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Abstract.In this paper, to investigate the concept of 'mutual complexity', in hyperscaling violating 

backgrounds, we employed the complexity equals action proposal.In order to describe holographic 
complexity for two subregions, we identify the definite bulk action inside the subregions, followed 

by the introduction of appropriate counterterms. We demonstrate that for two subregions, mutual 

complexity is subadditive. Furthermore, for three subregions, we introduce the concept of 
holographic 'tripartite complexity' and prove that this new quantity is superadditive. 
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1. Introduction 

one idea that has been the subject of discussion among physicists for years is quantum 

gravity. However, no universally accepted approach has been presented for this concept. 

On the other hand, for a better understanding of gravity and its interaction with matter, we 

need a quantum description of gravity. This is because, similar to how our perception of 

the interaction of light with matter was incomplete until electrodynamics was formulated 

quantum mechanically, our understanding of gravity will remain incomplete without a 

quantum framework. 

  Numerous attempts to access this theory have been unsuccessful. It is proposed that the 

idea of holography can create an effective connection between gravity and gauge theory, 

with the AdS/CFT correspondence proposal elucidating the main concept of holography 

[12]. 

An acceptable theory of gravity must describe the nature of space-time. To employ 

holographic methods, one should rely on explanations of bulk spacetime derived from the 

dual field theory description. Two quantities, entanglement holographic entropy and 

complexity, can serve as measures to understand the emergence of spacetime from the field 

theory perspective. 

  Ryu and Takayanagi's conjecture significantly aids in the holographic description of 

entanglement entropy [13]. This conjecture asserts that the entanglement entropy of a given 

region in a conformal field theory, situated on the AdS boundary, is fundamentally a 

geometric description. In fact, the entropy of holographic entanglement is obtained from 

the following relation: it is the minimum area of a surface in the AdS bulk that ends at the 
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boundary of the region. Susskind and his collaborators conjectured that the region behind 

the horizon of an AdS black hole is related to the complexity of the dual boundary state [3, 

4, 14, 15, 16, 17]. It's a new relation between the bulk geometry and the dual boundary 

state living in the conformal field theory. There is a proposal named the Complexity = 

Volume (CV) conjecture. According to this conjecture, the volume of a maximal spacelike 

slice should define the complexity of the state in the boundary dual field theory at a given 

time. 

  There is another conjecture in which the complexity is related to the Wheeler-DeWitt 

(WDW) patch action in a bulk bounded by a spacelike surface. This proposal is named the 

Complexity=Action (CA) conjecture. Additional explanations for these two conjectures 

can be found in [5,7,11]. 

  The CV and CA conjectures state that the complexity of states increases linearly over 

time, corresponding to the region behind the black hole horizon. 

  The mass of the black hole and the time derivative are proportional to each other. 

Considering the AdS/CFT correspondence, the mass of the black hole can be interpreted 

as the energy state in the dual theory. In [1], the authors defined a quantity termed mutual 

complexity. This finite quantity can be considered a quantum measure of the correlation 

between two corresponding subsystems. And in reference [8], using the purification 

complexity for mixed states, the mutual complexity for both the thermal density matrix 

and the reduced density matrix is investigated for a subregion of the vacuum. 

  The purpose of this paper is to further investigate mutual complexity in a broader family 

of states that support anisotropic as well as hyperscaling-violating exponents. In theories 

of hyperscaling violation, the isotropy of space and time is described by introducing two 

parameters: 

𝑟 →  𝜔𝑟,    𝑥 → 𝜔𝑥,   𝑡 →  𝜔𝑧𝑡,    𝑑𝑠 → 𝜔
𝜃

𝑑 𝑑𝑠                                (1) 

where z is the anisotropic (Lifshitz) component and θ\theta is the hyperscaling-violating 

exponent. Note that with non-zero θ\theta, the distance within the concept of AdS/CFT 

reflects the violations of hyperscaling in the dual field theory. 

  In this paper, we will review the computation of holographic mutual complexity in 

hyperscaling-violating backgrounds. Additionally, we introduce and examine tripartite 

complexity and finally discuss the results in the conclusion section. 

2. Holographic Mutual Complexity 

In the field of quantum information, mutual information for two isolated systems, such as 

A1 and A2 , can be used as a measure to quantify the amount of entanglement (or 

information) shared by these two systems. For two isolated systems, the mutual 

information is given by the following relationship [9]: 

  𝐼 [2](𝐴1: 𝐴2) =  𝑆 (𝐴1) +  𝑆 (𝐴2) −  𝑆 (𝐴1  ∪ 𝐴2)                    (2) 
where S (Ai) is the entanglement entropy of the region Ai and S (A1  ∪ A2) refers to the 

entanglement entropy for the union of the two entangled regions. Considering this 

definition, a new quantity called mutual complexity was defined in [6] for two subregions 

of spacetime enclosed by null boundaries. 

  in the right panel of figure (1) and similary to (2), For a certain subregions, denoted by 

𝑙1 and 𝑙2, mutual complexity is introduced by the following relation: 

𝐶(𝑙1: 𝑙2) = 𝐶 (𝑙1) +  𝐶 (𝑙2) −  𝐶 (𝑙1  ∪ 𝑙2)                                           (3) 
where C stands for the complexity of the given region evaluated using by CA proposal.  

By calculating the finite part of the on-shell action inside these regions, we derive the 

mutual complexity. 

  Mutual complexity obeys the subadditivity condition. By computing the on-shell action 

in the exterior regions, we can investigate its properties. 
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  Additionally, under the exchange of 𝑙1 and 𝑙2 , mutual complexity is always non-

negative, finite, and symmetric [12]. The computation for black brane solutions of Einstein 

gravity has been completed. We now aim to investigate the properties of this quantity in a 

hyperscaling-violating background. 

3. The Setup 

For a given subregion denoted by 𝑙, at the time slice 𝑡 =  0, the intersection of the WDW 

patch and the entanglement wedge creates a square subregion, as shown in the left panel 

of  Figure 1. Our aim is to compute the on-shell action inside this square. To achieve this, 

we first need to find the on-shell action for the three triangles, denoted by  𝑟1 ،𝑟2 and 𝑟p. 

 
Figure 1. For a subregion, the orange region represents the intersection of the WDW patch 

and the entanglement wedge at the time slice t = 0 for half of an eternal black hole. The right 

panel shows the colored region in the shape of a triangle with two null sides and one timelike 

side. rp is the joint point located at the crossing of the two null boundaries. 

 

We obtain that the complexity for a subregion in the hyperscaling violating background 

(the shape of a triangle in the right panel of figure (2)) is given by the following relate: 

𝐼𝑇𝑟𝑖
𝑡𝑜𝑡𝑎𝑙 =

𝑉𝑑

8𝜋𝐺𝑁
(

𝑧𝜏∼

2𝑟ℎ
𝑑𝑒+𝑧 +

1

𝑟𝑝
𝑑𝑒

𝑙𝑜𝑔 (𝑓(𝑟𝑝)))                           (4) 

where 𝑉𝑑 is the d dimensional volume.  

so, for the square subregion, by using the corresponding expression for three triangles 

and the equation (5),  

𝑆𝐴 + 𝑆𝐵 ≥ 𝑆𝐴∪𝐶 + 𝑆𝐵∪𝐶                                       (5) 
so, 

𝐼𝑠𝑞
= 𝐼𝑟𝑝

− 𝐼𝑟1
−𝐼𝑟2

=
𝑉𝑑

8𝜋𝐺𝑁
(

𝑙𝑜𝑔|𝑓(𝑟𝑝)|

𝑟𝑝
𝑑 −

𝑙𝑜𝑔|𝑓(𝑟1)|

𝑟1
𝑑 −

𝑙𝑜𝑔|𝑓(𝑟2)|

𝑟2
𝑑 )                (6) 

Notic that, In writing the equation (6), all contributions obtain from the joint points because 

there is no timelike or spacelike boundaries.  

In this case the most divergent term is positive as expected for an expression representing 

complexity.  

To continue, we show two subregions  𝑙1 وand 𝑙2 on the right side of Figure 2.  

Using the notation in the form and the relation 𝐿~  =  𝐿𝑒, it is obtained: 

𝐼𝑙1
 =

𝑉𝑑

8𝜋𝐺𝑁
(

𝑙𝑜𝑔|𝑓(𝑟𝑝)|

𝑟𝑝
𝑑𝑒

−
𝑐0

𝑟ℎ
𝑑𝑒

−
(𝑑𝑒+𝑧)𝑟∗(𝑟𝑝)

𝑟ℎ
𝑑𝑒+1 )                                (7) 

𝑓(𝑟) = 1 − (
𝑟

𝑟ℎ
)𝑑+𝑧−𝜃                                                       (8) 

Where 𝑐0 = 𝜓(0)(1) − 𝜓(0)(
1

𝑑𝑒+1
)  is a positive number and  𝜓(0)(𝑥) =

𝛤(𝑥)

𝛤(𝑥)
  is the 

digamma function. 
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Figure 2.  Left panel: The Penrose diagram of the WDW (Wheeler-DeWitt) patch of an 

eternal AdS black hole for 𝑡𝑅 = 𝑡𝐿. The null boundaries are denoted by Ni. The infrared (IR) 

and ultraviolet (UV) cutoffs are represented by ε and 𝑟Max.{\text{Max}}, respectively. To 

determine the complexity, one must compute the on-shell action inside this patch. 

Right panel: The two subregions are labeled as 𝑙1, 𝑙2. 

 

  And for where  𝑟∗(𝑟): 

 

𝑟∗(𝑟) = ∫
𝑑𝑟

𝑟1−𝑧𝑓(𝑟)
                                          (9) 

 
  And for 𝑙2: 

 

𝐼𝑙2
=

𝑉𝑑

8𝜋𝐺𝑁
(

𝑙𝑜𝑔|𝑓(𝑟𝑝)|

𝑟𝑝
𝑑𝑒

−
𝑙𝑜𝑔|𝑓(𝑟1)|

𝑟1
𝑑𝑒

−
𝑙𝑜𝑔|𝑓(𝑟2)|

𝑟2
𝑑𝑒

)                                (10) 

 
For the union part: 

 

𝐼𝑙1∪𝑙2
= −

𝑉𝑑

8𝜋𝐺𝑁

𝑐0

𝑟ℎ
𝑑𝑒

                                        (11) 

For two subregions in a hyperscaling-violating background, using the definition of mutual 

complexity, we obtain: 

𝐴[2] ≡ 𝐼𝑙1
+𝐼𝑙2

− 𝐼𝑙1∪𝑙2
= 

𝑉𝑑𝐿𝑑

8𝜋𝐺𝑁
(−

2𝑙𝑜𝑔|𝑓(𝑟𝑝)|

𝑟𝑝
𝑑𝑒

−
𝑙𝑜𝑔|𝑓(𝑟1)|

𝑟1
𝑑𝑒

−
𝑙𝑜𝑔|𝑓(𝑟2)|

𝑟2
𝑑𝑒

−
(𝑑𝑒+𝑧)𝑟∗(𝑟𝑝)

𝑟ℎ
𝑑𝑒+1 )                (12) 

 
Now, to determine the sign of A[2] [10], we observe that in both limits {𝑟2, 𝑟𝑝, 𝑟1} → 𝑟ℎand 

{𝑟2, 𝑟𝑝, 𝑟1} → 0 , A[2]   vanishes. Additionally, the function A[2]  approaches zero from 

above when at {𝑟2, 𝑟𝑝, 𝑟1} ≈ 0.  

  As a result, the on-shell action obeys subadditivity condition: 

𝐼𝑙1
+𝐼𝑙2

≥ 𝐼𝑙1∪𝑙2
                                                           (13) 

so, 

𝐴  [2] ≥ 0                                              (14) 
We know that for general quantum systems, the von Neumann entanglement entropies 

of the subsystems obey the subadditivity 
𝑆 (𝐴)  +  𝑆 (𝐵)  − 𝑆 (𝐴 ∪ 𝐵) ≥  0                                     (15) 

weak monotonicity: 

𝑆 (𝐴 ∪ 𝐵) + 𝑆 (𝐴 ∪ 𝐶) − 𝑆 (𝐵) −  𝑆 (𝐶)  ≥  0                             (16) 
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and strong subadditivity: 

𝑆 (𝐴 ∪ 𝐵) + 𝑆 (𝐴 ∪ 𝐶) − 𝑆 (𝐴) − 𝑆 (𝐴 ∪ 𝐵 ∪ 𝐶) ≥  0                  (17) 
Moreover, the holographic entanglement entropies for holographic systems (the states of 

CFTs with classical holographic duals) obey a larger set of inequalities than those followed 

by generic quantum mechanical systems. The new inequality, provided by the tripartite 

information, is defined by the following relation: 

𝑆 (𝐴 ∪ 𝐵) + 𝑆 (𝐴 ∪ 𝐶) + 𝑆 (𝐵 ∪ 𝐶) ≥ 𝑆 (𝐴) + 𝑆 (𝐵) + 𝑆 (𝐶) + 𝑆 (𝐴 ∪ 𝐵 ∪ 𝐶) (18) 
Scientists have explored these types of inequalities within the framework of quantum 

information theory and the quantum error correction interpretation of AdS/CFT in several 

significant studies [2]. Notably, the strong collectivity property of entanglement entropy, 

which must be upheld by any quantum system, has been confirmed through holographic 

methods. 

  This can serve as a validation of AdS/CFT. Monogamy, which asserts that quantum 

entanglement—unlike classical correlations—cannot be freely shared among multiple 

parties, is a property reflected in mutual information and is exclusively satisfied by 

holographic systems. As such, the ability of holographic theories to satisfy this relation 

provides a means to differentiate between CFTs with holographic dual potentials. 

  In this study, we focus on calculating the sub-region complexity within a hyperscaling-

violating background. Following the principle of complexity being equivalent to action, it 

was demonstrated in [6] that the shell action of subregions satisfies a specific condition of 

collectivity. Building on this observation and recognizing the significance of inequalities 

in holographic systems, we define the concept of tripartite complexity and examine its sign 

within our model. 

 

4. Holographic Tripartite Complexity 

 

By extending the previous instruction to three subregions, labeled 𝑙1   ، 𝑙2  and 𝑙3 , (as 

illustrated in Figure 3), we can define a new quantity known as tripartite complexity. This 

concept can be explained as follows:     

C(𝑙1: 𝑙2: 𝑙3) = 𝐶(𝑙1) + 𝐶(𝑙2) + 𝐶(𝑙3) − 𝐶(𝑙1 ∪ 𝑙2) − 𝐶(𝑙1 ∪ 𝑙3) − 𝐶(𝑙2 ∪ 𝑙3) + 𝐶(𝑙1 ∪
𝑙2 ∪ 𝑙3)                                                  (19)         
where  C(𝑙1 ∪ 𝑙2 ∪ 𝑙3) is the complexity of the union of three subregions.  

 

 
Figure 3. Three sub-regions showed by 𝑙1, 𝑙2, 𝑙3 

 

𝐼𝑙1
 =

𝑉𝑑

8𝜋𝐺𝑁
(

𝑙𝑜𝑔|𝑓(𝑟𝑝1)|

𝑟𝑝1

𝑑𝑒
−

𝑐0

𝑟ℎ
𝑑𝑒

−
(𝑑𝑒+𝑧)𝑟∗(𝑟𝑝1)

𝑟ℎ
𝑑𝑒+1 )                          (20) 

𝐼𝑙2
=

𝑉𝑑

8𝜋𝐺𝑁
(

log|𝑓(𝑟𝑝1)|

𝑟𝑝1

𝑑𝑒
+

log|𝑓(𝑟𝑝2)|

𝑟𝑝2

𝑑𝑒
−

log|𝑓(𝑟1)|

𝑟1
𝑑𝑒

−
log|𝑓(𝑟2)|

𝑟2
𝑑𝑒

)                        (21) 
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𝐼𝑙3
=

𝑉𝑑

8𝜋𝐺𝑁
(

log|𝑓(𝑟𝑝2)|

𝑟𝑝2

𝑑𝑒
−

log|𝑓(𝑟3)|

𝑟3
𝑑𝑒

−
log|𝑓(𝑟4)|

𝑟4
𝑑𝑒

)                                         (22) 

 
For the union part of subregions 𝑙1 and 𝑙2: 

𝐼𝑙1∪𝑙2
 =

𝑉𝑑

8𝜋𝐺𝑁
(

log|𝑓(𝑟𝑝1)|

𝑟𝑝1

𝑑𝑒
−

𝑐0

𝑟ℎ
𝑑𝑒

−
(𝑑𝑒+𝑧)𝑟∗(𝑟𝑝1)

𝑟ℎ
𝑑𝑒+1 )                                     (23) 

similarly we can write for 𝑙2 and 𝑙3: 

𝐼𝑙2∪𝑙3
=

𝑉𝑑

8𝜋𝐺𝑁
(

𝑙𝑜𝑔|𝑓(𝑟𝑝2)|

𝑟𝑝2

𝑑𝑒
−

𝑙𝑜𝑔|𝑓(𝑟3)|

𝑟3
𝑑𝑒

−
𝑙𝑜𝑔|𝑓(𝑟4)|

𝑟4
𝑑𝑒

)                       (24) 

moreover, for the on-shell action for the union part of 𝑙1 and  𝑙2 ,one can write 
𝐼𝑙1∪𝑙3

= 𝐼𝑙1
+𝐼𝑙3

. 

  Also, 

𝐼𝑙1∪𝑙2∪𝑙3
= −

𝑉𝑑

8𝜋𝐺𝑁

𝑐0

𝑟ℎ
𝑑𝑒

                                       (25) 

  Finally, one can write: 
𝐴3 = 𝐼𝑙1

+ 𝐼𝑙2
+ 𝐼𝑙3

− 𝐼𝑙1∪𝑙2
− 𝐼𝑙2∪𝑙3

− 𝐼𝑙1∪𝑙3
+ 𝐼𝑙1∪𝑙2∪𝑙3

                   (26) 

And, 

by approaching the joint points, to the horizon, namely, rjnt → rh  

it can be shown that: 

𝐴 [3] =
𝑉𝑑

16𝜋𝐺𝑁

(𝑑𝑒+𝑧)𝜏

𝑟ℎ
𝑑𝑒+1                                                                      (27) 

Consequently, it was discovered that the on-shell action, calculated for the three subregions 

external to the black brane, conforms to the following relation: 
𝐴 [3] < 0                                                                   (28) 

5.Conclusions 

In [8], the authors utilized the concept of mutual complexity to compare the complexity of 

the thermofield double state purification with that of a thermal mixed state. 

In this approach, mutual complexity is introduced for a pure state |𝜓AB〉 defined on an 

extended Hilbert space. By tracing out the degrees of freedom associated with B, we obtain 

the mixed state ρA. 

Similarly, by integrating out the degrees of freedom associated with A, we derive ρB. By 

comparing the complexities of these three states, we arrive at the concept of mutual 

complexity. 
∆𝐶 =  𝑐(𝜌𝐴) + 𝑐(𝜌𝐵)  −  𝐶(|𝜓𝐴𝐵〉)                                                (29) 

If ∆C > 0, this indicates that complexity is subadditive, demonstrating that the complexity 

of the state on the entire system is less than the sum of the complexities of the states on the 

two subsystems. For ∆C < 0 , the complexity is superadditive, indicating that the 

complexity of the state on the entire system exceeds the sum of the complexities of the 

states on the two subsystems. The mutual complexity can be either positive or negative, 

depending on the temperature of the thermal state and the frequency of the reference state. 

Notably, for subregion complexity, it was demonstrated in [1] that mutual complexity is 

subadditive. In this study, we further explored this property and confirmed that our findings 

support the positivity of mutual complexity in a hyperscaling-violating background. 
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