
International Journal of   

Mathematical Modelling & Computations  

Vol. 14, No. 04, 2024, 381- 393 
 

 

DOI: 10.71932/ijm.2024.1195399 

 

 

Finding the Most Efficient Unit in Data Envelopment Analysis 
 

Abbas Ghomashia, Masomeh Abbasia,* and Saeid Shahghobadia  
    

a Department of Mathematics, Kermanshah Branch, Islamic Azad University,Kermanshah, Iran. 

 

 
Abstract.  In data envelopment analysis, identifying the most efficient decision-making unit 
(DMU) is crucial for gaining insights into efficient DMUs. Various approaches have been 

suggested in the literature to determine the most efficient DMU in data envelopment analysis. 

These approaches aim to develop a model with enhanced discriminatory ability among DMUs. 
This study introduces a new model using mixed integer linear programming to select the most 

efficient DMU. The proposed model ensures that the efficiency score of only one DMU (the 

most efficient) is strictly greater than one, while the efficiency scores of other DMUs are less 
than or equal to one. This model demonstrates a strong discriminatory capability, enabling the 

full ranking of all DMUs with fewer constraints than models that allow complete ranking. Two 

numerical examples from the literature are utilized to validate the proposed model and compare 
its performance with some recent approaches..  
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1. Introduction 

Charnes, Cooper and Rhodes [6] introduced data envelopment analysis (DEA), a 

mathematical approach to assess the relative efficiency of a homogeneous group of DMUs. 

DEA categorizes DMUs into efficient and inefficient groups. While it's not possible to 

rank efficient units solely based on their efficiency score of one, so several methods in the 

DEA literature have been explored for this purpose. These methods offer varied 

perspectives for ranking efficient units. Notable methods include cross-efficiency ranking 

methods [5, 10, 11, 14, 17-19, 21, 23, 27, 44], super efficiency ranking methods[5], the 

common set of weights (CWS) methods[7, 9, 15, 16, 22, 24, 31, 43, 46], benchmark 

ranking methods[30], the linear discriminant analysis[42], discriminant analysis of 

ratios[28, 29].  

   In some instances, the decision-maker has to choose just one DMU from a group of 

efficient DMUs, known as the most efficient DMU. This has led to various studies in DEA 

aiming to identify the most efficient unit. Karsak and Ahiska [17] introduced an integrated 

multi-criteria decision-making (MCDM) DEA model to evaluate the most efficient DMU 

in Advanced Manufacturing Technology (AMT). Amin, Toloo and Sohrabi [4] developed 

an enhanced MCDM model to address convergence issues raised in [17]. Amin and Toloo 

[3] proposed an integrated DEA model for finding the most CCR-efficient. Toloo and 
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Nalchigar [37] extended the model in [3] for selecting the most BCC-efficient DMU by 

solving only one linear programming. Later, a new mixed integer nonlinear programming 

(MINLP) model was introduced by Amin [1] to overcome the drawback of determining 

more than one most efficient DMU by the model of Amin and Toloo [3]. While the model 

in [1] can identify the most optimal unit, it is nonlinear and consequently challenging to 

solve. Toloo, Sohrabi and Nalchigar [41] researched data mining, where they discovered 

that determining the most pertinent association rule by taking various factors into account 

is a pivotal undertaking. They developed an algorithm for giving priority to association 

rules, albeit with certain shortcomings. This was subsequently enhanced by Toloo and 

Nalchigar [37] to address some of its limitations. Foroughi [13] proposed a new mixed 

integer linear programming (MILP) model to identify the most efficient DMU by 

maximizing the minimum possible distance between a chosen DMU and the next 

highest-ranked DMU. By removing additional constraints in Foroughi's model, Wang and 

Jiang [45] proposed a new model to identify the most efficient DMU, which is less 

complex than Foroughi's model. Toloo [32] proposed a new MILP model to find the most 

efficient DMU without explicit input. Another model by Toloo [33] removes 

non-Archimedean epsilon, reducing computations needed, to identify the most efficient 

DMU while emphasizing epsilon selection.  Toloo [34] emphasized the crucial challenge 

of selecting and ranking suppliers accurately in the supply chain with imprecise data. 

Toloo [35] proposed a novel minimax MILP model that employs the CSW method to 

choose the most efficient DMU. Lam [20] proposed a MILP model similar to the 

super-efficiency model, aiming to directly identify the most efficient DMU. Salahi and 

Toloo [26] illustrated that Lam’s model may be infeasible, and they proposed a modified 

model to cope with this issue. Toloo [36] proposed a method for finding the most 

cost-efficient DMU by utilizing the proposed approach in [38] when the prices are fixed 

and known. Toloo and Salahi [40] developed a new two-step MINP model utilizing epsilon 

to identify a single efficient DMU with an efficiency score exceeding one. Both non-linear 

models of Toloo and Salahi [40] can be turned into linear models. Based on the proposed 

model in [40], Özsoy, Örkcü and Örkcü [25] presented a MINP without epsilon, 

streamlining the process to select the most efficient DMU. This model singles out one 

DMU as the most efficient with fewer constraints compared to [40]. Ebrahimi Ebrahimi, 

Fischer and Milovancevic [12] noted that when multiple efficient DMUs exist, it is 

challenging to identify the best one. Additionally, the second step in the approach 

proposed by Lam [20], Salahi, and Toloo[40] is redundant. 

   Given the limitations of the existing proposed models, like non-linear nature, 

incomplete ranking, and two-stage process, this study presents a new MILP model, which 

selects the most efficient unit in a single step. The proposed model assigns an efficiency 

score greater than one for the most efficient DMU, while other DMUs have efficiency 

scores that are strictly less than or equal to one. This model has several computational 

advantages such as high discriminative power, fewer constraints, and greater simplicity 

compared to similar models. Furthermore, the model is compared with several recent 

models on two examples from the literature, demonstrating its high discrimination power 

and potential application in various real-world scenarios such as facility layout design in 

manufacturing systems and the banking industry. 

The following is an outline of the paper: Section 2 provides a brief overview of current 

models used to identify the most efficient DMU. In Section 3, an alternative MILP model 

is proposed to determine the most efficient DMU. Furthermore, Section 4 demonstrates the 

potential applications of the proposed MILP model through two numerical examples and 

its effectiveness in identifying the most efficient DMU. Finally, the paper concludes in 

Section 5. 
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2. Preliminaries 

Throughout this paper, we assume that n homogeneous DMUs,𝐷𝑀𝑈𝑗(𝑗 = 1,2, . . . , 𝑛), 

which consume m various inputs, 𝑥𝑖𝑗(𝑖 = 1,2, . . . , 𝑚) , to produce s different 

outputs, 𝑦𝑟𝑗(𝑟 = 1,2, . . . , 𝑠)  𝑦𝑟𝑗(𝑟 = 1,2, . . . , 𝑠) . Let 𝑣𝑖(𝑖 = 1,2, . . . , 𝑚)  and 𝑢𝑟(𝑟 =

1,2, . . . , 𝑠) be the weights of ith input and rth output, respectively. The efficiency score 

of 𝐷𝑀𝑈𝑗(𝑗 = 1,2, . . . , 𝑛) can be calculated mathematically as[8]:  

𝑒𝑗 =
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

, 𝑗 = 1,2, . . . , 𝑛 

Sueyoshi [30] proposed the following DEA model under constant return to scale (CRS) 

for estimating the best relative efficiency score of the DMU under evaluation, 𝐷𝑀𝑈𝑝: 

𝑒𝑝
* = 𝑀𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑝

𝑠

𝑟=1

 

𝑠. 𝑡. ∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0, 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

 

∑ 𝑣𝑖𝑥𝑖𝑝

𝑚

𝑖=1

= 1(1) 

𝑢𝑟 ≥
1

(𝑚 + 𝑠)𝑚𝑎𝑥
𝑗

{𝑦𝑟𝑗}
, 𝑟 = 1,2, . . . , 𝑠 

𝑣𝑖 ≥
1

(𝑚 + 𝑠)𝑚𝑎𝑥
𝑗

{𝑥𝑖𝑗}
, 𝑖 = 1,2, . . . , 𝑚. 

   Let 𝑣𝑖
*(𝑖 = 1,2, . . . , 𝑚) and 𝑢𝑟

* (𝑟 = 1,2, . . . , 𝑠) be the optimal weights of ith input 

and rth output in model (1), respectively. If the 𝐷𝑀𝑈𝑝 is CCR-efficient (𝑒𝑝
* = 1), 

then∑ 𝑢𝑟
* 𝑦𝑟𝑝 − ∑ 𝑣𝑖

*𝑥𝑖𝑝 = 0𝑚
𝑖=1

𝑠
𝑟=1 ; otherwise there exists at least one other index 𝑗 ∈

{1,2, . . . , 𝑛} such that∑ 𝑢𝑟
* 𝑦𝑟𝑗 − ∑ 𝑣𝑖

*𝑥𝑖𝑗 = 0𝑚
𝑖=1

𝑠
𝑟=1 .  

Definition 2.1. If there is a common set of optimal weights 𝐮𝑟
* (𝑟 = 1,2, . . . , 𝑠), 𝐯𝑖

*(𝑖 =

1,2, . . . , 𝑚) , such that ∑ 𝑢𝑟
* 𝑦𝑟𝑝 − ∑ 𝑣𝑖

*𝑥𝑖𝑝 = 0𝑚
𝑖=1

𝑠
𝑟=1 ,and ∑ 𝑢𝑟

* 𝑦𝑟𝑗 − ∑ 𝑣𝑖
*𝑥𝑖𝑗

𝑚
𝑖=1

𝑠
𝑟=1 <

0, 𝑗 ≠ 𝑝, then 𝐷𝑀𝑈𝑝 is called the most (best) efficient unit[35]. 

In the following, we will review some well-known existing models in the literature for 

finding the most efficient DMU.  Wang and Jiang [45] proposed the following MILP 

model for finding the most CCR-efficient DMU under CRS. 

𝑀𝑖𝑛 ∑ 𝑣𝑖 (∑ 𝑥𝑖𝑗

𝑛

𝑗=1

)

𝑚

𝑖=1

− ∑ 𝑢𝑟 (∑ 𝑦𝑟𝑗

𝑛

𝑗=1

)

𝑠

𝑟=1

 

𝑠. 𝑡. ∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 𝛿𝑗 , 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

 

∑ 𝛿𝑗

𝑛

𝑗=1

= 1, (2) 

𝑢𝑟 ≥ 𝑙𝑟
𝑢, 𝑟 = 1,2, . . . , 𝑠 

𝑣𝑖 ≥ 𝑙𝑖
𝑣, 𝑖 = 1,2, . . . , 𝑚 

𝛿𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . . , 𝑛, 

where 𝑙𝑟
𝑢 = ((𝑚 + 𝑠)𝑚𝑎𝑥

𝑗
{𝑦𝑟𝑗})−1 and 𝑙𝑖

𝑣 = ((𝑚 + 𝑠)𝑚𝑎𝑥
𝑗

{𝑥𝑖𝑗})−1  lower bounds 
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borrowed from model (1). Model (2) is feasible and aims to maximize the overall 

efficiency of all of the DMUs. In this model, 𝐷𝑀𝑈𝑝is determined as the most efficient 

DMU if and only if 𝛿𝑝
* = 1. 

Toloo [35] proposed the following minimax model for finding the most efficient DMU 

under CRS. 

𝑀𝑖𝑛𝑑𝑚𝑎𝑥 
𝑠. 𝑡. 𝑑𝑗𝑗𝑚𝑎𝑥

 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑑𝑗 − 𝛽𝑗 = 0, 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

 

∑ 𝑑𝑗 = 𝑛 − 1,

𝑛

𝑗=1

(3) 

𝑑𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . , 𝑛 
𝑢𝑟 ≥ 𝑙𝑟

𝑢, 𝑟 = 1,2, . . . , 𝑠 
𝑣𝑖 ≥ 𝑙𝑖

𝑣, 𝑖 = 1,2, . . . , 𝑚 
𝛽𝑗 ≤ 1, 𝑗 = 1,2, . . . , 𝑛 
𝑑𝑚𝑎𝑥 

 

  The model (3) is always feasible and the optimal objective value of model (3) is 

bounded. This model determines 𝐷𝑀𝑈𝑝 as the most efficient DMU if 𝑑𝑝
* = 0; in this 

case, 𝐷𝑀𝑈𝑝 has the highest efficiency score that can be greater than 1, whereas those of 

the other DMUs are bounded by 1.   

   Lam [20] introduced a MILP model for selecting the most efficient unit that has an 

objective similar to that of the super-efficiency model in DEA. 

 

𝑀𝑎𝑥ℎ 
𝑠. 𝑡. 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 − 𝑀𝐼𝑗 ≤ 0, 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

 

− ∑ 𝑢𝑟𝑦𝑟𝑗 +

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑀𝐼𝑗 + ℎ ≤ 𝑀, 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

 

∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑀𝐼𝑗 ≤ 1 + 𝑀, 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

 

∑ 𝐼𝑗 = 1,

𝑛

𝑖=1

(4) 

𝐼𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . , 𝑛 

𝑢𝑟 ≥ 𝜀*, 𝑟 = 1,2, . . . , 𝑠 
𝑣𝑖 ≥ 𝜀*, 𝑖 = 1,2, . . . , 𝑚 

 

Where M is a large number. In model (4), it is assumed that all inputs and outputs are 

strictly positive. This model aims to maximize h, which is the difference between the 

weighted sums of the outputs and inputs of the chosen DMU (most efficient DMU). The 

most efficient DMU (𝐼𝑝
* = 1) is the DMU with the highest efficiency score, and its 

efficiency score can be greater than 1, while the scores of other DMUs are bounded by 1.   

In this model, 𝜀*is the maximum non-Archimedean[2]. 

   Toloo and Salahi [40] suggested a MINP model for selecting the best DMU with two 
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steps as follows:  

ℎ
* = 𝑀𝑎𝑥ℎ 

𝑠. 𝑡. 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 𝑀𝐼𝑗 − ℎ(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≥ ℎ𝐼𝑗 − 𝑀(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 

∑ 𝐼𝑗 = 1,

𝑛

𝑖=1

(5) 

𝐼𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . , 𝑛, 

𝑢𝑟 ≥ 𝜀*, 𝑟 = 1,2, . . . , 𝑠, 
𝑣𝑖 ≥ 𝜀*, 𝑖 = 1,2, . . . , 𝑚, 

where M is a large positive number. Toloo and Salahi [40] revealed that the minimum 

possible interval between the first two top-ranking DMUs is [−h*, h*]. They also proved 

that h* is strictly positive. As per model (5), only one DMU can be identified as the most 

efficient DMU (𝐼𝑝
* = 1). 

𝜀*in model (5) can be obtained through the following model in the second step of Toloo 

and Salahi's procedure. 

 

𝜀* = 𝑀𝑎𝑥𝜀 
𝑠. 𝑡. 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 𝑀𝐼𝑗 − ℎ(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≥ ℎ𝐼𝑗 − 𝑀(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 

∑ 𝐼𝑗 = 1,

𝑛

𝑖=1

(6) 

𝐼𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . , 𝑛, 
𝑢𝑟 ≥ 𝜀, 𝑟 = 1,2, . . . , 𝑠, 
𝑣𝑖 ≥ 𝜀, 𝑖 = 1,2, . . . , 𝑚, 

 

Toloo and Salahi [40] introduced a continuous variable 𝑧𝑗 to replace ℎ𝐼𝑗in models (5-6) 

and by adding the following constraints to model (5-6), transformed these models to MILP 

models. 

𝑧𝑗 ≤ 𝑀𝐼𝑗 , 𝑗 = 1,2, . . . , 𝑛 
𝑧𝑗 ≤ ℎ ≤ 𝑧𝑗 + 𝑀(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛 
𝑧𝑗 ≥ 0, 𝑗 = 1,2, . . . , 𝑛 

 

Inspired by the work of Toloo and Salahi (2,018), Özsoy, Örkcü and Örkcü [25] proposed 

a MINP model without epsilon to choose the most efficient DMU as follows: 

ℎ
* = 𝑀𝑎𝑥ℎ 

𝑠. 𝑡. 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 𝑀𝐼𝑗 − ℎ(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 
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∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≥ ℎ𝐼𝑗 − 𝑀(1 − 𝐼𝑗), 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 

∑ 𝐼𝑗 = 1,

𝑛

𝑖=1

(7) 

𝐼𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . , 𝑛, 
𝑢𝑟 ≥ ((𝑚 + 𝑠)𝑚𝑎𝑥

𝑗
{𝑦𝑟𝑗})−1, 𝑟 = 1,2, . . . , 𝑠, 

𝑣𝑖 ≥ ((𝑚 + 𝑠)𝑚𝑎𝑥
𝑗

{𝑥𝑖𝑗})−1, 𝑖 = 1,2, . . . , 𝑚, 

The structure of model (7) is similar to model (5), but it does not require calculating 

epsilon. 

 

3. The proposed model 

Inspired by the model (2), we propose the following MILP model for determining the 

most efficient DMU: 

 𝑀𝑎𝑥 ∑ 𝑠𝑗
𝑛
𝑗=1  

𝑠. 𝑡. ∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 + 𝑠𝑗 = 𝛿𝑗 , 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

, 

 
−𝑀𝛿𝑗 ≤ 𝑠𝑗 ≤ 𝑀(1 − 𝛿𝑗), 𝑗 = 1,2, . . . , 𝑛, (8) 

∑ 𝛿𝑗 = 1,

𝑛

𝑗=1

 

𝛿𝑗 ∈ {0,1}, 𝑗 = 1,2, . . . , 𝑛, 
𝑢𝑟 ≥ 𝑙𝑟

𝑢, 𝑟 = 1,2, . . . , 𝑠, 
𝑣𝑖 ≥ 𝑙𝑖

𝑣, 𝑖 = 1,2, . . . , 𝑚, 
Where M is a large positive number and 𝛿𝑗(𝑗 = 1,2, . . . , 𝑛) are binary variables, only one 

of which can take a nonzero value of one. Constraints 𝑢𝑟 ≥ 𝑙𝑟
𝑢(𝑟 = 1,2, . . . , 𝑠) and 𝑣𝑖 ≥

𝑙𝑖
𝑣(𝑖 = 1,2, . . . , 𝑚) are borrowed from (2) and have been extensively applied in DEA 

practice. 

If 𝛿𝑝 = 1then 

−𝑀 ≤ 𝑠𝑝 ≤ 0(9) 
0 ≤ 𝑠𝑗 ≤ 𝑀(𝑗 = 1,2, . . . , 𝑛; 𝑗 ≠ 𝑝) 

So 

∑ 𝑢𝑟𝑦𝑟𝑝 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑝 ≥ 1,

𝑚

𝑖=1

                                                   (10) 

∑ 𝑢𝑟𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0, 𝑗 = 1,2, . . . , 𝑛

𝑚

𝑖=1

; 𝑗 ≠ 𝑝              (11) 

Which (10) allows the efficiency of 𝐷𝑀𝑈𝑝to be larger than one, while (11) guarantee that 

the efficiencies of the other DMUs to be less than or equal one. So, only the most efficient 

DMU can have an efficiency score of over one (𝛿𝑝 = 1).The objective function in model 

(8) aims to maximize the distance between the efficiency score of the most efficient DMU 

and other DMUs. This minimizes the probability of other decision-making units having an 

efficiency score of 1, leading to a complete ranking of the units in a single step with fewer 

restrictions compared to other models.  

Table 1 compares models (2-5), (7) and the proposed model based on the number of 
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constraints complete ranking ability and the number of steps of each model. 

 
Table1. Comparison of models based on structure and ability. 

 Model 2 Model 3 Model 4 Model 5 Model 7 
Proposed 

model 

Number of 

constraints 
n+1 2n+2 3n+1 5n+1 5n+1 4n+1 

Full rank ability × × × ✓ ✓ ✓ 

Number of 

steps 
1 1 2 2 1 1 

 

As can be seen in table1, the proposed model is one-step model that has enabling the full 

ranking of all DMUs, and has fewer constraints than models with full ranking. 

Theorem 3.1. Model (8) always has a feasible solution. 

Proof. Let (�̂�, �̂�, �̂�)be an optimal solution to model (2). Note that Wang and Jiang [45] 

proved that such a solution exists. Toloo [35] proved that in optimality there exists an 

index 𝑘such that�̂�𝑦𝑘 − �̂�𝑥𝑘 > 0and�̂�𝑦𝑗 − �̂�𝑥𝑗 ≤ 0, (𝑗 = 1,2, . . . , 𝑛; 𝑗 ≠ 𝑘).  

Let 𝑤 = �̂�𝑦𝑘 − �̂�𝑥𝑘 > 0, so we have 
�̂�

𝑤
𝑦𝑘 −

�̂�

𝑤
𝑥𝑘 = 1, 

�̂�

𝑤
𝑦𝑗 −

�̂�

𝑤
𝑥𝑗 ≤ 0, (𝑗 = 1,2, . . . , 𝑛; 𝑗 ≠ 𝑘) 

Let𝑠𝑘 = 0, 𝑠𝑗 =
�̂�

𝑤
𝑥𝑗 −

�̂�

𝑤
𝑦𝑗(𝑗 = 1,2, . . . , 𝑛; 𝑗 ≠ 𝑘), �̂�𝑘 = 1, �̂�𝑗 = 0(𝑗 = 1,2, . . . , 𝑛; 𝑗 ≠ 𝑘). 

The proof is completed. 

Theorem 3.2. The optimal objective value of model (8) is bounded. 

Proof. Let (�̄�, �̄�, �̄�, �̄�)be any arbitrarily feasible solution to model (8). From the constraints 

of this model, we have: 

−𝑀 ≤ �̄�𝑘 ≤ 0, (12) 
0 ≤ �̄�𝑗 ≤ 𝑀, 𝑗 = 1,2, . . . , 𝑛; 𝑗 ≠ 𝑘(13) 

(12) and (13) show that objective function of model (8) has lower and upper bounds for 

any feasible solution. Proof is completed. 

 

4. Numerical examples 

The numerical examples below use models (2), (3), (7), and (8) to find the most efficient 

DMU. These datasets are sourced from prior research in the DEA literature, and the 

source is mentioned in each case. The MILP in the proposed model was solved by 

intlinprog function in the Matlab 2017 on a computer with a CPU speed of 2.15 GHz. 

 

Example 4.1. In this example, 19 facility layout plans (FLDs), including two inputs and 

four outputs in manufacturing systems, are considered to evaluate efficiency. Data 

retrieved from [35]is shown in Table 2. 

Inputs: x1= material handling cost, x2 = adjacency score. 

Outputs: y1 = sharpe ratio, y2 = flexibility,y3 = quality, y4 = hand-carry utility. 

The optimal solution from solving model (8) with M=100 is as follows: 

 

𝑣1
*= 0.00873230639680301, 

 v2
* =9.57744320576179e-06,  

𝑢1
* =265.112513351513, 

 u2
* =1.94704049844237,  

u3
* = 1.97005516154452, 
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𝑢4
* = 0.00496031746031746, 

𝛿10
* = 1, 𝛿𝑗

* = 0(𝑗 ≠ 10), 𝑠10 = 4.64050997732481e-14. 

Since𝛿10
* = 1, thus FLD10 is identified as the most efficient FLD by model (8). 

 
Table 2. Data set for 19 FLDs. 

DMUs x1 
x

2 

y

1 

y

2 

y

3 

y

4 

FLD1 20,309.56 6,405 0.4697 0.0113 0.041 30.89 

FLD2 20,411.22 5,393 0.438 0.0337 0.0484 31.34 

FLD3 20,280.28 5,294 0.4392 0.0308 0.0653 30.26 

FLD4 20,053.2 4,450 0.3776 0.0245 0.0638 28.03 

FLD5 19,998.75 4,370 0.3526 0.0856 0.0484 25.43 

FLD6 20,193.68 4,393 0.3674 0.0717 0.0361 29.11 

FLD7 19,779.73 2,862 0.2854 0.0245 0.0846 25.29 

FLD8 19,831 5,473 0.4398 0.0113 0.0125 24.8 

FLD9 19,608.43 5,161 0.2868 0.0674 0.0724 24.45 

FLD10 20,038.1 6,078 0.6624 0.0856 0.0653 26.45 

FLD11 20,330.68 4,516 0.3437 0.0856 0.0638 29.46 

FLD12 20,155.09 3,702 0.3526 0.0856 0.0846 28.07 

FLD13 19,641.86 5,726 0.269 0.0337 0.0361 24.58 

FLD14 20,575.67 4,639 0.3441 0.0856 0.0638 32.2 

FLD15 20,687.5 5,646 0.4326 0.0337 0.0452 33.21 

FLD16 20,779.75 5,507 0.3312 0.0856 0.0653 33.6 

FLD17 19,853.38 3,912 0.2847 0.0245 0.0638 31.29 

FLD18 19,853.38 5,974 0.4398 0.0337 0.0179 25.12 

FLD19 20,355 17,402 0.4421 0.0856 0.0217 30.02 

 

Table 3. Efficiency of FLDs by different models Example 4.1. 

DMUs CCR 
Wang and 

Jiang (2,012)- 

Model(2) 

Toloo (2,015) 

-Model(3) 

Özsoy et al. (2,021) 

-Model(7) 

Proposed model 

-Model(8) 

FLD1 0.984592 (13) 0.964891 (5) 0.734523 (16) 0.761219 (7) 0.703336(2) 

FLD2 0.988393 (12) 0.971531 (4) 0.804572 (10) 0.761527 (6) 0.653074(7) 

FLD3 0.997428 (11) 1 (2) 0.844136 (7) 0.770702 (3) 0.659215(6) 

FLD4 0.949290 (15) 0.894522 (14) 0.774063 (12) 0.673692 (15) 0.57332(9) 

FLD5 1 (1) 0.925330 (9) 0.870627 (6) 0.751551 (8) 0.537374(11) 

FLD6 0.973342 (14) 0.910794 (13) 0.825097 (9) 0.734339 (10) 0.554245(10) 

FLD7 1 (1) 0.790849 (17) 0.76786 (13) 0.552031 (17) 0.439958(17) 

FLD8 0.856831 (17) 0.868210 (15) 0.60761 (18) 0.723427 (13) 0.674081(3) 

FLD9 0.889201 (16) 0.834482 (16) 0.833446 (8) 0.630595 (16) 0.446235(16) 

FLD10 1 (1) 1.440321 (1) 1.149501 (1) 1.230623 (1) 1.005713(1) 

FLD11 0.998328 (10) 0.940190 (8) 0.922867 (4) 0.732256 (11) 0.515594(13) 

FLD12 1 (1) 1 (2) 1 (2) 0.766601 (5) 0.533705(12) 

FLD13 0.775852 (19) 0.675683 (19) 0.605774 (19) 0.513299 (19) 0.417161(19) 

FLD14 1 (1) 0.941034 (7) 0.931165 (3) 0.723855 (12) 0.510119(14) 

FLD15 1 (1) 0.951281 (6) 0.791951 (11) 0.740819 (9) 0.63644(8) 

FLD16 1 (1) 0.913958 (11) 0.915848 (5) 0.693781 (14) 0.4863(15) 

FLD17 1 (1) 0.769322 (18) 0.735705 (15) 0.534852 (18) 0.437167(18) 

FLD18 0.851718 (18) 0.913731 (12) 0.685373 (17) 0.767148 (4) 0.673624(4) 

FLD19 1 (1) 0.923829 (10) 0.745818 (14) 0.790033 (2) 0.660799(5) 

SUM  17.879452 16.491435 16.491435 11.11746 

 

Table 3 shows the outcomes of models (1), (2), (3), (7), and (8) in Example 4.1. The 

highest efficiency scores achieved by the various models are highlighted in bold. The 

numbers in parentheses alongside the efficiency scores denote the FLDs rankings. The 

results of model 1 (CCR model) indicates that nine FLDs are efficient.  The results from 

models (2), (3), (7), and (8) indicate that FLD10 is the most efficient FLD. Models (8), 
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just like models (2), (3), and (7), allow the efficiency score of one DMU to exceed one 

(the most efficient DMU), while the efficiency scores of the other DMUs remain less 

than or equal to one. Models (2) cannot fully distinguish between the DMUs. In model 

(2), both FLD3 and FLD12 have the same rank value. However, models (3), (5), and (8) 

are capable of ranking all DMUs effectively. It's worth noting that FLD13 is identified as 

the worst unit in all models. 

Fig. 1 provides an illustrative comparison between the results of models (2), (3), (7), and 

(8) in example 1 according to efficiency scores that are shown in Table 2. 

 

Figur.1. Illustrative comparison between the ranking results of different models in Example 

4.1. 
 

 

 

   The rank correlation coefficient can be used to evaluate the significance of the 

relationship between the models mentioned previously. Kendall and Spearman are two 

commonly used nonparametric methods that use rank correlation. We use these methods 

to determine the strength of the relationship between the rankings of models (2), (3), (7), 

and (8). Correlation values for Spearman and Kendall methods are shown in Table 4. 

Values above and below the diagonal indicate rank coefficients for Spearman and 

Kendall, respectively. The p-value for the correlation test is shown in parentheses below 

the correlation value. Table 4 shows a positive correlation between the proposed model ( 

Table 4. Ranking models correlation test in example 4.1. 

  

  

  

Spearmen 
Wang and 

Jiang 

 (2,012)- 

Model(2) 

Toloo 

(2,015) 

-Model(3) 

Özsoy et 

al. (2,021) 

-model(7) 

proposed 

model 

-model(8) 

K
en

d
al

l 

Wang and Jiang 

(2,012)-Model(2) 

Correlation 1 0.6105 0.8175 0.5789 

p-value  (0.0065) (0.0000) (0.0107) 

Toloo (2,015) 

-Model(3) 

Correlation 0.4854 1 0.3175 -0.0667 

p-value (0.0032)  (0.1850) (0.7868) 

Özsoy et al. (2,021)- 

Model(7) 

Correlation 0.7076 0.2398 1 0.7825 

p-value (0.0000) (0.1637)  (0.0001) 

Proposed model- 

Model(8) 

Correlation 0.4386 -0.0760 0.6608 1 

p-value (0.0083) (0.6787) (0.0000)  
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model (8), and model (7). The proposed model has fewer constraints than model (7) ,and  

can be solved through one-step linear programming. Also, unlike model  )2(, model )8( 

ranks all FLDs completely. 

 

Example 4.2. As the second example, we use a real data set of 14 Czech Republic banks, 

adapted from [39]. Table 5 indicates the inputs and outputs of banks that are described 

below: 
Inputs: X1 =number of employees, X2 =number of branches, X3 =assets, X4 =equity, 

X5 =expenses 

Outputs: Y1 =deposits, Y2 = loans, Y3 = non-interest income, Y4 = interest income. 

 
Table 5. Inputs and Outputs of 14 branches.  

DMUs X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 

AIR 400 18 33,600 2,596 745 30,696 11,135 14 554 

CMZRB 217 5 111,706 4,958 566 86,967 16,813 634 1,700 

CS 10,760 658 920,403 93,190 18,259 629,622 479,516 8,747 32,697 

CSOB 7,801 322 937,174 73,930 16,087 629,622 479,516 8,747 32,697 

EQB 296 13 8,985 1,296 601 7,502 5,611 19 215 

ERB 72 1 33,614 464 173 2,940 1,762 15 131 

FIO 59 36 18,561 726 347 17,174 6,465 211 536 

GEMB 3,346 260 135,474 34,486 5,276 97,063 101,898 3,943 11,026 

ING 293 10 128,425 913 1,034 92,579 19,216 468 5,139 

JTB 407 3 85,087 7,233 1,333 62,085 39,330 487 3,686 

KB 8,758 399 786,836 100,577 13,511 579,067 451,547 8,834 35,972 

LBBW 365 18 31,300 2,774 1,138 20,274 2,528 128 1,046 

RB 2,927 125 197,628 18,151 57,112 144,143 150,138 2,829 8,563 

UCB 2,004 98 318,909 38,937 13,804 195,120 192,046 2,740 8,891 

 

Utilizing model (8) with the data set presented in Table 5, we arrive at the optimal 

solution with M=500 as follows:  

 

𝑣1
*= 1.03263114415531e-05, v2

* =8.62395716185947, v3
* =0.00839407430091381, 

𝑣4
* = 0.0239030938097463, 𝑣5

* = 0.018156388032191, 
𝑢1

* = 1.6135236516751e-07, u2
* =0.0119879515784093, u3

* = 0.404132740901498, 
𝑢4

* = 0.0892887795654194, 
𝛿10

* = 1, 𝛿𝑗
* = 0(𝑗 ≠ 10), 𝑠10

* =  -59.231022328601 

Since𝛿10
* = 1, thus JTB bank is recognized as the most efficient bank by model (8). 

Table 6 presents the results of models (1), (2), (3), (7) and (8) respectively. The results 

show that out of 14 branches, 12 are efficient. Models (2) and (3) identify CS bank as the 

most efficient bank, while models (7) and (8) select Bank JTB as the most efficient bank. 

Furthermore, all models agree that the ERB bank is the worst bank. To better illustrate 

the results of the models, the ranking of each bank based on the efficiency scores from 

models (2), (3), (7), and (8) in example 2 is shown in Figure 2. It's important to note that 

models (2) and (3) do not fully rank all banks, while models (7) and (8) do. Among these 

models, (8) has a simpler structure than models (7) in terms of constraints.  

 

We evaluated the computational complexity of the proposed model and the other models 

by executing them twenty times in the second example  2, and the average execution time 

of each of these models is shown in the last row of Table 6. As can be seen, the average 

execution time of the proposed model in Example 2 is less than that of the other models 

examined, which aligns with the data presented in Table 1. 

In table 7, we emphasized the coefficients of Spearman and Kendall. The findings 

indicated a positive relationship between model (8) with models (2),(3) and (7). Data in 
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Table 7 shows a strong correlation between model (8) and model (7). For the model (8) 

and model (7), the Spearman and Kendall's rank correlation coefficients are 0.978022 and 

0.912087912 respectively. The proposed model with fewer constraints has completely  

 ranked the banks in one step. 

  

Fig.2. Illustrative comparison between the ranking results of different models in Example 2. 

 

 

 

Table 6. Efficiency of bank branches by different models in example 2. 

DMUs 
CCR 

Model(1) 

Wang and 

Jiang(2012) - 

Model(2) 

Toloo (2015) 

-Model(3) 

Özsoy et al. 

(2021)-Model(7) 

Proposed model- 

Model(8) 

AIR 1(1) 0.797188(11) 0.573436(11) 0.385261(12) 0.367774(12) 

CMZRB 1(1) 1(2) 0.759709(10) 0.679386(9) 0.549378(9) 

CS 1(1) 1.13391(1) 1.098292(1) 0.990725(2) 0.968671(2) 

CSOB 1(1) 1(2) 1(2) 0.974095(4) 0.960639(3) 

EQB 1(1) 0.618833(12) 0.522892(12) 0.352771(13) 0.410334(11) 

ERB 0.473(14) 0.131031(14) 0.13181(14) 0.136019(14) 0.127476(14) 

FIO 1(1) 1(2) 0.859853(8) 0.540581(10) 0.429939(10) 

GEMB 1(1) 1(2) 1(2) 0.92167(6) 0.883709(6) 

ING 1(1) 0.943912(9) 0.773142(9) 0.874328(8) 0.729025(8) 

JTB 1(1) 1(2) 0.977494(5) 1.165441(1) 1.064267(1) 

KB 1(1) 1(2) 0.985409(4) 0.988263(3) 0.960615(4) 

LBBW 0.824(13) 0.604593(13) 0.415037(13) 0.410718(11) 0.347436(13) 

RB 1(1) 1(2) 0.929992(7) 0.917785(7) 0.881171(7) 

UCB 1(1) 0.906461(10) 0.940065(6) 0.965502(5) 0.893695(5) 

CPUtime(s)  0.4539 0.0289 0.0508 0.0211 

Table7. Ranking models correlation test in example 4.2. 

  

  
  

  

Spearmen 

Wang and 

Jiang(2,012)-
Model(2) 

Toloo(2,015)-
Model(3) 

Özsoy et al. 

(2,021)- 
Model(7) 

proposed 

model-mod
el(8) 

K
en

d
al

l 

Wang and Jiang 

(2,012)-Model(2) 

Correlation 1 0.736264 0.661538 0.696703 

p-value  )0.003819 ( )0.012187 ( )0.007343 ( 

Toloo (2,015) 

-Model(3) 

Correlation 0.604395604 1 0.894505 0.907692 

p-value ( 0.0019570)  )0( )0( 

Özsoy et al. (2,021)- 

Model(7) 

Correlation 0.516483516 0.736263736 1 0.978022 

p-value ( 0.0097530) ( 7.72E-05)  )0( 

Proposed 
model-Model(8) 

Correlation 0.56043956 0.78021978 0.91208791 1 

p-value ( 0.0045659) ( 1.92E-05) ( 5.18E-08)  
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5. Conclusion 

In this paper, we have proposed a new MILP model based on a common weight set for 

identifying the most efficient DMU. In the proposed model, the most efficient unit has an 

efficiency score greater than one, and other DMUs have efficiency scores less than or 

equal to one. In this model, the distance between the efficiency score of the most efficient 

unit and other units is enough to allow for a complete ranking. The proposed model has 

fewer constraints than some models with full ranking and is solved in one step. Two real 

examples with known ranks cited in the literature were selected to ensure the validity of 

the proposed model. The results illustrated that the proposed model has high 

discrimination power, so it can be used to select the most efficient DMU as well as to 

rank the DMUs completely. Considering the impact of the value of M on selecting the 

most efficient unit in the proposed model and other models dependent on M, as well as 

the need to use the proposed model in the real world for situations where the inputs and 

outputs include negative data, So further important future research directions would be 

considering the effect of selecting a value for M on the finding of the most efficient 

DMU and incorporating negative data in the model. 
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