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Abstract. This article examines new methods for solving fractional integral differential equa-
tions of Fredholm using wavelets. In this research, first, fractional integral differential equa-
tions and their special properties are introduced. Then, the importance of using wavelets as
a tool for analyzing and solving these equations is explained. Wavelet methods have many
advantages due to their ability to display signals and analyze nonlinear and indirect data,
especially in complex and dynamic problems. The article describes various algorithms and
techniques that, by utilizing the properties of wavelets, can be used to achieve numerical and
analytical solutions of the above equations. Convergence results and error evaluation are also
presented in this article using examples to demonstrate the effectiveness and high efficiency
of wavelet methods in solving fractional integral differential equations of Fredholm. It also
reduces the variable-order fractional derivative theorem to a system of algebraic equations by
approximating the Haar wavelet and integrating it.
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1. Introduction

Solving partial differential equations has been of interest to scientists for a long
time. Many researchers have proposed this method due to the applicability of frac-
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tional differential integral equations of singular type [19, 24]. Recently, fractional
integral differential equations have been used to model many physical phenom-
ena in various fields of non-linear oscillation of earthquakes, fluid dynamics traffic,
continuum, statistical mechanics of signal processing, control theory, dynamics,
and the relationship between nanoparticles [9, 21]. Numerous numerical methods
have been thoroughly researched to solve these equations, including Fourier trans-
form, Laplace analysis, fractional differential transform, finite difference method,
orthogonal functions, Adomian decomposition method, variable iteration method,
and homotopy analysis method. They are used to obtain approximate solutions for
fractional equations [10, 12, 20].
Fractional integral differential equations are valuable in modeling many phe-

nomena [13, 23]. Over the past four decades, scientists have focused on the theory
and applications of partial differential equations of fractional order, which gener-
alize differential equations of the correct order. One such method that has gained
attention is the modified homotopy analysis transformation method [15, 17]. Shah-
savaran and Babolian computed the numerical value of Fredholm’s non-linear in-
tegral equations using Harr wavelets [4]. Islameh and Aziz also proposed a method
for numerically solving one-dimensional equations using wavelets [6].
In 1909, Haar was the first person to mention wavelets. Later, Jean Morelet

discovered that Fourier bases were not ideal tools for underground exploration,
which led to the discovery of wavelets. Mir and Mallet then laid the foundations of
orthogonal wavelets and created algorithms for wavelet decomposition and recon-
struction. In 1990, Morenzi and Antonie expanded wavelets to two dimensions [3].
Wavelet analysis has been used to analyze transient signals that change rapidly.
It has various applications, including analyzing sound and audio signals, electri-
cal activity in the brain, and underwater sounds. It is also used to control power
plants through the NMR display of computer spectroscopic data [3, 14]. Today,
Wavelets have various applications, including brain tissue separation, CT scanning
in medical imaging, magnetic resonance imaging of nuclear energy, industries, agri-
culture, and computer software and hardware [16, 24]. Over the last two decades,
there have been advancements in wavelet theory. As a result, several studies have
been conducted on solving integro-differential equations using wavelet methods.
For instance, in 2004, Hibbert-Taylor solved Fredholm integral equations using
wavelet methods [7]. In 2012, the Legendre wavelet method was employed to solve
second-type Fredholm integral equations [8]. Wavelets were also used to solve par-
tial fractional equations. The solution for binary systems of fractional integral
differential equations has been achieved by utilizing Haar and Legendre wavelets.
These wavelets have been employed in solving partial fractional equations as well
as binary systems of fractional integral differential equations. However, applying
Haar wavelets in solving 2D fractional differential integral equations is a new and
unexplored phenomenon. Therefore, we aim to utilize the Haar wavelet method to
solve the two-dimensional fractional Fredholm integro-differential equations of the
form,

Dβ
t u(x, t) = f(x, t) +

∫ 1

0

∫ 1

0
k(x, y, t, ω)u(y, ω)dydω, (1)

where Dβ
t u(t) is the fractional derivative and u(x, t) be a function defined over

[0, 1]× [0, 1], and k(x, y, t, ω) be a continuous kernel; in addition, assume 0 < β < 1.
This article is written as follows: The concepts of Harr wavelet and related theorems
are presented in section 2. The proposed method is presented in section 3. And
finally, the accuracy and efficiency of the proposed design are shown using numerical
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solutions with some examples with tables and graphs in section 4.

2. Haar wavelets

Haar basis wavelet Ψi,j(y), j ∈ N, i ∈ Z is a constant family function and an
orthogonal subfamily of Hilbert space L2(R), a group of functions that arise from
a constant function ψ called the mother wavelet. In the wavelet family, the following
relations are established:

Ψj,i(y) = 2j/2ψ(2jy − i).

For the group of raging Haar wavelet in the interval [0, 1) we have,

h1(x) =

{
1 , for x ∈ [α, β)
0 , elsewhere,

(2)

and

hi(x) =

1 , for x ∈ [α, β)
1 , for x ∈ [β, γ)
0 , elsewhere,

, i = 2, 3, 4, . . . ,

where

αk =
k

m
, βk =

k + 0.5

m
, γk =

k + 1

m
,

m = 2j , j = 0, 1, 2, . . . , j , k = 0, 1, 2, . . . ,m− 1.

The connection between i, k, and m is given by i = k+m+1. k is the transmission
parameter.
In Table 1, we calculate the correct values for i, j, and k up to level j = 3.

Table 1. Calculation for Haar wavelet bases at j = 3.

k 0 0 1 0 1 2 3 0 1 2 3 4 · · · 7
j 0 1 1 2 2 2 2 3 3 3 3 3 · · · 3

i = k +m+ 1 2 3 4 5 6 7 8 9 10 11 12 13 · · · 16

The value of the number j denotes the maximum resolution level of the wavelet.
Any specific integral function f(x) in the space [0, 1) can be considered as a linear
combination of the grades of the Haar wavelet, such as,

f(x) ≈
2M∑
i=1

cihi(x).

Here, ci is the real coefficient in the function. The upside series concludes at confined
intervals if f(x) is a piece fixed [1].
According to the above explanation, we get a linear device from the following

equations:

f(xm) =
2M∑
i=1

cihi(xm) , m = 1, 2, 3, . . . ,M. (3)
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In the above text, the linear system of equations is a 2M × 2M , which can be
calculated using the following theorem to find the unknown coefficients ci.

Theorem 2.1 The answer to the system (3) is as follows:

c1 =
1

2M

2M∑
m=1

f(xm)

ci =
1

µ

 β∑
m=α

f(xm)−
γ∑

m=β+1

f(xm)

 , i = 1, 2, 3, . . . , 2M.

where

α = µ(λ− 1) + 1 , β = µ(λ− 1) +
µ

2
, γ = λµ,

µ =
2M

θ
, λ = i− θ , θ = 2[log2(i−1)].

Proof . See [11].

Theorem 2.2 With the variables x and y, a very good and real function F (x, y)
can be estimated by two dimensional wavelets in an approximate form as,

F (x, y, s, t) ≈
2M∑
i=1

2M∑
j=1

di,j(x, y)hi(s)hj(t).

Substituting the collocation point:

sp =
p− 0.5

2M
, p = 1, 2, 3, . . . , 2M,

and

tq =
q − 0.5

2N
, q = 1, 2, 3, . . . , 2N,

we get the following system of linear equations:

F (x, y, sp, tq) ≈
2M∑
i=1

2N∑
j=1

di,jhi(sp)hh(tq), p = 1, 2, 3, . . . , 2M, q = 1, 2, 3, . . . , 2N,

for each value of x, y ∈ [0, 1], the answer of this system is obtained as the following
equation:

d1,1(x, y) =
1

2M × 2N

2M∑
p=1

2N∑
q=1

F (x, y, sp, tq),

di,j(x, y) =
1

µ1 × 2N

 β1∑
p=α1

2N∑
q=1

F (x, y, sp, tq)−
γ1∑

p=β1

2N∑
q=1

F (x, y, sp, tq)

 ,

i = 2, 3, . . . , 2M,
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d1,j(x, y) =
1

µ2 × 2M

 2M∑
p=1

β2∑
q=α2

F (x, y, sp, tq)−
2M∑
p=1

2N∑
i=β2+1

F (x, y, sp, tq)

 ,

j = 2, 3, . . . , 2N,

di,j(x, y) =
1

µ1 × µ1

 β1∑
p=α1

β2∑
q=1

F (x, y, sp, tq)−
β1∑

p=α1

γ2∑
i=β2+1

F (x, y, sp, tq)

−
γ1∑

p=β1+1

β2∑
i=α2

F (x, y, sp, tq) +

γ1∑
p=β1+1

γ2∑
i=β2+1

F (x, y, sp, tq)

 ,

i = 2, 3, . . . , 2M, j = 2, 3, . . . , 2N.

Whither

α1 = µ1(λ1 − 1) + 1 , β1 = µ1(λ1 − 1) +
µ1
2

, γ1 = λ1µ1, (4)

µ1 =
2M

θ1
, λ1 = i− θ1 , θ1 = 2[log2(i−1)],

and also

α2 = µ2(λ2 − 1) + 1 , β1 = µ2(λ2 − 1) +
µ2
2

, γ2 = λ2µ2, (5)

µ2 =
2M

θ2
, λ2 = i− θ2 , θ2 = 2[log2(i−1)].

Proof . [2].
Consider the parameters t, y, x, and s from the function F (x, y, s, t). Let’s as-

sumption that the function F (x, y, s, t) is estimated by used to of a 2- dimensional
Haar wavelet as follows:

F (x, y, s, t) ≈
2M∑
i=1

2N∑
j=1

di,j(x, y)hi(s)hj(t).

We achieved the consequent system of linear equations.

Corollary 2.1 Consider F (x, y) that includes two parameters y and x, which is
estimated via the Haar wavelet access presented in Equation (1). Further suppose
such F (x, y) at the points (xm, yn), n = 1, 2, , 2N,m = 1, 2, ..., 2M . Therefore, at
any point of the domain of the function F (x, y), its approximate value can be
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obtained as tracks:

F (x, y) =
1

2M × 2N

2M∑
p=1

2N∑
q=1

F (xm, yn)h1(x)h1(y)

+

2M∑
i=1

1

µ1 × 2N

 β1∑
p=α1

2N∑
q=1

F (xm, yn)−
γ1∑

p=β1

2N∑
q=1

F (xm, yn)

hi(x)h1(y)

+

2N∑
i=1

1

µ2 × 2M

 2M∑
p=1

β2∑
q=α2

F (xm, yn)−
2M∑
p=1

γ2∑
q=β2+1

F (xm, yn)

h1(x)hj(y)

+
2M∑
i=1

2N∑
j=1

1

µ1 × µ2

 β1∑
p=α1

β2∑
q=α2

F (xm, yn)−
β1∑

p=α1

γ2∑
q=β2+1

F (xm, yn)

−
γ1∑

p=β1+1

β2∑
q=α2

F (xm, yn) +

γ1∑
p=β1+1

γ2∑
q=β2+1

F (xm, yn)

hi(x)hj(y),

where α1, β1, γ1 and µ1 are defined as in Eq. (4) and α2, β2, γ3 and µ2 are defined
as in Eq. (5)

3. Solution method

When dealing with both u(x) and its derivative u′(x) in differential integral equa-
tions of Haar wavelet in relation (2) is introduced as follows:

qi =

∫ x

0
hidx =


x− k

2j , k
2j ⩽ x ⩽ k+0.5

2j

k+1
2j − x , k+0.5

2j ⩽ x ⩽ k+1
2j

0 , elsewhere.

(6)

Which if approximated u′(x) ≈
∑2J+1

i=1 bihi(x) as a result u(x) − u(0) ≈∑2J+1

i=1 bihi(x).
First, we detect the level of clarity j to proximate U(x, t), then we assume,

∂

∂t
U(x, t) ≈

2J+1∑
i=1

2J+1∑
j=1

bijhi(x)hj(t). (7)

Wherever {bij} are to be found. From the initial condition u(x, 0) = 0 and the
composition t in [0, t] , can be written,

U(x, t) ≈
2J+1∑
i=1

2J+1∑
j=1

bijhi(x)q(t).
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The following integral expression can be written as a result,

∫ 1

0

∫ 1

0
K(x, t, y, ω)U(y, ω)dydω ≈

2J+1∑
i=1

2J+1∑
j=1

bij

∫ 1

0

∫ 1

0
K(x, t, y, ω)hiqj(ω)dydω.

To evaluate the phrase Dβ
t u(x, t), we connection relation (7) into the Dβ

t u(x, t),
obtained,

1

ζ(1− β)

2J+1∑
i=1

2J+1∑
j=1

bijhi(x)

∫ t

0
hj(ω)(t− ω)−βdω

= f(x, t) +

2J+1∑
i=1

2J+1∑
j=1

bij

∫ 1

0

∫ 1

0
k(x, t, y, ω)hi(y)qj(ω)dydω.

With the help of nodes with equal distance tn = n
2J+1 and xm = m−0.5

2J+1 to
create the system,

1

ζ(1− β)

2J+1∑
i=1

2J+1∑
j=1

bijhi (xm)

∫ tn

0
hj(ω) (tn − ω)−β dω

=f (xm, tn) +
2J+1∑
i=1

2J+1∑
j=1

bij

∫ 1

0

∫ 1

0
k (xm, tn, y, ω)hi(y)qj(ω)dydω,

where n,m = 1, 2, 3, . . . , 2J+1.
By solving the system of equations 2J+1 × 2J+1 in the above relation, the value

of wavelet coefficients bij is obtained.

4. Numerical tests

In this section, we demonstrate the effectiveness, precision, application, and ef-
ficiency of the proposed method by providing several examples of a single weak
PIDE. To do this, we utilize the definition of absolute error, denoted as eM . It is
defined as,

eM (x, y) = |u(x, y)− uM (x, y)| .

Here, u(x, y) shows the approximate answer, and u(x, y) shows the exact result
achieved using the suggested method.
Let us consider the mesh nodes on the square and the asymptotic spread powers

of the step size h as,

xm =
m− 0.5

2M
, m = 1, 2, 3, . . . , 2M,

yn =
n− 0.5

2N
, n = 1, 2, 3, . . . , 2N, 0 ⩽ x, y ⩽ 1,

G(h)−G(0) = βhk + o(hs), 0 < k < s. (8)
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Here G(0) is the unknown correct value, G(h) means the quantity achieved with
any numeric procedure with level range h, k is the theoretical order of exactness,
and β is an unknown fixed independent of h.
Mean two numerical solutions established on the nested grid as follows,

Gi−1 = G (hi−1) , Gi = G (hi) .

Applying (8) for these explanations, the following equality,

Gi−1 −G(0) = βhki−1 +O(hsi−1) (9)

Gi −G(0) = βhki +O (hsi ) .

The error value can be obtained by combining these two relations. So, the value
becomes an error as,

G(0)−Gi =
Gi −Gi−1

2k − 1
−O (hsi ) . (10)

Or another approximation of the value G(0) as,

Ei = Gi +
Gi −Gi−1

2k − 1
= G(0)−O (hsi ) . (11)

This simplified formula is known as the Richardson analogy formula. In essence,
the approximate solutions Ei have more error than h of Gi. Therefore, if the nu-
merical solutions for two grids and the theoretical order of accuracy k are known
from the numerical method, as a simple analogical formula (11), it removes the
preceding term from the error of the expansion equation (8) and leads us to an
acceptable solution [11].
In this study, we employed Richardson’s extrapolation method to assess the error

in finite difference methods for various mathematical issues.
From solving the real value of G(0) in (9), provide a simple method for assessing

the convergence rate of the numerical approach as,

Gi−1 −G(0)

Gi −G(0)
= 2k +O

(
hs−k
i

)
=

log
(
Gi−1−G(0)
Gi−G(0)

)
log 2

. (12)

It is possible to guess and estimate the accuracy of visionary content using three
paths on a series of nested networks,

Gi−2, Gi−1, Gi,
hi−2

hi−1
=
hi−1

hi
= 2.

The beneath relation can be achieved from three relationships a like to parity
(12),

ωi =
Gi−2 −Gi−1

Gi−1 −Gi
= 2k +O

(
hs−k
i

)
. (13)

With the help of relationship (18), the order of accuracy k can be evaluated and
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specified [16],

k ∼= ki =
log (ωi)

log 2
. (14)

Here, ki is an amount of discovered degree of precision, and relation (14) grants
the pilot procedure for determinative or evident relation (14) can be used only for
ωi > 0.
Further, the following formula can be applied to evaluate the order of convergence

for the advanced value Ei.

s ∼= si =
log

(
Ei−2−Ei−1

Ei−1−Ei

)
log 2

. (15)

Example 4.1 Notice the following two-dimensional fractional integro-differential
equation:


D

5

2

t u(x, t) = −2π
5

2

(
−6 + π2

)
+ 12

√
t sin(πx)

∫ 1

0

∫ 1

0
yeωu(y, ω)tdωdy,

u(x, 0) = 0.

(16)

The exact solution of Equation (16) is u(x, t) =
√
πt3 sin(πx).

We use the Haar wavelet method the level of resolution J = 4. The following
discrete system is given by the proposed method.

32∑
i=1

32∑
j=1

bijhi (xm)hj (tn) =
16

15
π2

(
6− π2

)
(tn)

5

2 +
√
π (tn)

3 sin (πxm)

+
8π5

√
π

15

32∑
i=1

32∑
j=1

bij (tn)
5

2 qi

∫ 1

0
sin(πt)hj(t)dt,

by approximate solution,

u(x, t) ≈
32∑
i=1

32∑
j=1

bijhi (xm)hj (tn) .

Table 2.. Approximate, absolute error and exact for distinct of tn and xm in example 4.1

with J = 4.
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xm tn approximate value exact value absolute error
0.734375 0.00171454 0.0017183 3.83569× 10−6

0.484375 0.00231252 0.00231636 3.83569× 10−6

0.359375 0.00209265 0.00209649 3.83569× 10−6

0.234375 0.109375 0.00155361 0.00155745 3.83569× 10−6

0.109375 0.000777463 0.000781299 3.83569× 10−6

0.046875 0.00033645 0.00034029 3.83569× 10−6

0.015625 0.00109392 0.0011971 2.57826× 10−5

0.046875 0.00332255 0.00334834 2.57826× 10−5

0.234375 0.234375 0.015299 0.0153247 2.57826× 10−5

0.484375 0.0227664 0.0227922 2.57826× 10−5

0.734375 0.0168825 0.0169082 2.57826× 10−5

0.984375 0.00109392 0.00111971 2.57826× 10−5

The chart approximate and exact solution for example 4.1. with purpose J = 4.

Figure 1. The approximate (to the left) and the exact (to the right) solutions for

example 4.1 with J = 4 using Haar wavelet method.

Example 4.2 Notice the following 2-D linear fractional integro-differntial equa-
tion: 

D0.5
t u(x, t) =

√
π

2
ex − 2(e− 1)

3
+

∫ 1

0

∫ 1

0
u(y, ω)tdωdy,

u(x, 0) = 0.

(17)

The precise solution of Equation (17) is u(x, t) =
√
tex. We solve this example

differently using the Haar wavelet.
To estimate the value of D0.5

t u(x, t), we use,

∂

∂t
u(x, t) ≈

32∑
i=1

32∑
j=1

bijhj(x)hj(t). (18)

Considering the condition u(x, 0) = 0, to find that,

u(x, t) ≈
32∑
i=1

32∑
j=1

bijhi(x)qj(t). (19)
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By using the estimates in (18), (19) and nods tn = n−0.5
32 and xm = m−0.5

32 ,
following system is obtained,

1√
π

32∑
i=1

32∑
j=1

bijhi(x)

∫ tn

0
hj(ω) (tn − ω)−0.5 dω

=
32∑
j=1

bijtnqi(1)sj(1) +

√
π

2
exm − 2(e− 1)tn

3
,

where,

sj(x) =

∫ x

0
qj(y)dy and n,m = 1, 2, 3, . . . , 32.

Table 3. Approximate, absolute error and exact for distinct of tn and xm in example 4.2

with J = 4.
xm tn approximate value exact value absolute error

0.984375 1.86251 1.86228 2.37762× 10−4

0.4734375 1.45053 1.45029 2.38002× 10−4

0.48437 1.12943 1.12967 2.38189× 10−4

0.234375 0.484375 0.879551 0.879789 2.38335× 10−4

0.109375 0.776173 0.776411 2.38395× 10−4

0.015625 0.706692 0.70693 2.38435× 10−4

0.984375 1.29551 1.29558 7.13023× 10−5

0.734375 1.00893 1.009 7.32756× 10−5

0.234375 0.234375 0.611913 0.611989 7.60092× 10−5

0.484375 0.785734 0.785809 7.48123× 10−5

0.109375 0.540002 0.540078 7.65043× 10−5

0.015625 0.49157 0.491747 7.68371× 10−5

The chart approximate and exact solution for example 4.2 with purpose J = 4.

Figure2. The approximate (to the left) and the exact (to the right) solutions for

example 4.2 with J = 4 using Haar wavelet method.
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Example 4.3 Notice the following 2-D linear fractional integro-differntial equa-
tion: D0.5

t u(x, t) = 8t
2

3
sin(πx)

πx + 6(2− e) + π
√
π
∫ 1
0

∫ 1
0 ye

ωu(y, ω)dydω,

u(x, 0) = 0.

(20)

The accurate solution of relation (20) is u(x, y) = 3
√
πt2 sinπx

πx .
We use Haar wavelet method at J = 4.

1√
π

32∑
i=1

32∑
j=1

bijhi (xm)

∫ tn

0
hj(ω) (tn − ω)−0.5 dω

= 8t
3

2
n
sinπx

πx
xm + 6(2− e) + π

√
π

32∑
i=1

32∑
j=1

bij

(∫ 1

0
qj(ω)e

ωdω

)(∫ 1

0
yhi(y)dy

)
,

for m,n = 1, 2, 3, . . . , 32, and tn = n−0.5
32 , xm = m−0.5

32 .

Table 4. Approximate, absolute error and exact for distinct of tn and xm in example 4.3

with J = 4.
xm tn approximate value exact value absolute error
0.984375 0.0054642 0.00463451 8.29692× 10−4

0.4734375 0.0941176 0.0938081 3.67342× 10−4

0.484375 0.191455 0.191718 2.63576× 10−4

0.359375 0.234375 0.233365 0.233875 5.0993× 10−4

0.234375 0.265705 0.266405 7.00023× 10−4

0.109375 0.285561 0286377 8.16738× 10−4

0.984375 0.08334443 0.0817527 1.69153× 10−3

0.734375 1.65523 1.65473 4.53913× 10−4

0.484375 3.38101 3.38101 9.04961× 10−4

0.359375 0.984375 4.12407 4.12556 1.49005× 10−3

0.234375 5.04948 5.0517 2.21871× 10−3

0.015625 5.14813 5.15042 2.29639× 10−3

The chart approximate and exact solution for example 4.3 with purpose J = 4.

Figure 3. The approximate (to the left) and the exact (to the right) solutions for

example 4.3 with J = 4 using Haar wavelet method.
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5. Conclusions

In this article, Fredholm’s two-dimensional partial differential integral equations
were solved using the Haar wavelet. The proposed technique results in high accu-
racy. Theoretical discussions about convergence and approximation error estima-
tion have also been presented, and the experimental results obtained from some
illustrative examples prove this issue well. Finally, the reliability and simplicity of
the method are shown using numerical examples, graphs, and tables.
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