
International Journal of

Mathematical Modelling & Computations

Vol. 14, No. 03, Summer 2024, 187- 199
DOI:10.71932/ijm.2024.1195092

Collocation Method for Solving Systems of Fractional Differential

Equations, A Case Study of HIV Infection by Using Müntz
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Abstract. The primary objective of this study is to solve a system of fractional differential
equations using Müntz wavelets. In this approach, the Müntz wavelets are appropriately modi-
fied through the incorporation of polynomials. The error associated with the proposed method
is thoroughly analyzed and evaluated. This methodology is specifically applied to the frac-
tional form of the HIV infection model. The numerical results obtained further substantiate
the efficacy and accuracy of the proposed method.
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1. Introduction

Wavelets are powerful and practical tools that have been extensively used for solv-
ing both integral and differential equations across various domains. Numerous types
of wavelets have been introduced for this purpose, including Haar wavelets [2], Leg-
endre wavelets [18], and Chebyshev wavelets of the first, second, third, and fourth
kinds [3, 4, 9], among others. In essence, wavelets serve as orthogonal bases that
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are widely applied not only to solve integral and differential equations but also to
address a variety of problems in mathematics, engineering, and medicine. While
Haar wavelets are computationally simple due to their relatively low number of
operations, they are often less accurate when applied to complex problems. On the
other hand, Legendre wavelets, with the weight function w(x) = 1, are recognized
for their simplicity and low computational cost, offering relatively good accuracy
in a broad range of problems. Chebyshev wavelets, which are characterized by
their weight functions, generally involve more computational operations. However,
in the context of integral equations where the kernel is inversely proportional to
the weight function, Chebyshev wavelets exhibit remarkable accuracy. This article
intends to introduce the Müntz wavelet and examine its application. An important
difference of Müntz wavelet and above-mentioned ones is the degree of the extended
sentences. For more explanation, all the former wavelets are in the form of

Σ∞
i=1cix

i,

while the form of the Müntz wavelet is as follows:

Σ∞
i=1cix

λi ,

in which λi is a complex number. So it can be argued that, Müntz wavelet not
only gives a good approximation for fractional power and complex functions, but
also covers a wide range of functions. Fractional calculus first emerged as a pure
mathematical theory in the mid-nineteenth century. [22].One hundred years later,
engineers and physicists faced practical problems with fractional arithmetic [13?
]. A good way to describe the memory and hereditary properties of different ma-
terials and processes is to use fractional derivatives. [25]. In some cases, fractional
order models of real systems perform better than correct order ones. To illustrate,
researchers have used fractional derivatives in many fields related to science and en-
gineering, including fluid flow, rheology, diffusion-like diffusion, electrical networks,
electromagnetic theory, and probability. [14, 17, 21? ]. Most of these equations do
not have exact analytical answers.This forces us to use approximate and numerical
techniques. So far, several analytical and numerical methods for solving fractional
differential equations have been proposed. As the main examples one can men-
tion to domain decomposition method [8], Linear B-spline method [16], Product
integration method [12], multistep method [11], Predictor Corrector method [? ],
Extrapolation method [7]. In this paper, we present an approximate solution for
a system of differential equations in t ∈ [0, T ]. The general form of this type of
equation is as follows:

Dω1
∗ y1(t) = g1(t, y1(t), y2(t), . . . , yn(t))

Dω2
∗ y2(t) = g2(t, y1(t), y2(t), . . . , yn(t))

...
Dωn

∗ yn(t) = gn(t, y1(t), y2(t), . . . , yn(t))
yi(0) = µi

0 < ωi < 1, i = 1, 2, . . . , n. (1)

Where Dωi
∗ yi(t) and gi are respectively the fractional derivative of order ωi and

function by t and yi(t) and µi are known constant number. The aim of solving this
equation is the calculation of yi(t).
In the present study, the first stage involves the introduction of Müntz wavelets.

These wavelets are demonstrated to be faster and more accurate than Müntz Leg-
endre polynomials. In the second stage, Müntz Legendre polynomials are intro-
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duced within the interval [0, 1]. Following these stages, the definitions and proper-
ties of wavelets are thoroughly discussed. The presentation then extends to Müntz
wavelets within the range [0, T ] . Utilizing Jacobi polynomials, a more stable formu-
lation for Müntz wavelets is subsequently developed. Finally, fractional differential
equations are solved, accompanied by an error analysis review. To assess the ac-
curacy of the proposed method, both mathematical and practical examples are
provided.

2. Müntz Legendre polynomials

Assume that the set Λn = {λ1, λ2, ..., λn} is a sequence of complex numbers, pro-
vided that Re(λk > −1/2). So one can define Müntz Legendre polynomials in the
interval [0, 1] as follows [24]:

Ln(x) = Ln(x,Λn) = Σn
k=0cn,kx

λk , (2)

cn,k =

∏n−1
v=0 λk + λv + 1∏n−1
v=0,v ̸=k λk − λv

. (3)

These polynomials are orthogonal with respect to the weight function w(x) = 1.
As a result, one can say that:

(Ln(x), Lm(x)) =

∫ T

0
Ln(x)Lm(x)dx =

δm,n

λn + λn+1

. (4)

Where (., .) represents the inner product and δm,n is Kronecker delta function.
In this work, it assumes that λk = γk, then

Ln(x) = Ln(x, γ) = Σn
k=1cn,kx

γk , (5)

cn,k =
(−1)n−k

γnk!(n− k)!

n−1∏
v=0

((k + v)γ + 1). (6)

3. Wavelets

Wavelet families are generated through the scaling and translation of a fundamental
function known as the mother wavelet. By continuously varying the scaling and
translation parameters, different continuous wavelet families emerge [10]:

ψa,b(t) = |a|−1/2ψ(
t− b

a
), a, b ∈ R, a ̸= 0.

Where a and b are expansion and transfer parameters, respectively.
If the parameters a and b are bound to discrete values, i.e. b0 > 0, a0 > 1, a =
a−k
0 , b = nb0a

−k
0 and if n is a positive integer number:

ψa,b(t) = |a0|k/2ψ(ak0t− nb0).
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Thus the following discrete wavelet family is formed:

ψk,n(t) = |a0|k/2ψ(ak0t− nb0). (7)

Where ψk,n(t)is a basic wavelet for L2(R).
In general, if one assumes that a0 = 2 and b0 = 1 , then ψk,n(t) produces an
orthonormal basis.

3.1 Müntz wavelets

Consider Müntz Legendre’s polynomial of degree m is denoted by Lm(x, γ).These
polynomials are orthogonal to their weight function w(t) = 1. Müntz wavelets
have four arguments ψn,m(t) = ψ(k, n,m, t) in which m = 0, 1, ...,M − 1 , n =
1, 2, ..., 2k−1 and k = 2, 3, . . . (M is a positive integer number).
Eq. (8) shows a definition of the Müntz wavelets on [0, T ]:

ψn,m(t) =

{√
2k−1(1 + 2mγ)Lm[2k−1t− T (n− 1), γ], (n−1)T

2k−1 ⩽ t < nT
2k−1

0, otherwise.
(8)

In Eq. (8), increasing M value causes the coefficients increase and become very

large. However, the sum of the coefficients is always equal to
√

2k−1(1 + 2mγ).
In the next section it is shown that Müntz wavelets can be obtained using Jacobi
polynomials in such a way that the wavelet coefficients to be stabilized.

3.2 Jacobi polynomials

Jacobi polynomials with the weight function w(x) = (1−x)α(1+x)β and α, β > −1
are orthogonal. They are defined as follows [5, 24]:

Jα,β
k (x) =

k∑
m=0

(−1)k−m(1 + β)k(1 + α+ β)k+m

m!(k −m)!(1 + β)m(1 + α+ β)k
(
1 + x

2
)m, x ∈ [−1, 1]. (9)

Also, one can say that:


Jα,β
0 (x) = 1

Jα,β
1 (x) =

1

2
((α− β) + (α+ β + 2)x)

Jα,β
k+1(x) =

bα,βk (x)

aα,βk

Jα,β
k (x)− cα,βk Jα,β

k−1(x).

(10)

Where
aα,βk = 2(k + 1)(k + α+ β + 1)(2k + α+ β)

bα,βk (x) = (2k + α+ β + 1)((2k + α+ β)(2k + α+ β + 2)x+ α2 − β2)

cα,βk = 2(k + α)(k + β)(2k + α+ β + 2).

(11)

Then, using Jacobi polynomials, we introduce the modified Müntz wavelets.
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3.3 Modified Müntz wavelets

Theorem 3.1 Assuming that Jα,β
m (x) is a Jacobi polynomial of degree m, with

α > 0 being a real number and t ∈ [0, T ], we can then rewrite Eq. (8) as follows:

ψn,m(t) =

{√
2k−1(1 + 2mγ)J

(0, 1
γ
−1)

m

(
2
(
(2k−1t−T (n−1))

T

)γ
− 1

)
, (n−1)T

2k−1 ⩽ t < nT
2k−1

0, otherwise.
(12)

Proof. According to the Eq. (8) and Eq. (12), it suffices to show that:

Lm[2k−1t− T (n− 1), γ] = J
(0, 1

γ
−1)

m

(
2

(
(2k−1t− T (n− 1))

T

)γ

− 1

)
,

(n− 1)T

2k−1
⩽ t <

nT

2k−1
.

With the change of variables x = 2k−1t− T (n− 1) we have:

Lm[x, γ] = J
(0, 1

γ
−1)

m

(
2(
x

T
)γ − 1

)
, 0 ⩽ t < 1.

Putting y = 2( xT )
γ − 1 in Eq. (9):

J
(0, 1

γ
−1)

m

(
2(
x

T
)γ − 1

)
=

m∑
k=0

(−1)m−k( 1γ )
m( 1γ )

m+k

k!(m− k)!( 1γ )
m( 1γ )

k
(
x

T
)kγ

=

m∑
k=0

cm,k(
x

T
)kγ = Lm(x, γ).■

Now, with respect to Theorem 1 and Eq. (10) and Eq. (11), the modified wavelet
Müntz will be as follows:

ψn,m(t) =

{√
2k−1(1+2mγ)

T L̃m[2k−1t− T (n− 1)), γ], (n−1)T
2k−1 ⩽ t < nT

2k−1

0, otherwise.
(13)

Where L̃m is the Müntz modified formula:
L̃0(x, γ) = 1

L̃1(x, γ) = (
1

γ
+ 1)(

x

T
)γ − 1

γ

L̃m+1(x, γ) =
1

am

(
bm(x)L̃m(x, γ)− cmL̃m−1(x, γ)

)
,

(14)

in which 
am = a

(0, 1
γ
−1)

m

bm(x) = b
(0, 1

γ
−1)

m

(
2
( x
T

)γ
− 1

)
cm = c

(0, 1
γ
−1)

m .

(15)

As previously mentioned, the coefficients in Eq. (8) grow significantly as
m increases. However, the sum of these coefficients is consistently equal to
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2k−1(1 + 2mγ). In fact, by applying Eq. (5) and calculating Lm(1) = Lm(1, γ) =∑m
k=1 cm,k, we can confirm that the sum of the coefficients in ψn,m(t) remains con-

stant and equals
√

2k−1(1 + 2mγ). For instance, for k = 1, m = 5 and γ = 0.5,
using Eq. (8) gives:

ψ1,5(t) =
√
6
(
−6 + 105t1/2 − 560t+ 1260t3/2 − 1260t2 + 462t5/2

)
, 0 ⩽ t < 1.

On the other hand, using (13), we can write ψ1,5(t) differently,

ψ1,5(t) =
1

90
√
6
(
1

28
(
1

15
(−1 + 63(−1 + 2

√
t)(

1

6
(−1 + 35(−1 + 2

√
t))(−20 + 4(−1

+15(−1 + 2
√
t))(−2 + 3

√
t))− 84(−2 + 3

√
t))− 6(−20 + 4(−1

+15(−1 + 2
√
t))(−2 + 3

√
t)))(−1 + 99(−1 + 2

√
t))− 11

3
(
1

6
(−1

+35(−1 + 2
√
t))(−20 + 4(−1 + 15(−1 + 2

√
t))(−2 + 3

√
t))

−84(−2 + 3
√
t))), 0 ⩽ t < 1.

It has been observed that in the modified formula (13), large coefficients do not
appear. To highlight the difference between (8) and (13) in the numerical evaluation
of Müntz wavelets, the values of ψ1,m(t) for selected values of t, with γ = 1/2,
k = 2 and m = 20, 40, 50, are provided in Table 1.As shown in the table, the values
calculated using (8) for m = 40 and 50 exhibit a significant error rate, except
when t is very close to zero. Furthermore, the sum of the coefficients is given by
ψn,m( n

2k−1 ) =
√

2k−1(1 + 2mγ) , which ensures that at the endpoint of each section,
specifically at t = n

2k−1 , the exact values of ψn,m(t) are known. Figure 1 illustrates
the absolute errors of ψ1,m(0.5) for γ = 1/2, k = 2, and various values of m, using
the formulas (8) and (13).
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Figure 1. Absolute errors in the values ψ1,m(1/2) for γ = 1/2, k = 2 and various values
of m.
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Table 1. Calculated values of ψ1,m(t) for γ = 1/2, k = 2 and m = 20, 40, 50.

m = 20 m = 40 m = 50
t Eq. (8) Eq. (13) Eq. (8) Eq. (13) Eq. (8) Eq. (13)
0.0005 5.061460 5.061460 10.4346 10.4346 −10.5350 −10.5350
0.005 0.868465 0.868465 2.12626 2.12626 2.70601 2.70945
0.05 −1.521720 −1.521720 −144.886 −1.82540 −2.11802× 107 −0.89844
0.25 −0.470313 −0.468590 −2.67387× 1010 −0.73353 −1.33610× 1017 0.77026
0.45 −1.499940 −1.411100 6.96955× 1013 1.07803 9.48981× 1020 −1.50813
0.49 −2.506220 −2.445380 −5.97390× 1013 1.03524 −5.23977× 1021 −2.53715

4. Error assessment:

To check syntactic error analysis, let yL(t) is the approximate solution obtained
from Eq. (2).

yL(t) = (ỹ1(t), ỹ2(t), . . . , ỹN (t)) = (

L∑
j=0

a1n,jψn,j(t),

L∑
j=0

a2n,jψn,j(t), . . . ,

L∑
j=0

aNn,jψn,j(t)),

and y(t) is the exact solution:

y(t) = (y1(t), y2(t), . . . , yN (t)) = (
∞∑
j=0

a1n,jψn,j(t),
∞∑
j=0

a2n,jψn,j(t), . . . ,
∞∑
j=0

aNn,jψn,j(t)),

then we have: 

Dω
∗ ỹ1(t) = g1(t, ỹ1(t), ỹ2(t), . . . , ỹN (t))

Dω
∗ ỹ2(t) = g2(t, ỹ1(t), ỹ2(t), . . . , ỹN (t))

...
Dω

∗ ỹN (t) = gN (t, ỹ1(t), ỹ2(t), . . . , ỹN (t))
ỹi(0) = µi, i = 1, 2, . . . , N

0 < ω < 1, (16)

we consider

ei(t) = yi(t)− ỹi(t). (17)

Is the calculation error of y(t), therefore

Ri,j(t) =
1

Γ(1− ω)

∫ t

0
(t− τ)−ωy′j(τ)dτ − gi(t, y1(t), y2(t), ..., yN (t)), (18)

and

R̃i,j(t) =
1

Γ(1− ω)

∫ t

0
(t− τ)−ωỹ′j(τ)dτ − gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t)). (19)

Subtracting both sides of the Eq. (18) and Eq. (19),we have:

Ei,j(t) =
1

Γ(1− ω)

∫ t

0
(t− τ)−ωe′j(τ)dτ

−[gi(t, y1(t), y2(t), ..., yN (t))− gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))].
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We consider

Gi(t, e1(t), e2(t), ..., eN (t)) = g(t, y(t))− g(t, yN (t))

= gi(t, y1(t), y2(t), ..., yN (t))− gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))

= gi(t, ỹ1(t) + e1(t), ỹ2(t) + e2(t), ..., ỹN (t) + eN (t))

− gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t)).

By using the Taylor expansion:

Gi(t, e1(t), e2(t), ..., eN (t)) ≃ e1(t)
∂gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))

∂ỹ1(t)

+e2(t)
∂gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))

∂ỹ2(t)

+...+ eN (t)
∂gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))

∂ỹN (t)
,

that is

∂gi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))

∂ỹj(t)
=
dgi(t, ỹ1(t), ỹ2(t), ..., ỹN (t))

dt
× 1

dỹj(t)
dt

,

Where gi and ỹj(t) are known functions, then by solving the system of differential
equations of the following fraction we can calculate the approximate error:

Dω
∗ e1(t) = G1(t, y1(t), y2(t), . . . , yN (t))

Dω
∗ e2(t) = G2(t, y1(t), y2(t), . . . , yN (t))

...
Dω

∗ eN (t) = GN (t, y1(t), y2(t) . . . , yN (t))
ei(0) = 0, i = 1, 2, . . . , N.

0 < ω < 1. (20)

5. Numerical solution of CD4+T cell HIV infection fractional order model

Human Immunodeficiency Virus (HIV) is a type of lentivirus, which belongs to the
broader retrovirus family. It has a near-spherical shape with a diameter of roughly
120 nanometersabout 60 times smaller than a red blood cell. HIV primarily targets
and weakens the immune system, making the body vulnerable to infections and
diseases like cancer. It specifically attacks CD4+ T cells, a subset of white blood
cells that play a critical role in immune defense. If the destruction of CD4+ T cells
becomes excessive, the body loses its ability to effectively combat infections and
other diseases.
While HIV poses a significant threat to the immune system, early diagnosis and

timely intervention can significantly slow or even halt its progression. Antiretrovi-
ral medications (ARVs) are effective in managing the virus, allowing the immune
system to recover and maintain a better functional state. Monitoring the CD4+ T
cell count, both in terms of infected and healthy cells, is crucial in assessing the
stage of HIV infection and determining the most effective treatment plan [6, 15].
In recent years, mathematical models have been developed to analyze the dy-

namics of CD4+ T cell populations and their interaction with HIV, providing
deeper insights into the viruss behavior and aiding in the optimization of treatment
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strategies. The model in [26] is one of them written with a system of differential
equations:



dT
dt = q − ηT + rT (1− T+1

Tmax
)− kV T

dI

dt
= kV T − βI

dV

dt
= µβI − ξV

T (0) = T0, I(0) = I0, V (0) = V0

0 < t < R <∞. (21)

Each of the parameters of this model is described in Table 2. Recently, many
mathematicians have studied this model and proposed various numerical methods
to solve it. For example,

Table 2. List of variable and parameters [23]

variable Meaning
T (t) The concentration of non-infected CD4+T cells in the

bloodstream.
I(t) The concentration of CD4+T cells infected by HIV in the

bloodstream.
V (t) The concentration of HIV viral particles in the bloodstream.
η Turnover rate of non-infected CD4+T cells.
β Turnover rate of infected CD+4T cells.
ξ Turnover rate of HIV particles.

1− T+1
Tmax

Logistic growth indicator of unifected CD4+T cells

k The infection rate of CD4+T cells by HIV virus
kV T Incidence of HIV infection in healthy CD4+ T cells.
µ The total number of virus particles produced by each infected

CD4+ T cell over its entire lifespan.
q The generation rate of unifected CD4+T cells in the body
µβ The generation rate of virions through infected CD4+T cells
Tmax The maximal concentration of CD4+T cells in the blood
r Tate of cells’ duplication through the process of mitosis

when they are stimulated by antigen and mitogen

In this paper, we consider the model presented in Eq. (21) as a form of fractional
differential equations, so the model changes as follows:

Dω
∗ T = q − ηT + rT (1− T+1

Tmax
)− kV T

Dω
∗ I = kV T − βI

Dω
∗ V = µβI − ξV

T (0) = T0, I(0) = I0, V (0) = V0

0 < t < R <∞, 0 < ω < 1 (22)

The initial values and parameters described in the model are considered as follows:
T0 = 0.1, I0 = 0, V0 = 0.1, q = 0.1, η = 0.02, β = 0.3, r = 3, ξ = 2.4, k =
0.00027, Tmax = 1500, µ = 10.
In Tables 3 ,4 and 5 we comparison M = 15, k = 1, γ = 1, ω = 1.
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Table 3. Numerical comparison for T (t)

t Present method Method in [27] VIM [19] LADM-Pade [20]
0 0.1 0.1 0.1 0.1
0.2 0.208808084 0.2038616561 0.2088073214 0.2088072731
0.4 0.406240543 0.3803309335 0.4061346587 0.4061052625
0.6 0.766442390 0.6954623767 0.7624530350 0.7611467713
0.8 1.414046852 1.2759624442 1.3978805880 1.3773198590
1 2.59155948 2.3832277428 2.5067466690 2.3291697610

Table 4. Numerical comparison for I(t)

t Present method Method in [27] VIM [19] LADM-Pade [20]
0 0 0 0 0
0.2 6.03270224e-6 0.6247872100e-5 0.6032634366e-5 0.603270728e-5
0.4 1.31583409e-5 0.1293552225e-4 0.1314878543e-4 0.131591617e-4
0.6 2.12237854e-5 0.2035267183e-4 0.2101417193e-4 0.212683688e-4
0.8 3.01774201e-5 0.2837302120e-4 0.2795130456e-4 0.300691867e-4
1 4.00378155e-5 0.3690842367e-4 0.2431562317e-4 0.398736542e-4

Table 5. Numerical comparison for V (t)

t Present method Method in [27] VIM [19] LADM-Pade [20]
0 0.1 0.1 0.1 0.1
0.2 0.061879843 0.06187991856 0.06187995314 0.06187996025
0.4 0.038294888 0.03829493490 0.03830820126 0.03831324883
0.6 0.023704550 0.02370431860 0.02392029257 0.02439174349
0.8 0.014680364 0.01467956982 0.01621704553 0.009967218934
1 0.009100845 0.02370431861 0.01608418711 0.003305076447

In Figures 2 ,3 and 4 we cpmpare T (t), I(t) and V (t) for M = 3, k = 1, γ = ω =
0.8, 0.85, 0.9.
Tables 6, 7 and 8 show the values of T (t), I(t) and V (t), for M = 15, k = 1, γ =

ω = 0.75, 0.80, 0.85, 0.90, 0.95.

Table 6. The values of T (t) for M = 15 , k = 1 and ω = γ

t ω = 0.75 ω = 0.80 ω = 0.85 ω = 0.90 ω = 0.95 ω = 0.98
0 0.1 0.1 0.1 0.1 0.1 0.1
0.2 0.2157344 0.2272514 0.2501158 0.2790315 0.3165184 0.3670560
0.4 0.4264249 0.4606339 0.5309877 0.6246844 0.7540629 0.9419131
0.6 0.8133480 0.8979687 1.0784967 1.3317891 1.7039759 2.2858520
0.8 1.5242915 1.8178109 2.1489168 2.7836259 3.7737946 5.4360892
1 2.8300579 3.2590105 4.2409152 5.7619568 8.2742007 12.784070

6. Conclusion

The purpose of this work is to present the Müntz wavelet and use it as a basis
for solving the system of fractional differential equations. The growth model of the
HIV virus is definitely an important application of this method.
To continue our research, I propose solving other problems using this wavelet.
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Figure 2. Numerical results for T (t) by γ = ω = 0.85, 0.9, 0.95 and M = 3 and k = 1.
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Figure 3. Numerical results for I(t) by γ = ω = 0.85, 0.9, 0.95 and M = 3 and k = 1.
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