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Abstract. This paper aims to obtain an approximate solution through a simplified repro-
ducing kernel method (SRKM) for the time-fractional delay reaction-diffusion equation. By a
simple transformation, we first homogenize the considered reaction-diffusion equation with de-
lay. Then, we recall some reproducing kernel Hilbert spaces and their properties and build up
the reproducing kernel Hilbert space that we need throughout the solution scheme. This new
reproducing kernel space satisfies the delay condition, the property that reduces the compu-
tational complexity. Next, the nth-term approximation Un of the exact solution U is obtained
without the Gram–Schmidt orthogonalization process. The properties of completeness and
orthogonal projection of the considered basis are stated and proved. Eventually, given to the
various examples represented, the efficiency and accuracy of the method are scrutinized. It is
shown that the proposed method works well for various values of fractional order derivatives
and even for large mode N .
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1. Introduction

Fractional partial differential equations have pervasive applications in varied scien-
tific disciplines and play an important role in modeling most of natural phenomena
[3, 10, 15]. Over the past decades, due to the crucial roles of fractional partial differ-
ential equations, solving them has been the center of attention of many researchers
[11, 17, 19, 30].
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This paper deals with the numerical solution of the following time-fractional
delay reaction-diffusion equation:

∂αϖ(x,τ)
∂τα = ∂2ϖ(x,τ)

∂x2 + a(x, τ)ϖ(x, τ) + b(x, τ)ϖ(x, τ − θ) + h(x, τ), 0 ⩽ x ⩽ 1,
0 ⩽ τ ⩽ T, ;

ϖ(x, 0) = ω0(x), ϖ(0, τ) = ϑ1(τ), ϖ(1, τ) = ϑ2(τ), 0 ⩽ τ ⩽ T;

ϖ(x, τ) = ϕ(x, τ) −θ ⩽ τ ⩽ 0,

(1)

where a(x, τ), b(x, τ), ν0(x), ϑ1(τ), ϑ2(τ) and h(x, τ) are given functions with 0 ⩽
α ⩽ 1 and θ > 0 is delay term. Here, ∂αϖ(x,τ)

∂τα is the Caputo derivative that is
defined by

∂αϖ(x, τ)

∂τα
=

1

Γ(1− α)

∫ τ

0

1

(τ − ζ)α
∂ϖ(x, ζ)

∂ζ
dζ

for 0 < α < 1, Γ(z) being the Gamma function. Moreover, x ∈ [0, 1] is a variable
in space and τ ∈ [0,T] ⊂ R is a variable in time.
Delay differential equations are widely considered in the modeling of a variety

of phenomena in the natural sciences and mathematical models, e.g., transporta-
tion scheduling, engineering control [1], nuclear engineering [4]. Research on delay
differential equations has been the focus of much research and there are valuable
resources available for finding the numerical solution of ODEs and PDEswith de-
lay [2, 7, 12, 13, 21, 22, 25, 28, 31, 32, 35]. A fractional reaction-diffusion equation
with delay can model complex biological systems like neural networks or epidemics
where the effects of past events (delay) and non-local diffusion (fractional deriva-
tive) are significant. The interplay between these factors can lead to intricate pat-
terns and behaviors that are not captured by standard models. Rihan [20] studied
the time-fractional parabolic PDEs based on the ν-methods. The homotopy per-
turbation method was used to numerically solve time-fractional PDEs with pro-
portional delays in [23]. The semilinear convection-reaction-diffusion equation with
fractional derivative and delay term was solved by a linearized compact finite dif-
ference scheme and spectral collocation methods in [14, 34]. Hosseinpour et al. [9]
proposed a collocation scheme for solving time-fractional delay reaction-diffusion
equations, and Sun [24] solved this kind of equations with a linearized compact
difference scheme.
The reproducing kernel method (RKM) is a powerful numerical method to in-

vestigate various scientific models. This method has been improved by many re-
searchers to arrive at an efficient and fast algorithm for solving different types of
problems such as perturbed problems [8], integro-differential equations [5], Tele-
graph equation [26] and space-time-fractional equations [27].
To overcome the problem of time-consumption of the Schmidt orthogonaliza-

tion process, Xu and Lin [33] proposed the simplified reproducing kernel method
(SRKM) for solving delay fractional differential equations. Then, this method was
utilized to solve impulsive delay differential equations [16]. Recently, Niu et al. [18]
used SRKM for the numerical solution of heat conduction equations with delay.
The main aim of the present work is to develop an numerical method based

on the SRKM for the time-fractional delay reaction-diffusion equation given in
Eq. (2). To set the initial and boundary conditions in (1) into W(3,2)(Ω), which is
constructed in the following section, these conditions are needed to homogenized.
Put ν(x, τ) = ϖ(x, τ)−ω0(x)−H(x, τ)+H0 where H(x, τ) = ϑ1(τ)(1−x)+ϑ2(τ)x
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and H0(x) = H(x, 0). Hence Eq (1) transformed to the following equation
∂αν(x,τ)

∂τα = ∂2ν(x,τ)
∂x2 + a(x, τ)ν(x, τ) + b(x, τ)ν(x, τ − θ) + F(x, τ), 0 ⩽ τ ⩽ T;

ν(x, 0) = 0, ν(0, τ) = 0, ν(1, τ) = 0, 0 ⩽ τ ⩽ T;

ν(x, τ) = Φ(x, τ). −θ ⩽ τ ⩽ 0,

(2)

where

F(x, τ) = h(x, τ) +
∂2

∂x2

(
H(x, τ) + ω0(x)−H0(x)

)
+
∂αH(x, τ)

∂τα

+ a(x, τ)H(x, τ) + b(x, τ)H(x, τ − θ),

Φ(x, τ) = ϕ(x, τ) +H(x, τ) + ω0(x)−H0(x).

For convenience, we should homogenize the delay condition ν(x, τ) = Φ(x, τ) in
Eq. (2). To this end, set U(x, τ) = ν(x, τ)− ρ(x, τ), where

ρ(x, τ) =

{
0, 0 ⩽ τ ⩽ T;
Φ(x, τ), −θ ⩽ τ ⩽ 0.

Hence, the problem (2) can be transformed to the following homogeneous problem:
∂αU(x,τ)

∂τα = ∂2U(x,τ)
∂x2 + a(x, τ)U(x, τ) + b(x, τ)U(x, τ − θ) + G(x, τ), 0 ⩽ τ ⩽ T;

U(x, 0) = 0, U(0, τ) = 0, U(1, τ) = 0, 0 ⩽ τ ⩽ T;

U(x, τ) = 0 −θ ⩽ τ ⩽ 0.

(3)

where

G(x, τ) =
{
F(x, τ) + Φ(x, τ − θ), 0 ⩽ τ ⩽ θ;
F(x, τ), θ ⩽ τ ⩽ T.

The novelty of our work is as follows. First, a novel reproducing kernel space that
matches with the structure of (2) is derived. Second, the idea of transforming
the original problem (1) to the homogeneous problem (3) is new. Third, the logic
behind the derivation of the proposed method is proved via two theorems.
In Section 2, we recall some required concepts and properties of some reproduc-

ing kernel Hilbert spaces. In Section 3, we give a brief description of the SRKM
approach and bring the detailed theorems and formulations of the SRKM for the
problem (3). Several examples are solved using the SRKM in Section 4. Finally,
conclusions are given in 5.

2. Reproducing kernel spaces

To solve the problem (3) using the SRKM, we derive a new reproducing kernel
Hilbert space and a novel reproducing kernel function. In what follows, we re-
call some reproducing kernel Hilbert spaces and their properties and build up the
reproducing kernel Hilbert space that we need throughout the solution scheme.
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Reproducing Kernel Hilbert Spaces (RKHSs) are Hilbert spaces where the eval-
uation functional at any point is continuous. This means there’s a special kernel
function that allows you to ”reproduce” the value of a function at a given point
by taking the inner product of the function with the kernel. Different RKHSs are
distinguished by the input space, the chosen kernel function, and the structure
of the Hilbert space itself. The input space determines the type of functions the
RKHS can represent. For instance, the space of continuous functions on a compact
set might be a different RKHS than the space of square-integrable functions. The
choice of input space impacts the type of problems the RKHS can be used to solve.
The kernel function is a function on the input space that determines the inner
product of two functions in the RKHS. Different kernels capture different types of
smoothness and complexity in the functions represented by the RKHS. Examples
of kernels include the Gaussian kernel, the linear kernel, and the polynomial kernel.
The Hilbert space itself, including its inner product and norm, defines the prop-
erties of the functions within the RKHS. Different Hilbert spaces can be created
using different choices of input spaces and inner products.

2.1 The space W1
2 [a,b]

The reproducing kernel Hilbert spaceW1
2 [a, b], is the set of all absolutely continuous

functions such that the first derivative of these functions belongs to L2[a, b]. This
space is complete in the concept of reproducing kernel spaces [6], and we have

• For all ν(x), ϖ(x) ∈ W1
2 [a, b], the inner product and norm for this space are

defined as follow:

< ν(x), ϖ(x) >W1
2
= ν(a)ϖ(a) +

∫ b

a
ν ′(x)ϖ′(x)dx,

∥ν∥W1
2
=

√
< ν, ν >W1

2
,

• The reproducing kernel function of this space is given by

K1(η, x) =

1 + η, η ⩽ x;

1 + x, η > x.
(4)

2.2 The space W2
2,0[0,T]

The reproducing kernel space W2
2,0[0,T] is defined as the set of all real-valued

functions ν so that ν and ν ′ are absolutely continuous in [0,T] and ν(0) = 0 and
ν ′′ ∈ L2[0,T]. By [6], we can show that W2

2,0[0,T] is a complete reproducing kernel
space and we have

• For all ν(τ), ϖ(τ) ∈ W2
2,0[0,T] the inner product and norm for this space are

defined by

< ν(x), ϖ(x) >W2
2,0[0,T]= ν ′(0)ϖ′(0) +

∫ T

0
ν ′′(τ)ϖ′′(τ)dτ,

∥ν∥W2
2,0

=
√
< ν, ν >W2

2,0
.
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• The reproducing kernel function of this space is

K2(ξ, τ) =

−1
6τ(τ

2 − 6ξ − 3τξ), ξ ⩽ τ ;

−1
6ξ(−6τ − 3τξ + ξ2), ξ > τ .

(5)

2.3 The space W2
2,θ[−θ,T]

The linear space W2
2,θ[−θ,T] includes all real-valued functions such that for all

ν(τ) ∈ W2
2,θ[−θ,T] the following property holds true

{
ν = 0, If τ ∈ [−θ, 0];
ν ∈ W2

2,0[0,T], If τ ∈ [0,T].

For the reproducing kernel space W2
2,θ[−θ,T] we have (see [6], [33]):

• For all ν(τ), ϖ(τ) ∈ W2
2,θ[−θ,T], the inner product and norm for this space are

defined as

< ν(x), ϖ(x) >W2
2,θ[−θ,T]= ν ′+(0)ϖ

′
+(0) +

∫ T

0
ν ′′(τ)ϖ′′(τ)dτ,

∥ν∥W2
2,θ

=
√
< ν(x), ν(x) >W2

2,θ
.

• The reproducing kernel function is

R2(ξ, τ) =

K2(ξ, τ), 0 ⩽ ξ < T and 0 ⩽ τ < T;

0, −θ ⩽ τ < 0.
(6)

where K2(ξ, t) is given in (5).

2.4 The space W3
2,0[0, 1]

The reproducing kernel space W3
2,0[0, 1] represents the space of all functions, which

for each function belongs to this space , such as ν, all functions ν, ν ′ and ν ′′ are real-
valued and absolutely continuous on the interval [0, 1]. Furthermore, ν ′′′ ∈ L2[0, 1]
and ν(0) = ν(1) = 0.

• For all ν(τ), ϖ(τ) ∈ W3
2,0[0, 1], the inner product and norm for this space are

defined as

< ν(x), ϖ(x) >W3
2,0[0,1]

= ν ′(0)ϖ′(0) +

∫ 1

0
ν ′′(x)ϖ′′(x)dx,

∥ν∥W3
2,0

=
√
< ν, ν >W3

2,0

• The reproducing kernel function is

K3(η, x) =

K(η, x), η ⩽ x;

K(x, η), η > x.
(7)
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where K(η, x) = −1
18720(−1 + x)η

(
156η4 + 6x2(120 + 30η + 10η2 − 5η3 + η4) −

4x3(120+ 30η+10η2 − 5η3 + η4) + x4(120+ 30η+10η2 − 5η3 + η4) + 12x(360−

300η − 100η2 − 15η3 + 3η4)

)
.

2.5 The spaces W(3,2)
2,θ (Ω) and W(1,1)

2 (Ω̃)

Let Ω = [0, 1] × [−θ,T]. The reproducing kernel space W(3,2)
2,θ (Ω) = W3

2,0[0, 1] ⊗
W2

2,θ[−θ,T] and its reproducing kernel is defined by (see [18])

K(3,2)(η, ξ; x, τ) = K3(η, x)×R2(ξ, τ), (8)

where K3(η, x) and R2(ξ, τ) are given in (7) and (6), respectively. Moreover, the
inner product in this space is defined as

< ν(x, τ), ϖ(x, τ) >W(3,2)
2,θ (Ω) =

2∑
i=1

∫ T

0

∂2

∂τ2
∂i

∂xi
ν(0, τ)

∂2

∂τ2
∂i

∂xi
ϖ(0, τ)dτ

+
⟨ ∂

∂τ
ν(x, 0),

∂

∂τ
ϖ(x, 0)

⟩
W3

2,0

+

∫∫
Ω

∂3

∂x3
∂2

∂τ2
ν(x, τ)

∂3

∂x3
∂2

∂τ2
ϖ(x, τ)dxdτ

Similarly, we can define W(1,1)
2 (Ω̃) = W1

2 [0, 1]⊗W1
2 [0,T], where Ω̃ = [0, 1]× [0,T].

It is easy to show that the reproducing kernel space W(1,1)
2 (Ω̃) is complete. The

reproducing kernel function for this space is given by

K(1,1)(η, ξ; x, τ) = K1(η, x)×K1(ξ, τ) (9)

where K1(η, x) is defined in Eq (4) (See [26]).

3. Explanation of the method

Consider the linear differential operator F : W(3,2)
2,θ (Ω) → W(1,1)

2 (Ω̃) such that

FU(x, τ) = ∂αU(x, τ)
∂τα

− ∂2U(x, τ)
∂x2

− a(x, τ)U(x, τ)− b(x, τ)U(x, τ − θ).

Using this operator, the time-fractional PDE (3) is rewritten as

FU(x, τ) = G(x, τ), (x, τ) ∈ [0, 1]× [0,T].

Since U(x, τ) ∈ W(3,2)
2,θ (Ω), for τ ∈ [0,T] we have

U(x, 0) = 0, U(0, τ) = 0, U(1, τ) = 0,

and U(x, τ) = 0 for τ ∈ [−θ, 0]. In [6] it is proved that the linear operator F is
bounded.
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Now, let
{
(xi, τi)

}∞

i=1
is a countable and dense subset in Ω̃ and F∗ is the adjoint

operator for F and define

ϕi(x, τ) = K(1,1)(xi, τi; x, τ), ψi(x, τ) = F∗ϕi(x, τ),

where K(1,1) is the reproducing kernel of W(1,1)
2 (Ω̃). The next theorem establishes

the structure of ψi(x, τ).

Theorem 3.1 Let
{
(xi, τi)

}∞

i=1
be a countable dense subset in Ω̃. Then the se-

quence
{
ψi(x, τ)

}∞

i=1
is a complete function system in W(3,2)

2,θ (Ω) and

ψi(x, τ) =
∂αR2(ξ, τ)

∂ξα
K3(η, x)−

∂2K3(η, x)

∂η2
R2(ξ, τ)

− a(x, τ)K3(η, x)R2(ξ, τ)− b(x, τ)K3(η, x)R2(ξ, τ − θ)
∣∣∣
η=xi,ξ=τi

.(10)

Proof We have

ψi(x, τ) = F∗ϕi(x, τ) =
⟨
F∗ϕi(x, τ),K(3,2)(η, ξ; x, τ)

⟩
W(3,2)

2,θ

=
⟨
ϕi(x, τ),FK(3,2)(η, ξ; x, τ)

⟩
W(1,1)

2

= FK(3,2)(η, ξ; x, τ)
∣∣∣
η=xi,ξ=τi

=
∂αR2(ξ, τ)

∂ξα
K3(η, x)−

∂2K3(η, x)

∂η2
R2(ξ, τ)

− a(x, τ)K3(η, x)R2(ξ, τ)− b(x, τ)K3(η, x)R2(ξ, τ − θ)
∣∣∣
η=xi,ξ=τi

.

Clearly, ψi(x, τ) ∈ W(3,2)
2,θ (Ω). Now, let ν ∈ W(3,2)

2,θ (Ω) is fixed and⟨
ν(x, τ), ψi(x, τ)

⟩
W(3,2)

2,θ

= 0, for i = 1, 2, .... Then

⟨
ν(x, τ), ψi(x, τ)

⟩
W(3,2)

2,θ

=
⟨
ν(x, τ),F∗ϕi(x, τ)

⟩
W(3,2)

2,θ

=
⟨
Fν(x, τ), ϕi(x, τ)

⟩
W(3,2)

2,θ

= Fν(xi, τi) = 0.

Moreover, according to the assumption of the theorem,
{
(xi, τi)

}∞

i=1
is dense in Ω.

Hence, Fν(x, τ) = 0 and in this case ν = 0 and the desired result is obtained. □
For any n,

{
ψi(x, τ)

}n

i=1
is linear independent [18]. By using the symmetric

properties of conjugate operator F∗, we obtain

⟨
ψi(x, τ), ψj(x, τ)

⟩
=
∂αψi(xj , τj)

∂ταj
− ∂2ψi(xj , τj)

∂x2j

−a(xj , τj)ψi(xj , τj)− b(xj , τj)ψi(xj , τj − θ).

Now, we will find an approximate solution for Eq.(3) in a subspace Ψn =
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ψ1, ψ2, ..., ψn

}
. Let Pn : W(3,2)

2,θ (Ω) → Ψn is a orthogonal projection. Obvi-

ously, if U(x, τ) is the exact solution of time-fractional delay PDE (3), then
Un(x, τ) = PnU(x, τ) is an approximate solution for the problem (3) and Un(x, τ)
can be displayed as follows:

Un(x, τ) =
n∑

j=1

ajψj(x, τ), (11)

where a1, a2, ..., an are unknown coefficients.
The following theorem establishes the inner product condition with which the

approximate solution of problem (3) is obtained.

Theorem 3.2 Let Un(x, τ) be an approximate solution of the time-fractional PDE
(3). Then, Un(x, τ) satisfies to the following equation:⟨

Un, ψi

⟩
= G(xi, τi), i = 1, 2, ..., n. (12)

Proof Let U(x, τ) ∈ W(3,2)
2,θ be the exact solution to the problem (3), then

FU(x, τ) = G(x, τ). In addition,⟨
Un, ψi

⟩
W(3,2)

2,θ

=
⟨
PnU , ψi

⟩
W(3,2)

2,θ

=
⟨
U ,Pnψi

⟩
W(3,2)

2,θ

=
⟨
U , ψi

⟩
W(3,2)

2,θ

=
⟨
U ,F∗K(1,1)(xi, τi;x, t)

⟩
W(3,2)

2,θ

=
⟨
FU ,K(1,1)(xi, τi; x, τ)

⟩
W(3,2)

2,θ

= FU(xi, τi) = G(xi, τi), i = 1, 2, ..., n.□

In order to find an approximation solution for problem (3), by substituting
Eq.(11) into Eq.(12), we obtain

n∑
j=1

aj < ψj , ψi >= G(xi, τi), i = 1, 2, ..., n. (13)

The linear system of equations (13) can be rewritten as follows:

UA = G, (14)

where

U =


< ψ1, ψ1 > < ψ1, ψ2 > · · · < ψ1, ψn >
< ψ2, ψ1 > < ψ2, ψ2 > · < ψ2, ψn >

...
...

. . .
...

< ψn, ψ1 > < ψn, ψ2 > · < ψn, ψn >

 , A =


a1
a2
...
an

 , G =


G(x1, τ1)
G(x2, τ2)

...
G(xn, τn).


The set {ψi(x, τ)}ni=1 is a linearly independent subset of W(3,2)

2,θ (ω), therefore G−1

is revertible. Solving the linear system of equations (14) by any method provides
A = (a1, a2, ..., an)

T . In fact, we have shown that Eq.(3) has a solution and it is
unique.

Theorem 3.3 (See [18]) Both Un(x, τ) and ▽Un(x, τ) uniformly converge to
U(x, τ) and ▽U(x, τ), respectively.
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4. Numerical examples

This section deals with the numerical review of the method described in the pre-
vious sections. For this purpose, the obtained numerical results will be compared
with the exact solutions using the following error function

EN = |U(x, τ)− UN (x, τ)|.

The package of Mathematica 12 and the command NSolve have been used to
obtain the numerical results and the calculations have been implemented on a
Intel Core i7-4790k and 4 GHz CPU and 4 GB RAM. The nodes {(xi, τi)}i=N

i=0 are
distributed uniformly, h = 1

N .

Example 4.1 Consider the time-fractional delay diffusion equation given by
∂αV(x,τ)

∂τα − ∂2V(x,τ)
∂x2 = V(x, τ − 1) + h(x, τ), (x, τ) ∈ [0, 1]× [0, 1];

V(0, τ) = 0, V(1, τ) = 0, 0 ⩽ τ ⩽ T;
V(x, τ) = τ3x(x− 1) (x, τ) ∈ [0, 1]× [−1, 0].

(15)

where

h(x, τ) = −2τ3 − x(τ − 1)3(x− 1)− 6xτ3−α(x− 1)

(α3 − 6α2 + 11α− 6)Γ(1− α)
.

The exact solution to this problem is V(x, τ) = τ3x(x − 1). The computational
results for N = 8 and various α are recorded in Table 1.

Table 1. Numerical errors at different points for Example 4.1
x τ α = 0.5 α = 0.7 α = 0.9
0.25 0.25 6.3682× 10−5 7.2741× 10−5 1.1085× 10−4

0.5 3.2415× 10−4 2.9997× 10−4 2.6807× 10−4

0.75 1.5799× 10−3 1.51663× 10−3 1.5410× 10−3

0.5 0.25 1.2753× 10−4 1.4114× 10−4 2.0719× 10−4

0.5 1.7507× 10−4 1.4059× 10−4 7.0030× 10−4

0.75 1.2868× 10−3 1.1997× 10−3 1.1911× 10−3

0.75 0.25 1.0842× 10−4 1.1782× 10−4 1.7476× 10−4

0.5 2.6043× 10−5 2.7158× 10−6 6.1122× 10−5

0.75 6.0129× 10−4 5.4032× 10−4 5.1938× 10−4

Approximate solutions U4(x, τ) for various value of α are plotted in Fig. 1. More-
over, the corresponding logarithmic absolute errors are plotted in Fig. 2.

Example 4.2 Consider the following time-fractional delay PDE with non-
homogeneous boundary conditions adopted from [14]:

∂αϖ(x,τ)
∂τα − ∂2ϖ(x,τ)

∂x2 = ϖ(x, τ) +ϖ(x, τ − θ) + h(x, τ), (x, τ) ∈ [0, 1]× [0,T];
ϖ(0, τ) = ϖ(1, τ) = τ3, 0 ⩽ τ ⩽ T;
ϖ(x, τ) = τ3 cos(2πx) (x, τ) ∈ [0, 1]× [0,T].

(16)

with

h(x, τ) = cos(2πx)
(
(θ − τ)3 − τ3 + 4π2τ3 − 6τ3−α

(−6 + 11α− 6α2 + α3)Γ[1− α]

)
.
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Exact solution α = 0.5

α = 0.7 α = 0.9

Figure 1. The exact solution and approximate solutions U4(x, τ) for different α in Example
4.1.

Figure 2. The error function graph for Example 4.1.

For θ = 1 the exact solution is ϖ(x, τ) = τ3 cos(2πx). Using the procedure which
is discussed in detail in the Section 1, Eq.(16) is transformed to the following
homogeneous problem:


∂αU(x,τ)

∂τα − ∂2U(x,τ)
∂x2 = U(x, τ) + U(x, τ − θ) + G(x, τ), (x, τ) ∈ [0, 1]× [0,T];

U(0, τ) = U(1, τ) = 0, 0 ⩽ τ ⩽ T;
U(x, τ) = 0 (x, τ) ∈ [0, 1]× [−θ, 0].

where

G(x, τ) =

F(x, τ) + Φ(x, τ − θ), 0 < τ ⩽ τ ;

F(x, τ), θ < τ ⩽ T.
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Figure 3. The form of the exact and approximate solutions, U80(x, τ) for Example 4.2.

and

F(x, τ) =
12τ3 − α sin2(πx)

(−6 + 11α− 6α2 + α3)Γ(1− α)

+4π2τ3 cos(2πx) + 2
(
τ3 − (θ − τ)3

)
sin2(πx).

Table 2 shows the errors obtained by the SRKM with N = 80 and the finite
difference method [14]. The results show that the accuracy of the SRKM is similar
to finite difference method. It is evident from the Table 2 and Fig. 3 that the
approximate solutions are concurrent converge to the exact solution.

Table 2. Comparison of numerical results for Example 4.2.
Presented method Method in [14] Presented method Method in [14]

h α = 0.3 α = 0.3 α = 0.7 α = 0.7
1
20 3.4532× 10−3 2.4745× 10−3 2.2845× 10−3 3.9348× 10−3

1
40 7.5413× 10−4 6.2547× 10−4 1.4253× 10−4 9.8970× 10−4

1
80 1.3214× 10−4 1.5721× 10−4 2.1687× 10−5 2.4813× 10−4

1
160 1.2577× 10−5 3.9407× 10−5 3.3567× 10−5 6.2111× 10−5

1
320 3.6362× 10−6 9.8644× 10−6 1.1241× 10−6 1.5536× 10−5

Example 4.3 Next, we consider the following time-fractional reaction-diffusion
equation with time delay:

∂αϖ(x, τ)

∂τα
− ∂2ϖ(x, τ)

∂x2
= ϖ(x, τ − 1) + x2

(Γ
(
8
3

)
τ

5

3
−α

Γ
(
8
3 − α

) +
Γ
(
7
3

)
τ

4

3
−α

Γ
(
7
3 − α

) )

−2(τ
5

3 + τ
4

3 )− x2
(
(τ − 1)

5

3 + (τ − 1)
4

3

)
,

(x, τ) ∈ [0, 1]× [0,T]

with the initial and boundary conditions

ϖ(0, τ) = 0, ϖ(1, τ) = τ
5

3 + τ
4

3 , 0 ⩽ τ ⩽ T.

ϖ(x, τ) = x2(τ
5

3 + τ
4

3 ) (x, τ) ∈ [0, 1]× [−1, 0]
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The given equation is solved using the method stated in this paper and the numer-
ical results are shown in Table 3. The exact solution to this problem is unavailable.
Hence, the numerical solution with N = 100 is considered as the benchmark for
computing the errors.

Table 3. Numerical errors obtained for Example 4.3.
(x, τ) N = 40 N = 80
(0.0, 0.0) 8.6676× 10−4 1.7271× 10−4

(0.2, 0.2) 4.4562× 10−3 2.4632× 10−3

(0.4, 0.4) 1.9565× 10−3 3.5691× 10−3

(0.6, 0.6) 2.4501× 10−4 3.7141× 10−4

(0.8, 0.8) 1.9121× 10−3 3.7411× 10−5

5. Conclusions

The numerical solution of the time delay and time-fractional reaction-diffusion
equation has been investigated by using a new simplified reproducing kernel
method. Primarily, a novel reproducing kernel space satisfying the time delay con-
dition was introduced, and the approximate solution to the time-fractional delay
PDE was represented in the form of series belonging to the proposed new repro-
ducing kernel space. Ultimately, the effectiveness of the method was exhibited by
various instances deciphered.
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