution, and if for system (3) we can find a state
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feedback control such that the

closed-loop system

(2)

is asymptotically stable at x*, then the optimal
solution to (2) will be the equilibrium state of (4).

Note: .

Proof. See (Song et al., 1998).
Under the combined action of both hi+(x) and

hi(x)/x, the system is controlled to reach its
equilibrium. Thus, the mechanism of the opti-
mization neural networks can be in general ex-
plained with control theory.

Because of its specific roles, we refer to

as the penalty control law. We

can show that under the penalty control, P(x) of
(2) is also a Lyapunov function of (3).

Proposition 2.2. Under the penalty control,
P(x) of (2) is a Lyapunov function of system (3).

Proof. See (Song et al., 1998).
From Proposition 2.2, it can be seen that under

the penalty control, system (3) evolves along a
direction such that the Lyapunov function P(x)
decreases the most. The penalty control law can
be obtained if we take the optimization problem
as an optimal control problem.

In solving optimization problems the use of
neural networks, generally the steady state of the
network is taken as the solution. So, letting x in
(2) be x(tf) (generally tf=) gives us

(3)

Now the problem is to find an optimal state
feedback control u*(t) such that under u*(t) when
system (3) reaches an equilibrium state, (5) is

minimal. This can be expressed as a standard ter-
minal control problem:

(4)

where   and   is given. Under certain conditions,
the penalty control is also the optimal state feed-
back control, see (Song et al., 1998).

Transformation of optimal control problem to
finite-horizon

In this section, by suitable change variable, we
transform the interval [0, ) to [0, 1), and then
obtain optimal control and the corresponding tra-
jectory in this interval. By suitable change vari-
able of the form:

the problem (6) is transformed to the following
variational optimal control problem,

Assume and ,
then we have the following variational problem,

(5)

where Y(0)=x(0) is given and y(1)=y*=x* is
optimal solution of CSIP.
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ITERATIVE DYNAMIC PROGRAMMING
To set up the problem into a sequence of stages,

as required for dynamic programming, we ap-
proximate the optimal control problem by requir-
ing a piecewise constant control policy over P
stages, each of length L, so that (0=0 ) 

L=f /P (6)

then the performance index in terminal time is
approximated by

(7)

Note: v(k-1) is the constant control in the time
interval k-1    k(k=1,…,P).

We can consider the system at these P stages.
The following steps were used:

1. Divide the time interval [0, 1) into P time
stages, each of length L. At each time stage, we
seek a constant value for the control vector v.

2. Choose the number of test values for the con-
trol vector v denoted by R, an initial control pol-
icy and the initial region size rin; also choose the
region contraction factor  used after every iter-
ation and the number of grid points N at each
time stage.

3. Choose the total number of iterations and
set the iteration number index to j=1.

4. Set the region size vector r j=rin.
5. By using the best control policy (the initial

control policy for the iteration) integrate the
equations, from =0 to 1, N times with different
values for control. This will generate N y-trajec-
tories which provide the grid points. Store the
values of y at the beginning of each time stage,
so that y(k-1) corresponds to the value of y at be-
ginning of stage k.

6. Starting at stage P, corresponding to time 1-L,
for each of the N stored values for y(P-1) from
step 5 (grid points) integrate the differential equa-
tions from 1-L to 1, with each of the R allowable
values for the control vector calculated from

V(P-1)=v*j(P-1)+Drj (8)

where v*j(P-1) is the best value obtained in the
previous iteration and D is a diagonal matrix of

different random numbers between -1 and 1. Out
of the R values for the augmented performance
index, choose the control values that give the
minimum value, and store these values as v(P-1).
We now have the best control for each of these
N grid points.

7. Step back to stage P-1, corresponding to
time 1-2L, and for each of the N grid points do
the following calculations. Choose R values for
v(P-2) as in the previous step, and by taking as
the initial state y(P-2) integrate the differential
equations over one stage length. Continue inte-
gration over the last time stage by using the
stored value of v(P-1) from step 6 corresponding
to the grid point that is closest to the value of the
state vector that has been reached. Compare the
values of the performance index and store v(P-2)
that gives the minimum value for the augmented
performance index.

8. Continue the procedure until stage 1, corre-
sponding to the initial time =0 and the given ini-
tial state, is reached. This stage has only a single
grid point, since the initial state is specified. As
before, integrate the differential equations and
compare the R values of the augmented perform-
ance index and store the control v(0) that gives
the minimum augmented performance index.
Store also the corresponding y-trajectory. This
completes one iteration.

9. Reduce the region for allowable control

r j+1=r j (9)

where j is the iteration number index. Use the
best control policy from step 8 as the midpoint
for the allowable values for the control denoted
by the superscript.

10. Increment the iteration index j by 1 and go
to step 5 and continue the procedure for the spec-
ified number of iterations.

NUMERICAL EXAMPLES
Example 4.1. Consider the following convex

semi-infinite program
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Applying the method described in section 2.3,
we have

Now we solve the above problem by using of IDP
method. Suppose in IDP method, y(0)=0, k=105,
P=5, =0.75, N=3, R=4 and v(.)[-0.44, 0.32],
with 25 iteration we obtain result   and optimal
value objective is 0.0003 where this problem solved
in (Luhandjula et al., 2001), and x*=1. Graphs of
the trajectory function and the piecewise constant
control function are shown in Fig. 1-2. respectively.

Note: for constrain y()0 in IDP method see
(Luus, 2000). 

Example 4.2. Consider the following convex
semi-infinite program

We have

Now with selection, [0, 1], y1(0)=y2(0)=
y3(0)=0, y4(0)=0.5, k=4108, P=7, =0.75, N=2,
R=5, v1(.)[2, 2.8], v3(.)[1.6, 2.1] and v4(.)[-0.6,
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Fig. 1. Approximate trajectory y(.) Fig. 2. The optimal control v(.)

Fig. 3. Approximate trajectory y1(.) Fig. 4. The optimal control v2(.)



0.1], with 25 iteration we obtain results

and optimal value objective is -8.9963, of
course, this problem solved in (Kostyukova et al.,
2005),where optimal solution is x*=(4,1,-1,0).
Graphs of the trajectory functions and the piece-
wise constant control functions are shown in Fig.
3-10. respectively.

CONCLUSION
In this article, the mechanism was shown that

convex semi-infinite programming using opti-
mization neural networks could be modeled as
optimal control problems. The penalty control
law, determined by both the objective function
and the violated constraints, played a key role in
the process of optimization with neural networks.
It was shown that the penalty control was also an
optimal control. With process told, the algorithms
developed in solving optimal control problems

D
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Fig. 5. Approximate trajectory y2(.) Fig. 6. The optimal control v2(.)

Fig. 7. Approximate trajectory y3(.) Fig. 8. The optimal control v3(.)

Fig. 9. Approximate trajectory y4(.) Fig. 10. The optimal control v4(.)



especially IDP method can be used. But advan-

tage of IDP method is computation

in objective function during process of execute
algorithm where after the amount numerical of
y(f) was determined in each iterate is computed
with respect to parameter s easily.
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