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Abstract. Centralized resource allocation (CRA) models are usually presented under variable 

returns to scales (VRS) technology. In these models, the evaluation of the efficiency of the 

decision-making units (DMUs) is done only on the basis of the observed DMUs. In this paper, we 

introduce CRA models in semi-additive production technology. In this technology, in addition to 

the observed DMUs, aggregation of production units is present in the process of performance 

evaluation using data envelopment analysis (DEA). We prove that we can solve this model only 

based on observational DMUs in order to reduce the number of calculations. In the following, we 

develop this model for a general case based on the approach provided by Fang [6]. The proposed 

models adjust the inputs and outputs to achieve the total input contraction by the central decision-

maker (DM). We can only consider adjustments to inefficient DMUs instead of all DMUs in the 

CRA model. The proposed model maximizes the efficiency of individual DMUs at the same time 

that total input consumption is minimized or total output production is maximized. We obtain the 

efficient targets corresponding to all DMUs on the efficiency frontier of semi-additive production 

technology by solving only one model. We illustrate our approach with an empirical example.   
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1. Introduction 

All Traditional DEA models evaluate DMUs individually (Charnes et al. [3]; Banker et al. 

[2], Gerami [9], Gerami et al. [10-11]). These models depict the DMU under evaluation on 

the efficiency frontier by reducing inputs (input-orientated) or increasing outputs (output-

orientated). However, when the evaluation is done within a centralized framework, the DM 

may want to evaluate all DMUs simultaneously and obtain the optimal level of inputs and 

outputs from all DMUs by solving a model rather than reducing the inputs of the DMUs 

independently. Korhonen and Syrjänen [23] proposed an interactive model by combining 

DEA and multiple-objective linear programming. They used it in the resource-allocation 

problem. Their model allocates available resources among DMUs so that the total amount 

of output will be maximized simultaneously. Lozano and Villa [25] proposed two CRA 

models under VRS technology. The first model seeks a radial reduction of the total 

consumption of each input by all DMUs, while the second model seeks a separate reduction 
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for each input according to the preference structure. They supposed that total production 

output was guaranteed not to decrease. Their model projects all DMUs onto the efficient 

frontier. Asmild et al. [1] modified the CRA model of Lozano and Villa [25] and only 

considered adjustments to inefficient DMUs. They proposed a procedure that can be 

applied to generate alternative optimal solutions. Lozano et al. [26] proposed centralized 

reallocation in the DEA for emission permits. Their model supposes that firms produce 

desirable and undesirable outputs. Their approach has three objectives, including 

maximizing aggregated desirable production, minimizing undesirable total emissions, and 

minimizing the consumption of input resources.  Du et al. [4] developed a CRA approach 

to minimize the total input consumed and maximize the total output produced by all DMUs 

simultaneously. Hosseinzadeh Lotfi et al. [18] developed a CRA model based on the 

enhanced Russell models. They obtain efficient targets for all DMUs non-radially. 

Hosseinzadeh Lotfi et al. [19] developed a CRA model for stochastic data. They allocate 

centralized resources where inputs and outputs are stochastic. Mar-Molinero et al. [29] 

proposed a simplified version of the CRA model that was proposed by Lozano and Villa 

[25]. They show that their model is simple to implement in many situations. Fang [6] 

proposed a generalized DEA model for CRA. He showed that his model extends the 

models of Lozano and Villa [25] and Asmild et al. [1] in the general case. They 

decomposed the structural efficiency into three components: the aggregate technical 

efficiency, the aggregate allocative efficiency and re-transferable efficiency components 

to discover the sources of such total input shrinkage in the generalized CRA model. Fang 

and Li [7] proposed CRA based on a cost and revenue analysis. He presents a centralized 

approach for reallocating resources to DMUs in a centralized decision-making 

environment based on revenue efficiency. Fang [8] proposed a CRA model based on 

efficiency analysis for step-by-step improvement path analysis in a centralized decision-

making environment. Hakim et al. [17] developed a bi-level formulation for CRA in DEA 

under efficiency constraints. They investigated that DMUs are controlled by a central DM 

that has the authority to allocate limited resources to them; in this way, overall organization 

effectiveness is maximized. Sadeghi and Dehnokhalaji [31] presented a comprehensive 

method for the CRA in DEA. They developed two planning ideas. The first idea is to 

maximize the outputs produced with future planned resources and eliminate all input 

inefficiencies as much as possible while all units are highly efficient. The second idea is to 

optimize the revenue and total cost functions to achieve the best system performance. It is 

assumed that all DMUs can adjust their input consumption and output production in the 

current production possibility set (PPS). Momeni et al. [30] developed a centralized DEA-

based reallocation of emission permits under cap and trade system based on countries 

efficiencies. Their model considers DMUs together and improves the efficiency score of 

them by reducing total emission permit as undesirable outputs. Kamyab et al. [20] 

proposed a CRA model based on the ratio-based DEA model for a two-stage incentive 

system. They evaluated commercial banks when data were ratios. Lozano and Contreras 

[28] proposed a CRA model by using lexicographic goal programming. They applied it to 

the Spanish public university system. Their approach proposed using three priority levels: 

(1) aggregated input consumption and output production goals. (2) the input and output 

goals of the individual operating units, and (3) the technical efficiency of the computed 

targets. Lozano and Villa [27] proposed a Multiobjective centralized DEA approach to 

Tokyo 2020 Olympic games, they obtain suitable targets in centralized management. 

Xiong et al. [32] proposed a parallel DEA-based approach for multi-period CRA among 

all DMUs by considering individual periods as segments operating in parallel. They 

introduce the concept of cross-efficiency for balancing the goals of the organization and 

the individual preferences of each DMU in resource allocation. Zhu et al. [34] proposed a 

DEA model for partial centralization of resource allocation among independent subsets of 

DMUs. Their approach was to improve the output of each DMU in the subset and reduce 
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the myopia effect by rationally optimizing the allocation of resources. Their model can 

directly calculate the resource optimization results without modifying the model again. An 

improvement path to guide DMUs to achieve their ultimate goals on the efficient frontier 

in a workable and realistic manner. Yang [33] proposed a CRA-DEA model for target 

setting in a two-stage production process. He applied his model to determine the optimal 

centralized resource allocation and target setting plan for 27 retailers belonging to an 

automobile parts supplier in Taiwan. Lin and Lu [24] proposed a centralized DEA model 

for effective allocation of shared inputs, they applied their approach in the optimizing 

public sector resources.  

Traditional DEA model measure the efficiency of DMUs in the constant and variable 

returns to scale technologies. Charnes et al. [3] developed the first technology called 

constant returns to scales (CRS) technology. Banker et al. [2] proposed another technology 

under variable returns to scales (VRS). Koopmans [19] presented a technology under the 

title of non-increasing efficiency technology. Deprins et al. [4] did not consider the 

convexity axiom and introduced free disposal hull (FDH) technology. Green and Cook 

[16] proposed additive technology based on observed DMUs and aggregation DMUs and 

proposed a new PPS. The additive axiom states that the two observed DMUs such as 𝐴 

and 𝐵 can aggregate their activities to create a new DMU called unit aggregation as 𝐴 +
𝐵. By considering the additive axiom, we suppose that if observed DMU 𝐴 and 𝐵 are 

able to product, then the unit aggregation as A+B is also able to product. This axiom is 

applied in the relevant articles as additive and semi additive axioms. If we want to 

distinguish between these two assumptions, we can say that by considering the as additive 

axiom, if an observed DMU such as 𝐴 belongs to the production technology and has the 

possibility of activity, then new aggregated units such as 2𝐴 and 3𝐴 also belong to the 

set of production technology. However, the semi additive axiom states that the new 

aggregation DMU of units 𝐴 and 𝐵 as 𝐴 + 𝐵 belong to production technology if 𝐴 ≠ 𝐵. 

However, according to the additive axiom, these units can be the same and have the same 

inputs and outputs (Ghiyasi [13]; Ghiyasi and Cook [14]).  

Ghiyasi [10] proposed a DEA production technology under the title semi-additive 

technology and applied it for the incorporation of collaboration in efficiency analysis. He 

stated that each unit must compete not only with individual units but also with aggregated 

units and provide a more competitive efficiency frontier. Also, it is a generalized 

technology from which traditional DEA technologies can be derived. Ghiyasi and Cook 

[14] proposed the semi-additive production technology in DEA and developed a new 

model that decreases the computational complexity of models in the semi-additive 

production technology significantly. They proved that the proposed semi-additive 

methodology allows the number of variables to decrease and the complexity of the 

algorithm to also be reduced. Karami Khorramabadi et al. [21] proposed a cost-efficiency 

evaluation DEA model by considering undesirable outputs in the semi-additive production 

technology. Ghiyasi and Cook [14] developed a semi-additive integer-valued production 

technology for analyzing public hospitals in Mashhad. Gerami [12] proposed strategic 

alliances and partnerships in DEA based on the semi-additive production technology in 

DEA. They applied the proposed approach to strategic alliances and partnerships in 

banking. They showed that with the semi-additive production technology, more favorable 

targets can be achieved for the units in the partnership process. 

It can be said that the main contribution of this paper is as follows: In this paper, we 

apply DEA in centralized settings that units operate in the same organization. We introduce 

a new CRA model in the semi-additive production technology in DEA. We assume that all 

DMUs operate under the supervision of a central unit to introduce input and output targets 

for all DMUs in the next production. The proposed model, instead of solving an 

independent LP model that projects each DMU in turn, projects all DMUs simultaneously. 

Instead of reducing the inputs of each DMU, the goal is to reduce the total input 
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consumption of DMUs. We develop the model for the general state of CRA in the semi-

additive production technology based on the idea of Fang [6]. We developed an extension 

to the CRA model in the semi-additive production technology for incorporating non-

adjustable input variables and non-transferable outputs. The results of models in this paper 

show that our approach in the semi-additive production technology can better realize the 

optimal allocation of DMUs resources that has important application significance. 

The structure of the rest of this paper is as follows: The second section presents the 

CRA model in semi-additive production technology based on the models of Lozano and 

Villa [21] and Asmild et al. [1]. The third section presents the general case of CRA in the 

semi-additive production technology that includes the models in Section 2. The fourth 

section illustrates models with a numerical example. The fifth section proposes an 

application of the CRA model in the semi-additive production technology for allocating 

resources in a set of chain stores, and at the end, we present the results of the research.  

 

2. CRA in semi-additive production technology 

As we know, the radial models in the DEA (input-orientated) obtain the projection of the 

DMU under evaluation onto the efficiency frontier of the production technology during 

two phases. In the first phase, they obtain a reduction in all input components, and in the 

second phase, they obtain an additional reduction of each input or expansion of each 

output. But there are two differences between CRA models and the standard DEA model. 

First, instead of solving an independent model that depicts each DMU separately, the CRA 

model depicts all DMUs on the efficiency frontier simultaneously. Second, instead of 

reducing inputs from each of the units separately, the total consumption input from all 

DMUs is reduced simultaneously (Lozano and Villa [25]). In this section, we propose the 

CRA model in the semi-additive production technology of DEA.  

Let 𝑛  DMUs are in the production process as 𝐷𝑀𝑈𝑗 = (𝑋𝑗 , 𝑌𝑗 ), 𝑗 = 1, … , 𝑛 . Each 

𝐷𝑀𝑈𝑗 consume input vector 𝑋𝑗 = (𝑥1𝑗 , … , 𝑥𝑚𝑗)
𝑇

∈ 𝑅+
𝑚  for producing the vectors output 

as 𝑌𝑗 = (𝑦1𝑗 , … , 𝑦𝑠𝑗)
𝑇

∈ 𝑅+
𝑠 .  Also, assume, 𝑗, 𝑙 = 1, … , 𝑛 , be indexes of DMUs. The 

index for inputs and outputs are 𝑖 = 1, … , 𝑚 and 𝑟 = 1, … , 𝑠, repectively. 𝜃𝑆𝐴
𝐶𝑅𝐴 show 

radial contraction of total input vector. Also, put (𝜇1𝑙 , 𝜇2𝑙, … . , 𝜇𝑛𝑙)  be vector for 

projecting of 𝐷𝑀𝑈𝑙 , 𝑙 = 1, … , 𝑛.  

Let 𝑁 = {1, … , 𝑛} is indexes set of DMUs. 𝑁′ = 𝑃(𝑁) − ∅ show the power set of 𝑁 

that we exclude the origin. 𝑁′  is includes the index of all observed DMUs and the 

aggregation units corresponding to them, then this set has 2𝑛 − 1 member. Now, we 

present the PPS in order to CRA as follows. 

𝑇𝑆𝐴
𝐶𝑅𝐴 = {(𝑋, 𝑌)| ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑌𝑗  ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁′ = 1, 𝜇𝑗𝑙 ≥ 0}. (1) 

The CRA model in semi-additive production technology proposed as follows. 

 𝑀𝑖𝑛  𝜃𝑆𝐴
𝐶𝑅𝐴 

 𝑠. 𝑡.   (𝜃𝑆𝐴
𝐶𝑅𝐴 ∑ 𝑋𝑗𝑗∈𝑁′ , ∑ 𝑌𝑗𝑗∈𝑁′  ) ∈ 𝑇𝑆𝐴

𝐶𝑅𝐴.                    (2)                                

According to the definition of the set 𝑇𝑆𝐴
𝐶𝑅𝐴, model (2) becomes as follows. 

 

 𝑀𝑖𝑛  𝜃𝑆𝐴
𝐶𝑅𝐴 

 𝑠. 𝑡.   ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑥𝑖𝑗 ≤ 𝜃𝑆𝐴
𝐶𝑅𝐴(∑ 𝑥𝑖𝑗𝑗∈𝑁′ ), 𝑖 = 1, … , 𝑚,      (3) 

          ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑦𝑟𝑗 ≥ ∑ 𝑦𝑟𝑗𝑗∈𝑁′ , 𝑟 = 1, … , 𝑠, 

          ∑ 𝜇𝑙𝑗𝑗∈𝑁′ = 1, 𝑙 ∈ 𝑁′,  

                    𝜇𝑙𝑗 ≥ 0, 𝑙, 𝑗 ∈ 𝑁′. 
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Model (2) has ((2𝑛 − 1) × (2𝑛 − 1)) + 1 variables and 𝑚 + 𝑠 + (2𝑛 − 1) constraints. 

As can be seen, for any arbitrary number 𝑛 of DMUs, solving problem (2) is a formidable 

task. Also, to apply this model we need to create the aggregates of all subsets of observed 

DMUs. For this purpose, based on the idea of Ghiyasi and Cook [14], we present the set 

𝑇𝑆𝐴
𝐶𝑅𝐴 only based on the observed DMUs and as follows. 

𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 = {(𝑋, 𝑌)| ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑌𝑗 ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 1,0 ≤ 𝜇𝑗𝑙 ≤ 1}. (4) 

 

Theorem 2.1 The sets 𝑇𝑆𝐴
𝐶𝑅𝐴 and 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴 are equivalent, that is 𝑇𝑆𝐴
𝐶𝑅𝐴 = 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴 . 

 

Proof.  To show that these two sets are equal, we prove that 𝑇𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴 and 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 ⊆

𝑇𝑆𝐴
𝐶𝑅𝐴. 

First, we show that 𝑇𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴. Let (𝑋, 𝑌) ∈ 𝑇𝑆𝐴
𝐶𝑅𝐴, according to the definition of the 

set 𝑇𝑆𝐴
𝐶𝑅𝐴, there is a vectors 𝜇𝑙 = (𝜇1𝑙 , … , 𝜇𝑛𝑙), 𝑙 ∈ 𝑁′, such that  

∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑌𝑗  ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁′ = 1, 𝜇𝑗𝑙 ≥ 0, 𝑙 ∈ 𝑁′, 

𝑗 ∈ 𝑁′. 

In this way, we have two sets of DMUs belong to set 𝑁′, observed and aggregated DMUs, 

by considering these two sets of DMUs, we show that 𝑇𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴. For the first state, 

suppose  𝜇𝑗𝑙 > 0 only for 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁 namely for observed DMUs, in this state, we 

have  ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑌𝑗 ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁 = 1, 0 ≤ 𝜇𝑗𝑙 , therefore we 

conclude that ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑌𝑗 ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 1, 0 ≤ 𝜇𝑗𝑙, 𝑙 ∈ 𝑁, 

𝑗 ∈ 𝑁, to prove that 𝑇𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴, so it is enough show only that 𝜇𝑗𝑙 ≤ 1, 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁, 

this hold since ∑ 𝜇𝑗𝑙𝑗∈𝑁 = 1 and 0 ≤ 𝜇𝑗𝑙, 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁. Then 𝑇𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴. 

In second state, suppose that there is a 𝜇𝑗𝑙 > 0, 𝑙 ∈ 𝑁′ − 𝑁 or 𝑗 ∈ 𝑁′ − 𝑁, namely this 

index is belong to a aggregated DMUs as (𝑋, 𝑌) ∈ 𝑇𝑆𝐴
𝐶𝑅𝐴. Then  

 ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑌𝑗  ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁′ = 1, 𝜇𝑗𝑙 ≥ 0, 𝑙 ∈ 𝑁′, 𝑗 ∈ 𝑁′ . 

Let 𝑁 show a subset of 𝑁 including index of observed DMUs that generate (𝑋, 𝑌). In 

other words,  ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑋𝑗 = 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑌𝑗 = 𝑌, we define 

 

 𝜇𝑗𝑙 = {
1                         𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑙 ∈ 𝑁 

𝜇𝑗𝑙     𝑗 ∈ 𝑁 − 𝑁 𝑜𝑟 𝑙 ∈ 𝑁 − 𝑁 
, 

 

then we have 0 ≤ 𝜇𝑗𝑙 ≤ 1, 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁 and ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 1. These intensity variable 

satisfies in the ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑌𝑗 ≥ 𝑌. Therefore (𝑋, 𝑌) ∈ 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 

and we conclude that 𝑇𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴.  

To prove that 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑆𝐴

𝐶𝑅𝐴. Let (𝑋, 𝑌) ∈ 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴, according to the definition of the set 

𝑇𝑀𝑆𝐴
𝐶𝑅𝐴, there is a vectors 𝜇𝑙 = (𝜇1𝑙 , … , 𝜇𝑛𝑙), 𝑙 ∈ 𝑁, such that ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑋𝑗 ≤ 𝑋, 

∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑌𝑗 ≥ 𝑌, ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 1,0 ≤ 𝜇𝑗𝑙 ≤ 1. We consider two different state, for the 

first state, suppose ∑ 𝜇𝑗𝑙𝑗∈𝑁 = 1, 𝑙 ∈ 𝑁 for the later intensity variable of 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴. Then 

same vector works for 𝑇𝑆𝐴
𝐶𝑅𝐴. Let 

 

 �̅�𝑗𝑙 = {
0   𝑗 ∈ 𝑁′ − 𝑁 𝑜𝑟 𝑙 ∈ 𝑁′ − 𝑁 

𝜇𝑗𝑙          𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑙 ∈ 𝑁 
 

 

Then we have ∑ ∑ �̅�𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑋𝑗 ≤ 𝑋, ∑ ∑ �̅�𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑌𝑗  ≥ 𝑌, ∑ �̅�𝑗𝑙𝑗∈𝑁′ = 1, �̅�𝑗𝑙 ≥ 0, ∈

𝑁′, 𝑗 ∈ 𝑁′. Therefore 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑆𝐴

𝐶𝑅𝐴. 

In the second state, we have ∑ 𝜇𝑗𝑙𝑗∈𝑁 > 1, 𝑙 ∈ 𝑁, consider DMUs with 0 ≤ 𝜇𝑗𝑙, 𝑗 ∈

𝑁 𝑎𝑛𝑑 𝑙 ∈ 𝑁, we define the new intensity variable 
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  �̅�𝑗𝑙 = {
0          𝑗 ∈ 𝑁′ − 𝑁 𝑜𝑟 𝑙 ∈ 𝑁′ − 𝑁 

𝜇𝑗𝑙

∑ 𝜇𝑗𝑙𝑗∈𝑁
             𝑗 ∈ 𝑁 𝑎𝑛𝑑 𝑙 ∈ 𝑁  

Therefore, it is established that ∑ �̅�𝑗𝑙𝑗∈𝑁′ = 1, �̅�𝑗𝑙 ≥ 0, 𝑙 ∈ 𝑁′, 𝑗 ∈ 𝑁′. Also,  

 ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑋𝑗 ≤ 𝑋, ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁′𝑗∈𝑁′ 𝑌𝑗  ≥ 𝑌. This show the (𝑋, 𝑌) ∈ 𝑇𝑆𝐴
𝐶𝑅𝐴. 

Therefore 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 ⊆ 𝑇𝑆𝐴

𝐶𝑅𝐴. So, the proof is complete.∎ 

 

According to Theorem 1, the CRA model in semi-additive production technology can 

be presented based on the definition of set 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 as follows. 

 

 𝑀𝑖𝑛  𝜃𝑀𝑆𝐴
𝐶𝑅𝐴 

 𝑠. 𝑡.   (𝜃𝑀𝑆𝐴
𝐶𝑅𝐴 ∑ 𝑋𝑗𝑗∈𝑁 , ∑ 𝑌𝑗𝑗∈𝑁  ) ∈ 𝑇𝑀𝑆𝐴

𝐶𝑅𝐴.             (5) 

 

According to the definition of the set 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴, model (5) becomes as follows. 

 

 𝜃𝑀𝑆𝐴
𝐶𝑅𝐴∗

= 𝑀𝑖𝑛  𝜃𝑀𝑆𝐴
𝐶𝑅𝐴 

         𝑠. 𝑡.   ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑥𝑖𝑗 ≤ 𝜃𝑀𝑆𝐴
𝐶𝑅𝐴(∑ 𝑥𝑖𝑗𝑗∈𝑁 ),  𝑖 = 1, … , 𝑚,   (6) 

               ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑦𝑟𝑗 ≥ ∑ 𝑦𝑟𝑗𝑗∈𝑁 ,  𝑟 = 1, … , 𝑠, 

               ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 1, 𝑙 ∈ 𝑁,  

                0 ≤ 𝜇𝑗𝑙 ≤ 1, 𝑙, 𝑗 ∈ 𝑁. 

 

In contrast to model (2), model (6) has 𝑛2 + 1  variables and 𝑚 + 𝑠 + 𝑛 +  𝑛2 

constraints. The advantage model (6) compared to model (2) is the fact that it avoids many 

calculations related to solving the model (2). Also, in model (6), we consider only observed 

DMUs explicitly, although all aggregate units are implicitly checked.  

In order to obtain efficient targets on the efficiency frontier from the PPS, we continue 

to obtain the mix inefficiency by finding slacks in the input and output components. 

Assume 𝛼𝑖  and 𝛽𝑟 are slacks of components of inputs and outputs that show slack along 

the input and additional increase along the output respectively.  Suppose 𝜃𝑀𝑆𝐴
𝐶𝑅𝐴∗

 is the 

optimal objective function of model (6). For this purpose, we solve the model (7) as 

follows. 

 

 𝑀𝑎𝑥 (∑ 𝛼𝑖
𝑚
𝑖=1 + ∑ 𝛽𝑟

𝑠
𝑟=1 )  

 𝑠. 𝑡.   ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑥𝑖𝑗 + 𝛼𝑖 = 𝜃𝑀𝑆𝐴
𝐶𝑅𝐴∗

(∑ 𝑥𝑖𝑗𝑗∈𝑁 ), 𝑖 = 1, … , 𝑚,      (7) 

          ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑦𝑟𝑗 − 𝛽𝑟 = ∑ 𝑦𝑟𝑗𝑗∈𝑁 , 𝑟 = 1, … , 𝑠, 

          ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 1, 𝑙 ∈ 𝑁,  

                    0 ≤ 𝜇𝑗𝑙 ≤ 1, 𝑙, 𝑗 ∈ 𝑁. 

 

 Suppose (𝜇𝑗𝑙
∗ , 𝛼𝑖

∗, 𝛽𝑟
∗, : 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 ) is an optimal 

solution of model (6). We define the operating point or efficient target corresponding to 

𝐷𝑀𝑈𝑙 , 𝑙 ∈ 𝑁 as follows. 

 

 𝑋𝑙 = (∑ 𝜇𝑗𝑙
∗ 𝑥1𝑗𝑗∈𝑁 , ∑ 𝜇𝑗𝑙

∗ 𝑥2𝑗𝑗∈𝑁 , … , ∑ 𝜇𝑗𝑙
∗ 𝑥𝑚𝑗𝑗∈𝑁 ),  𝑙 ∈ 𝑁,                                

 𝑌𝑙 = (∑ 𝜇𝑗𝑙
∗ 𝑦1𝑗𝑗∈𝑁 , ∑ 𝜇𝑗𝑙

∗ 𝑦2𝑗𝑗∈𝑁 , … , ∑ 𝜇𝑗𝑙
∗ 𝑦𝑠𝑗𝑗∈𝑁 ),  𝑙 ∈ 𝑁.        (8) 

 

Model (7) obtain additional reduction of each input and expansion of each output.  

Theorem 2.2 The operating point resulting of model (7) that is defined in 

relation (8) is Pareto efficient. 
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Proof. By contradiction, suppose the operating point (𝑋𝑙, 𝑌𝑙  ) be inefficient. Then 

there exists a vector (�̅�, �̅�) ∈ 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴 so that �̅� ≤ 𝑋𝑙 and �̅� ≥ 𝑌𝑙 , then according to 

(�̅�, �̅�) ∈ 𝑇𝑀𝑆𝐴
𝐶𝑅𝐴, there exists a vector (�̅�𝑗𝑙: 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁 ) so that  

�̅�𝑖𝑙 = ∑ �̅�𝑗𝑙𝑥𝑖𝑗𝑗∈𝑁 ≤ 𝑥𝑖𝑙 , 𝑙 ∈ 𝑁,    𝑖 = 1, … , 𝑚,        (9) 

𝑦𝑟𝑙 = ∑ �̅�𝑗𝑙𝑦𝑟𝑗𝑗∈𝑁 ≥ 𝑦𝑟𝑙 , 𝑙 ∈ 𝑁,   𝑟 = 1, … , 𝑠. 

At least one of the inequalities in (9) is strictly established. Considering the constraints in 

model (7), it can be seen that vector (�̅�𝑗𝑙, 𝛼𝑖 = 𝛼𝑖
∗ + 𝑥𝑖𝑙 −  �̅�𝑖𝑙, �̅�𝑟 = 𝛽𝑟

∗ + 𝑦𝑟𝑙 −

𝑦𝑟𝑙 : 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁 , 𝑖 = 1, … , 𝑚, 𝑟 = 1, … , 𝑠 ) is a feasible solution for model (7). The 

objective function value of model (7) for this solution is as follows. 

 ∑ 𝛼𝑖
𝑚
𝑖=1 + ∑ �̅�𝑟

𝑠
𝑟=1 = ∑ (𝛼𝑖

∗ + 𝑥𝑖𝑙 −  �̅�𝑖𝑙)𝑚
𝑖=1 + ∑ (𝛽𝑟

∗ + 𝑦𝑟𝑙 − 𝑦𝑟𝑙) = ∑ 𝛼𝑖
∗𝑚

𝑖=1 +𝑠
𝑟=1

∑ 𝛽𝑟
∗ + ∑ (𝑥𝑖𝑙 −  �̅�𝑖𝑙)𝑚

𝑖=1 + ∑ (𝑦𝑟𝑙 − 𝑦𝑟𝑙)
𝑠
𝑟=1

𝑠
𝑟=1 > ∑ 𝛼𝑖

∗𝑚
𝑖=1 + ∑ 𝛽𝑟

∗𝑠
𝑟=1 . 

which is contradictory to the optimality of the solution (𝜇𝑗𝑙
∗ , 𝛼𝑖

∗ , 𝛽𝑟
∗, : 𝑙 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 =

1, … , 𝑚, 𝑟 = 1, … , 𝑠  ) for model (8). Therefore, the contradiction is invalid and the 

proof is complete.∎ 

3. A generalized CRA model in the semi-additive production technology  

The CRA models proposed by Lozano and Villa [25] and Asmild et al. [1] suppose that 

the centralized DM can allocate inputs and outputs across all DMUs. In many cases, some 

DMUs are geographically dispersed, or it may be impossible to reallocate inputs or transfer 

outputs among DMUs due to adjustment costs, regulations, or indivisibility. Then, inputs 

may be reallocated or outputs may be transferred, but only in some DMUs, not all. To 

consider the said items, Fang [6] proposed a generalized CRA model under VRS 

technology. He shows that the proposed general CRA model extends the models of Lozano 

and Villa [25] and Asmild et al. [1] to a more general case. In this section, we used Fang's 

[6] idea and propose a general CRA model in the semi-additive production technology in 

order to consider whether inputs may be reallocated or outputs may be transferred in the 

CRA model. The general CRA model in semi-additive production technology is proposed 

as follows: 

 

 𝜃𝑀𝑆𝐴
𝐺𝐶𝑅𝐴∗

= 𝑀𝑖𝑛  𝜃𝑀𝑆𝐴
𝐺𝐶𝑅𝐴 

          𝑠. 𝑡.   ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑥𝑖𝑗 ≤ 𝜃𝑀𝑆𝐴
𝐺𝐶𝑅𝐴(∑ 𝑡𝑗𝑥𝑖𝑗𝑗∈𝑁 ),  𝑖 = 1, … , 𝑚,    

                ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑦𝑟𝑗 ≥ ∑ 𝑡𝑗 𝑦𝑟𝑗𝑗∈𝑁 ,  𝑟 = 1, … , 𝑠,         (10) 

                ∑ 𝜇𝑗𝑙𝑙∈𝑁 ≥ 𝑡𝑗 , 𝑗 ∈ 𝑁,  

                ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 𝜎𝑙 , 𝑙 ∈ 𝑁,    

                 0 ≤ 𝜇𝑗𝑙 ≤ 1, 𝑙, 𝑗 ∈ 𝑁. 

 

The variable 𝑡𝑗 ∈ {0,1}, 𝑗 ∈ 𝑁 is a binary variable that the central DM should decide 

which DMUs to be consider in the overall optimization or not. If we put 𝑡𝑗 = 1 then 

𝐷𝑀𝑈𝑗 is in the overall optimization process of CRA, otherwise by putting 𝑡𝑗 = 0, we do 

not consider it. 

Also, the central DM maybe decide that 𝐷𝑀𝑈𝑗 not to be used as peers, it may follow 

a different business strategy and it not comparable with other DMUs. Then the central DM 

decide that exclude 𝐷𝑀𝑈𝑙  from the reference set of other DMUs and puts 𝜎𝑙 = 0 in the 

model (10). 

In model (10), by putting 𝑡𝑗 = 1,  𝑗 ∈ 𝑁 and 𝜎𝑙 ≥ 0,  𝑙 ∈ 𝑁, we obtain the CRA 

model (6).  

Suppose we consider the set of efficient DMU in the semi-additive technology as set 
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ESD and inefficient DMUs to ISD in this paper. Then 𝑁 = 𝐸𝑆𝐷 ∪ 𝐼𝑆𝐷. We can only 

consider adjustments of the subset ISD of inefficient DMUs using the efficient points of 

subset ESD as peers. By considering 𝑡𝑗 = 1, for 𝑗 ∈ 𝐼𝑆𝐷 and 𝜎𝑙 = 0, for 𝑙 ∉ 𝐸𝑆𝐷. We 

proposed CRA model for inefficient DMUs in the semi-additive technology as follows. 

 

 𝑀𝑖𝑛  𝜃𝑀𝑆𝐴−𝐼𝐸
𝐶𝑅𝐴  

 𝑠. 𝑡.   ∑ ∑ 𝜇𝑗𝑙𝑙∈𝐸𝑆𝐷𝑗∈𝐼𝑆𝐷 𝑥𝑖𝑙 ≤ 𝜃𝑀𝑆𝐴−𝐼𝐸
𝐶𝑅𝐴 (∑ 𝑥𝑖𝑗𝑗∈𝐼𝑆𝐷 ),  𝑖 = 1, … , 𝑚,         

       ∑ ∑ 𝜇𝑗𝑙𝑙∈𝐸𝑆𝐷𝑗∈𝐼𝑆𝐷 𝑦𝑟𝑙 ≥ ∑ 𝑦𝑟𝑗𝑗∈𝐼𝑆𝐷 ,  𝑟 = 1, … , 𝑠,                   (11) 

       ∑ 𝜇𝑗𝑙𝑙∈𝐸𝑆𝐷 ≥ 1, 𝑗 ∈ 𝐼𝑆𝐷,  

          0 ≤ 𝜇𝑗𝑙 ≤ 1, 𝑙 ∈ 𝐸𝑆𝐷, 𝑗 ∈ 𝐼𝑆𝐷. 

 

In the CRA model (10), the central DM adjusts the levels of all inputs or transfers 

outputs between DMUs. But, in some cases, some input variables cannot be adjusted or 

some output variables cannot be transferred between DMUs. Then, we extend the CRA 

model (10) to consider non-adjustable input variables and non-transferable outputs. For 

this purpose, we define index sets as including input variables that can be non-adjustable 

variables as 𝐼𝑁𝐴 and index sets as including output variables that can be non-transferable 

as 𝑂𝑁𝑇. We modify the CRA model (10) as follows: 

 

 𝜃𝑀𝑆𝐴−𝐴𝑇
𝐺𝐶𝑅𝐴 ∗

= 𝑀𝑖𝑛  𝜃𝑀𝑆𝐴−𝐴𝑇
𝐶𝑅𝐴  

            𝑠. 𝑡.   ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑥𝑖𝑗 ≤ 𝜃𝑀𝑆𝐴−𝐴𝑇
𝐺𝐶𝑅𝐴 (∑ 𝑡𝑗𝑥𝑖𝑗𝑗∈𝑁 ),  𝑖 ∉ 𝐼𝑁𝐴,                  

                  ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑗 ,      𝑖 ∈ 𝐼𝑁𝐴,       (12) 

                  ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑦𝑟𝑗 ≥ ∑ 𝑡𝑗𝑦𝑟𝑗𝑗∈𝑁 ,    𝑟 ∉ 𝐼𝑁𝑇, 

                  ∑ ∑ 𝜇𝑗𝑙𝑙∈𝑁𝑗∈𝑁 𝑦𝑟𝑗 ≥ 𝑦𝑟𝑗 , 𝑟 ∈ 𝐼𝑁𝑇, 

                  ∑ 𝜇𝑗𝑙𝑙∈𝑁 ≥ 𝑡𝑗, 𝑗 ∈ 𝑁,  

                  ∑ 𝜇𝑗𝑙𝑗∈𝑁 ≥ 𝜎𝑙, 𝑙 ∈ 𝑁,    

                   0 ≤ 𝜇𝑗𝑙 ≤ 1, 𝑙, 𝑗 ∈ 𝑁. 

 

The second constraint indicates that only input reduction is allowed for non-adjustable 

input variables, and the fourth constraint indicates that only output increments are allowed 

for non-transferable output variables. 

4. Numerical example  

In this section, with a simple numerical example, we describe the approach presented in 

this paper geometrically. Consider three DMUs according to Tables 1 and 2. 

 
Table 1. The data set and the results of the evaluation DMUs in the numerical example. 

DMUs Input Output 
The efficiency scores under 

VRS technology 

The efficiency scores under semi-

additive technology 

A 3 0.75 1 1 

B 4 1.5 1 1 

C 6 2 1 0.9167 

 

Table 2. The targets of CRA model in the numerical example. 

DMUs 
The targets of CRA model under 

VRS technology 

The targets of CRA model under 

semi-additive technology 

A 3.67 1.25 4 1.5 

B 4 1.5 3.67 1.25 

C 4 1.5 4 1.5 
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The PPS under VRS technology is shown in Figure 1. All three DMUs are efficient 

under VRS technology, as seen in Figure 1. 

 

 
Figure 1. The PPS under VRS technology. 

 
To illustrate PPS in semi-additive technology geometrically, we have three observed 

DMUs according to Table 1, as follows. 

𝐴 = (3, 0.75) ،𝐵 = (4, 1.5) ، and 𝐶 = (6, 2). 

Now, we create aggregated DMUs, as follows. 

𝐷 = 𝐴 + 𝐵 = (7, 2.25) , 𝐹 = 𝐴 + 𝐶 = (9, 2.75) , 𝐺 = 𝐵 + 𝐶 = (10, 3.5) , 𝐸 = 𝐴 +
𝐵 + 𝐶 = (13, 4.25). 

To illustrate PPS, we consider horizontal axis as input-axis and vertical axis as output-

axis. We consider DMUs in three different technologies including constant returns to scale 

(CRS), VRS, and semi-additive technology geometrically. The CRS technology is the 

biggest technology that includes all the other technologies. The PPS under CRS technology 

is included the region restricted by the input-axis and the right-hand side of the line starting 

from the origin and passing the B in the first area of the coordinate system. The PPS under 

VRS technology is included the bounded region by the input-axis starting from 𝐴0 and 

the segment A–B–C and the horizontal extension from C. The PPS in the semi-additive 

technology is bounded by the input-axis starting from 𝐴0 passing the segment of A–B–

G–E and horizontal extension from E as it is shown in Figure 2. As we expect, the PPS 

under semi-additive assumption is bigger than the PPS of the BCC model. The DMU 𝐶 is 

efficient DMU under VRS technology. However, it is an inefficient DMU in semi-additive 

technology. DMU 𝐹 = 𝐴 + 𝐶 = (9, 2.75) is an aggregated DMU, it an inefficient DMU 

in the semi-additive technology. To assess the efficiency score of DMU 𝐹, we can project 

it on efficient frontier of semi-additive technology. We depict DMU 𝐹 at point 𝐹1 on the 

efficiency frontier of the PPS corresponding to semi-additive technology radially in the 

input oriented. According to Fig. 2, the efficiency score is calculated as the ratio |
𝑂𝐹1

𝑋

𝑂𝐹𝑋
| =

0.8611 . 𝐹𝑋  and 𝐹1
𝑋 , represent the image of the points 𝐹  and 𝐹1  on the input-axis, 

respectively. 

The results related to the efficiency scores of the original DMUs in semi-additive 

technology are given in the last column of Table 2, as it can be seen that units A and B are 

efficient and unit C is inefficient. Also, we obtain the targets corresponding to the original 
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DMUs with the CRA approach under VRS and semi-additive technologies.  The results 

show in the Table 2. Now, we obtain the targets corresponding to the aggregated DMUs 

based on the CRA approach in semi-additive technology. The results are shown in Table 

3. The DMUs A, B, and C project onto the efficient frontier of PPs of semi-additive 

technology in point G. DMUs E, F, and G project at point B. DMU B project at a different 

point on the efficient frontier.  

Figure 3, shows the projection of different DMUs by the CRA model. DMUs project 

on the Pareto efficiency frontier of semi-additive technology, although Pareto efficient 

DMUs are not always predicted on their own. 

 

 
Figure 2. The PPS of semi-additive technology for the data set in the Table 1. 

 
Table 3. The targets of CRA model under semi-additive technology. 

DMUs Input Output 

A 10 3.5 

B 10 3.5 

C 10 3.5 

D 5.5 2 

E 4 1.5 

F 4 1.5 

G 4 1.5 
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Figure 3. The projections of the aggregated DMUs onto efficient frontier of semi-additive 

technology. 

5. Case study 

In this section, to analyses the results of the CRA models presented in this paper, we 

analyses an empirical dataset consisting of 30 chain stores in Iran. Chain stores with the 

same brand are actually run by a single manager and usually offer similar products. In fact, 

chain stores in Iran and other countries around the world were developed in order to lower 

distribution costs, reduce product prices, and also reduce commuting in cities. With the 

development of chain stores, many items needed by people on a daily basis were offered 

at reasonable and lower prices. Also, in most of these stores, there are various products in 

addition to food, such as clothes, household appliances, etc., which reduces the costs of 

distribution and commuting for people in the city to buy these items. We use this data set 

to compare the results of the models in this paper in semi-additive technology with the 

results of the models presented by Lozano and Villa [25], Asmild et al. [1], and Fang [6] 

in VRS technology. These supermarkets belong to a chain with a central unit that has the 

authority and power to monitor the performance of all branches and allocate resources 

between them. 

Table 4 shows the input and output data set for these 30 chain stores. In this evaluation, for 

each chain store as a DMUs, two inputs including man-hours (103ℎ) and size (103𝑚2) and 

two output variables including sales (billion rials) and profit (billion rials) are considered. 

Man-hours refers to the labor force used in a certain period and the total size of the retail 

space of each chain store. 

 
Table 4. Data set for 30 Chain stores. 

Chain stores Man-hours Size Sales Profit Efficiency (VRS) 
Efficiency 

(semi-additive) 

CHS1 129.5 10.8 211.8 10.5 0.995 0.679 

CHS2 38.9 4 88.4 3.21 0.89 0.89 

CHS3 134.5 11.8 221.8 11.5 1 0.66 

CHS4 35.6 17.44 196.4 17.8 1 1 

CHS5 96.7 5.21 78.6 3.3 0.516 0.516 

CHS6 119.5 5.8 59.7 15.1 1 1 

CHS7 79.3 13.21 98.4 1.23 0.398 0.398 

CHS8 33.6 6.1 55.3 1.88 0.872 0.872 
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CHS9 59.4 8.94 87.9 2.85 0.512 0.512 

CHS10 102.4 11.56 197.5 7.23 0.849 0.583 

CHS11 45.7 2.78 65.5 2.45 0.894 0.894 

CHS12 152.6 6.45 166.7 3.66 0.751 0.749 

CHS13 95.2 5.31 133.1 1.98 0.725 0.721 

CHS14 29.3 3.97 78.2 5.34 1 1 

CHS15 98.9 14.87 68.3 4.21 0.296 0.296 

CHS16 110.5 8.5 72.7 13.21 0.751 0.681 

CHS17 54.1 11.88 154.8 8.27 0.711 0.711 

CHS18 117.8 13.27 78.6 3.65 0.271 0.271 

CHS19 41.2 2.22 77.8 0.98 1 1 

CHS20 56.2 6.97 89 0.12 0.569 0.569 

CHS21 101.5 4.26 75.8 6.87 0.778 0.778 

CHS22 111.5 10.6 65.7 18.87 1 0.911 

CHS23 123.4 12.6 100.8 3.54 0.296 0.296 

CHS24 115.5 7.8 69.2 14.87 0.884 0.791 

CHS25 42.3 3.28 63.2 8.21 1 1 

CHS26 45.3 4.88 168 3.95 1 1 

CHS27 85.6 9.2 108.5 1.43 0.431 0.431 

CHS28 109.4 5.1 86.7 10.8 0.979 0.895 

CHS29 67.8 19.7 74.2 12.94 0.55 0.55 

CHS30 125.5 9.8 61.7 12.87 0.622 0.578 

Total 2558.7 258.3 3154.3 212.82 0.751 0.708 

 
As can be seen in the last two columns of Table 4, chain stores CHS4, CHS6, CHS14, 

CHS19, CHS25, and CHS26 are efficient in two technologies. But chain stores CHS3 and 

CHS22 are efficient in VRS technology, while they are inefficient in semi-additive 

technology. Chain stores that have different efficiency scores are shown in the last two 

columns of Table 4 in bold. 

Table 5 shows input and output targets for every chain store by the conventional input-

orientated DEA under the semi-additive production technology. According to Table 5, it 

can be seen that the reduction of the total first and second inputs is equal to 1014.55, 93.97, 

respectively, and decreases to 60.35% and 61.62%, respectively, when each chain store 

becomes technically efficient independently in the semi-additive production technology. 

The increment of the total first and second outputs is equal to 191.78 and 22.21, 

respectively. In other words, after solving the radial model and using the model solution in 

the second phase, considering the inefficiency slack values in the input and output 

components, the first and second outputs increased by 5.53% and 9.45%, respectively. 

Table 5. Input and output targets of chain stores in the semi-additive production technology. 

Chain stores Man-hours Size Sales Profit 

CHS1 77.85 7.34 211.8 10.5 

CHS2 34.63 3.56 88.4 3.9 

CHS3 83.42 7.79 221.8 11.5 

CHS4 35.6 17.44 196.4 17.8 

CHS5 41.76 2.69 78.6 3.3 

CHS6 119.5 5.8 59.7 15.1 

CHS7 31.59 5.26 98.4 6.29 

CHS8 29.3 3.97 78.2 5.34 

CHS9 30.42 4.58 87.9 5.78 

CHS10 59.7 6.74 197.5 7.23 

CHS11 40.86 2.49 75.25 2.45 

CHS12 51.13 4.83 166.7 3.66 

CHS13 56.11 3.83 133.1 2.28 
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CHS14 29.3 3.97 78.2 5.34 

CHS15 29.3 3.97 78.2 5.34 

CHS16 75.24 5.79 81.41 13.21 

CHS17 38.49 8.45 154.8 8.47 

CHS18 31.95 3.6 78.6 4.39 

CHS19 41.2 2.22 77.8 0.98 

CHS20 31.99 3.97 89 4.89 

CHS21 42.47 3.31 75.8 6.87 

CHS22 101.62 9.66 107.41 18.87 

CHS23 36.54 3.73 100.8 3.82 

CHS24 91.31 6.17 88.66 14.87 

CHS25 42.3 3.28 63.2 8.21 

CHS26 45.3 4.88 168 3.95 

CHS27 36.86 3.96 108.5 4.08 

CHS28 68.64 4.56 86.7 10.8 

CHS29 37.27 10.83 135.2 12.94 

CHS30 72.5 5.66 80.05 12.87 

Total 1544.15 164.33 3346.08 235.03 

 
Since these chain stores are controlled by the CEO of the company and belong to the 

same organization, he controls all these DMUs simultaneously. Therefore, the central 

DM can simultaneously monitor these 30 chain stores to minimize the total input 

consumption by all DMUs, leading to the use of the CRA approach in models (6) and (7). 

Table 6 proposes the results of input and output targets for chain stores of models (6) and 

(7). As can be seen in Table 6, according to the CRA models (6) and (7) in the semi-

additive production technology, the stores CHS1-CHS15 chooses store CHS11 as their 

target. CHS17-CHS30 choose the store CHS8 as their target (projection point). Store 

CHS16 obtains a different projection point on the efficiency frontier of semi-additive 

production technology, which is a virtual unit on this frontier. 

Now we compare the results of models (6) and (7) in Table 6 with the results of the 

conventional non-centralized approach in semi-additive production technology in Table 

5. As can be seen, the total man-hours and size have been further reduced than if they 

were reduced based on a conventional, non-centralized approach. This difference is equal 

to 347.421 and 33.114, respectively. According to the conventional non-centralized 

approach, the reduction of input components, namely man-hours and size, for each of the 

chain stores is done individually, while the reduction of input components is 

simultaneously based on the CRA modes (6) in the semi-additive production technology. 

Table 6. Results of input and output targets for chain stores by models (6) and (7). 

Chain stores Man-hours Size Sales Profit 

CHS1 45.7 2.78 65.5 2.45 

CHS2 45.7 2.78 65.5 2.45 

CHS3 45.7 2.78 65.5 2.45 

CHS4 45.7 2.78 65.5 2.45 

CHS5 45.7 2.78 65.5 2.45 

CHS6 45.7 2.78 65.5 2.45 

CHS7 45.7 2.78 65.5 2.45 

CHS8 45.7 2.78 65.5 2.45 

CHS9 45.7 2.78 65.5 2.45 

CHS10 45.7 2.78 65.5 2.45 

CHS11 45.7 2.78 65.5 2.45 



52                           J.Gerami /𝐼𝐽𝑀2𝐶, 14 -01 (2024) 39-61. 

 

CHS12 45.7 2.78 65.5 2.45 

CHS13 45.7 2.78 65.5 2.45 

CHS14 45.7 2.78 65.5 2.45 

CHS15 45.7 2.78 65.5 2.45 

CHS16 40.829 4.116 61.394 2.221 

CHS17 33.6 6.1 55.3 1.88 

CHS18 33.6 6.1 55.3 1.88 

CHS19 33.6 6.1 55.3 1.88 

CHS20 33.6 6.1 55.3 1.88 

CHS21 33.6 6.1 55.3 1.88 

CHS22 33.6 6.1 55.3 1.88 

CHS23 33.6 6.1 55.3 1.88 

CHS24 33.6 6.1 55.3 1.88 

CHS25 33.6 6.1 55.3 1.88 

CHS26 33.6 6.1 55.3 1.88 

CHS27 33.6 6.1 55.3 1.88 

CHS28 33.6 6.1 55.3 1.88 

CHS29 33.6 6.1 55.3 1.88 

CHS30 33.6 6.1 55.3 1.88 

Total 1196.729 131.216 1818.094 65.291 

 
Table 7 shows the results of input and output targets for chain stores in VRS technology 

according to the approach of Lozano and Villa [25]. Now we compare the results of the 

CRA model in VRS (Table 7) and semi-additive production technologies (Table 6). As can 

be seen from the last row of Tables 6 and 7, the total man-hours are 1195.788 and 1196.729 

in the VRS and semi-additive production technologies, respectively. This reduction in VRS 

technology is more than 0.941. In contrast, total size (second input) is 131.475 and 131.216 

in the VRS and semi-additive production technologies, respectively. This reduction in 

semi-additive production technology is more than 0.259. The difference in total sales and 

profit (as total outputs) in VRS and semi-additive production technologies is 0.793 and 

0.045, respectively. Then increase total sales and profit (total outputs) in the semi-additive 

production technology. As can be seen in Tables 6 and 7, the resulting projection points 

for chain stores from the approach of Lozano and Villa [25] in VRS technology and our 

approach in semi-additive production technology (models 6 and 7) are the same. The 

projection point of store CHS16 is different between the two technologies. 

Table 7. Results of input and output targets for chain stores in VRS technology by approach 

of Lozano and Villa [25]. 

Chain stores Man-hours Size Sales Profit 

CHS1 45.7 2.78 65.5 2.45 

CHS2 45.7 2.78 65.5 2.45 

CHS3 45.7 2.78 65.5 2.45 

CHS4 45.7 2.78 65.5 2.45 

CHS5 45.7 2.78 65.5 2.45 

CHS6 45.7 2.78 65.5 2.45 

CHS7 45.7 2.78 65.5 2.45 

CHS8 45.7 2.78 65.5 2.45 

CHS9 45.7 2.78 65.5 2.45 

CHS10 45.7 2.78 65.5 2.45 

CHS11 45.7 2.78 65.5 2.45 

CHS12 45.7 2.78 65.5 2.45 
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CHS13 45.7 2.78 65.5 2.45 

CHS14 45.7 2.78 65.5 2.45 

CHS15 45.7 2.78 65.5 2.45 

CHS16 39.888 4.375 60.601 2.176 

CHS17 33.6 6.1 55.3 1.88 

CHS18 33.6 6.1 55.3 1.88 

CHS19 33.6 6.1 55.3 1.88 

CHS20 33.6 6.1 55.3 1.88 

CHS21 33.6 6.1 55.3 1.88 

CHS22 33.6 6.1 55.3 1.88 

CHS23 33.6 6.1 55.3 1.88 

CHS24 33.6 6.1 55.3 1.88 

CHS25 33.6 6.1 55.3 1.88 

CHS26 33.6 6.1 55.3 1.88 

CHS27 33.6 6.1 55.3 1.88 

CHS28 33.6 6.1 55.3 1.88 

CHS29 33.6 6.1 55.3 1.88 

CHS30 33.6 6.1 55.3 1.88 

Total 1195.788 131.475 1817.301 65.246 

 
Now, suppose that the central DM considers minimizing the total inputs consumed by 

the inefficient chain stores. We apply the subset of efficient chain stores as peers. Then we 

use the CRA model (11). The results of the CRA model (11) in the semi-additive 

production technology are shown in Table 8. The results show the total man-hours and size 

of all the inefficient chain stores are 1022.491 and 100.501, respectively. The total man-

hours are reduced by 60.04%. Also, the total size is reduced by 61.1%.  

As can be seen in Table 8, according to the CRA model (11) in the semi-additive 

production technology, the stores CHS1-CHS5, CHS13, CHS23, and CHS24 choose store 

CHS26 as their target. Also, the stores CHS8-CHS12, CHS15-CHS20, CHS22, CHS27, 

and CHS28 chose store CHS25 as their target. In other words, these points are depicted on 

the efficiency chain store CHS24 at the efficiency frontier of semi-additive production 

technology. Other stores, namely CHS7, CHS29, and CHS30, project at a different 

efficient point from the efficiency frontier. 

Table 8. Results of input and output targets for inefficient chain stores by model (11). 

Chain stores Man-hours Size Sales Profit 

CHS1 45.3 4.88 168 3.95 

CHS2 45.3 4.88 168 3.95 

CHS3 45.3 4.88 168 3.95 

CHS5 45.3 4.88 168 3.95 

CHS7 44.347 4.372 134.704 5.303 

CHS8 42.3 3.28 63.2 8.21 

CHS9 42.3 3.28 63.2 8.21 

CHS10 42.3 3.28 63.2 8.21 

CHS11 42.3 3.28 63.2 8.21 

CHS12 42.3 3.28 63.2 8.21 

CHS13 45.3 4.88 168 3.95 

CHS15 42.3 3.28 63.2 8.21 

CHS16 42.3 3.28 63.2 8.21 

CHS17 42.3 3.28 63.2 8.21 

CHS18 42.3 3.28 63.2 8.21 
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CHS20 42.3 3.28 63.2 8.21 

CHS21 45.3 4.88 168 3.95 

CHS22 42.3 3.28 63.2 8.21 

CHS23 45.3 4.88 168 3.95 

CHS24 45.3 4.88 168 3.95 

CHS27 42.3 3.28 63.2 8.21 

CHS28 42.3 3.28 63.2 8.21 

CHS29 33.398 3.753 73.472 6.245 

CHS30 32.446 10.696 137.224 11.562 

Total 1022.491 100.501 2511 161.44 

 
The results of input and output targets for chain stores in VRS technology by the 

approach of Asmild et al. [1] are given in Table 9. Now we compare the results of the CRA 

model in VRS technology by the inefficient chain stores (according to Table 9) and the 

results of the CRA model (11) in semi-additive production technology by the inefficient 

chain stores (according to Table 8). As can be seen from the last row of Tables 9 and 10, 

the total man-hours are 877.015 and 1022.491 in the VRS and semi-additive production 

technologies, respectively. This reduction in VRS technology is more than the amount of 

145. 476. Also, the total sizes are 86.982 and 100.501 in VRS and semi-additive production 

technologies, respectively. This reduction in VRS technology is more than 13.519. The 

difference in total sales and profit (as total outputs) in VRS and semi-additive production 

technologies is 287.499 and 30.37, respectively. Then increase total sales and profit (total 

outputs) in the semi-additive production technology is more. It should be noted that this 

comparison was made in order to analyses the results of two technologies. Because the 

number of efficient and inefficient stores is different between the two technologies, Chain 

stores CHS4, CHS6, CHS14, CHS19, CHS25, and CHS26 are efficient in two 

technologies. However, stores CHS3 and CHS22 are efficient in VRS technology, while 

they are inefficient in semi-additive technology. Chain stores that have different efficiency 

scores are shown in the last two columns of Table 4. As can be seen in Tables 8 and 9, the 

resulting projection points from the approach of Asmild et al. [1] in VRS technology and 

our approach in the semi-additive production technology (model 11) by the inefficient 

chain stores are different. The projection point of store CHS16 is different between the two 

technologies. According to the approach of Asmild et al. [1] in VRS technology in Table 

9, the inefficient stores CHS1, CHS2, CHS8, CHS9, and CHS10 choose store CHS14 as 

their target. The inefficient stores CHS7, CHS12, and CHS18 chose store CHS25 as their 

target. Also, the inefficient stores CHS21-CHS30 chose store CHS26 as their target. Other 

stores, namely CHS5, CHS11, and CHS20, project at a different efficient point from the 

efficiency frontier. 

Table 9. Results of input and output targets for inefficient chain stores in VRS technology by 

approach of Asmild et al. [1]. 

Chain stores Man-hours Size Sales Profit 

CHS1 29.3 3.97 78.2 5.34 

CHS2 29.3 3.97 78.2 5.34 

CHS5 32.644 3.478 78.088 4.115 

CHS7 42.3 3.28 63.2 8.21 

CHS8 29.3 3.97 78.2 5.34 

CHS9 29.3 3.97 78.2 5.34 

CHS10 29.3 3.97 78.2 5.34 

CHS11 42.152 3.137 65.167 7.236 

CHS12 42.3 3.28 63.2 8.21 
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CHS13 42.3 3.28 63.2 8.21 

CHS15 42.3 3.28 63.2 8.21 

CHS16 42.3 3.28 63.2 8.21 

CHS17 42.3 3.28 63.2 8.21 

CHS18 42.3 3.28 63.2 8.21 

CHS20 42.519 3.397 70.846 7.899 

CHS21 45.3 4.88 168 3.95 

CHS23 45.3 4.88 168 3.95 

CHS24 45.3 4.88 168 3.95 

CHS27 45.3 4.88 168 3.95 

CHS28 45.3 4.88 168 3.95 

CHS29 45.3 4.88 168 3.95 

CHS30 45.3 4.88 168 3.95 

Total 877.015 86.982 2223.501 131.07 

 

In the CRA models (6), (7) and (11) propose in this paper, all the efficient chain stores are 

can be considered as the benchmarks. We consider only some efficient chain stores as 

benchmarks. The store CHS26 is an efficient store in the semi-additive technology from 

Table 4. Assume store CHS26 follows a different business strategy, and then we should 

exclude it from the benchmark set for chain stores. Therefore, we remove this store from 

the set of benchmark stores and solve model (11). For this purpose, we put 𝛿26 = 0. Table 

10 shows the results of input and output targets for inefficient chain stores by model (11) 

regardless of the store CHS26 as a benchmark store. Therefore, for solving CRS model 

(11) in the semi-additive technology, we let 𝛿26 = 0. The inefficient stores CHS2, CHS3 

and CHS5 consider virtual store (83.5,5.5,141,9.19) as their target or benchmark. The 

stores CHS9-CHS22 select efficient store CHS14 as their target or benchmark. Other stores 

choose different virtual units on the efficiency frontier of semi-additive production 

technology. As can be seen in the last row of Table 9, the total man-hours and size 

decreased to 1399.886 (54.71%) and 144.401 (55.9%) compared to the first total man-

hours and size of stores in Table 4, respectively. 

Table 10. Results of input and output targets for inefficient chain stores by model (11) with 

𝛿26 = 0. 

Chain stores Man-hours Size Sales Profit 

CHS1 80.809 5.355 135.919 9.126 

CHS2 83.5 5.5 141 9.19 

CHS3 83.5 5.5 141 9.19 

CHS5 83.5 5.5 141 9.19 

CHS7 41.2 2.22 77.8 0.98 

CHS8 31.46 3.652 78.127 4.549 

CHS9 29.3 3.97 78.2 5.34 

CHS10 29.3 3.97 78.2 5.34 

CHS11 29.3 3.97 78.2 5.34 

CHS12 29.3 3.97 78.2 5.34 

CHS13 29.3 3.97 78.2 5.34 

CHS15 29.3 3.97 78.2 5.34 

CHS16 29.3 3.97 78.2 5.34 

CHS17 29.3 3.97 78.2 5.34 

CHS18 29.3 3.97 78.2 5.34 

CHS20 29.3 3.97 78.2 5.34 

CHS21 29.3 3.97 78.2 5.34 
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CHS22 29.3 3.97 78.2 5.34 

CHS23 70.5 6.19 156 6.32 

CHS24 71.6 7.25 141.4 13.55 

CHS27 71.6 7.25 141.4 13.55 

CHS28 70.5 6.19 156 6.32 

CHS29 48.545 5.462 106.954 9.075 

CHS30 70.5 6.19 156 6.32 

Total 1158.814 113.899 2511 161.44 

 
Similarly, we can remove a specific efficient store from the set of benchmark stores. 

Tables 11 and 12 show the results of solving model (11) in the semi-additive production 

technology by removing stores CHS25 and CHS14 from the set of target or benchmark 

stores, respectively. 

Table 11. Results of input and output targets for inefficient chain stores by model (11) 

with 𝛿25 = 0. 

Chain stores Man-hours Size Sales Profit 

CHS1 119.5 5.8 59.7 15.1 

CHS2 119.5 5.8 59.7 15.1 

CHS3 119.5 5.8 59.7 15.1 

CHS5 73.956 5.235 126.175 8.256 

CHS7 45.3 4.88 168 3.95 

CHS8 45.3 4.88 168 3.95 

CHS9 45.3 4.88 168 3.95 

CHS10 45.294 4.88 167.969 3.95 

CHS11 60.189 7.298 192.756 8.033 

CHS12 29.3 3.97 78.2 5.34 

CHS13 29.3 3.97 78.2 5.34 

CHS15 29.3 3.97 78.2 5.34 

CHS16 29.3 3.97 78.2 5.34 

CHS17 29.3 3.97 78.2 5.34 

CHS18 29.3 3.97 78.2 5.34 

CHS20 29.3 3.97 78.2 5.34 

CHS21 29.3 3.97 78.2 5.34 

CHS22 29.3 3.97 78.2 5.34 

CHS23 29.3 3.97 78.2 5.34 

CHS24 29.3 3.97 78.2 5.34 

CHS27 29.3 3.97 78.2 5.34 

CHS28 74.6 8.85 246.2 9.29 

CHS29 29.3 3.97 78.2 5.34 

CHS30 29.3 3.97 78.2 5.34 

Total 1158.639 113.883 2511 161.439 

 
Table 12. Results of input and output targets for inefficient chain stores by model (11) with 

𝛿14 = 0. 

Chain stores Man-hours Size Sales Profit 

CHS1 45.3 4.88 168 3.95 

CHS2 45.3 4.88 168 3.95 

CHS3 45.3 4.88 168 3.95 

CHS5 45.3 4.88 168 3.95 
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CHS7 45.3 4.88 168 3.95 

CHS8 45.3 4.88 168 3.95 

CHS9 45.3 4.88 168 3.95 

CHS10 45.3 4.88 168 3.95 

CHS11 43.534 3.938 106.297 6.458 

CHS12 42.3 3.28 63.2 8.21 

CHS13 42.3 3.28 63.2 8.21 

CHS15 42.3 3.28 63.2 8.21 

CHS16 42.3 3.28 63.2 8.21 

CHS17 42.3 3.28 63.2 8.21 

CHS18 42.3 3.28 63.2 8.21 

CHS20 42.3 3.28 63.2 8.21 

CHS21 42.3 3.28 63.2 8.21 

CHS22 42.3 3.28 63.2 8.21 

CHS23 42.3 3.28 63.2 8.21 

CHS24 42.3 3.28 63.2 8.21 

CHS27 42.3 3.28 63.2 8.21 

CHS28 42.3 3.28 63.2 8.21 

CHS29 41.537 2.545 73.327 3.195 

CHS30 37.046 13.51 165.776 13.457 

Total 1034.417 101.673 2511 161.44 

 
As stated earlier, the size (as input) is actually a non-adjustable input in real life, which 

means that the space of the store rental floor cannot be changed in a practical sense. To 

better illustrate such real-world situations, suppose that the size (as input) is non-

adjustable, then we apply the CRA model (12) with a size non-adjustable.  

Table 13 propose the results of input and output targets for chain stores of model (12) 

when we consider the input size as non-adjustable. As can be seen, the stores CHS1-CHS22 

and CHS29 select the efficient store CHS14 as their target. The stores CHS24-CHS28 and 

CHS30 select the efficient store CHS4 as their target or benchmark. The store CHS23 

chose a different virtual unit on the efficiency frontier of semi-additive production 

technology as a benchmark. The total man-hours as adjustable input decreased to 1636.618 

compared to its initial value in Table 4. 

Table 13. Results of input and output targets for chain stores by model (12). 

The results of model (12) with size non-adjustable. 

Chain stores Man-hours Sales Profit 

CHS1 29.3 78.2 5.34 

CHS2 29.3 78.2 5.34 

CHS3 29.3 78.2 5.34 

CHS4 29.3 78.2 5.34 

CHS5 29.3 78.2 5.34 

CHS6 29.3 78.2 5.34 

CHS7 29.3 78.2 5.34 

CHS8 29.3 78.2 5.34 

CHS9 29.3 78.2 5.34 

CHS10 29.3 78.2 5.34 

CHS11 29.3 78.2 5.34 

CHS12 29.3 78.2 5.34 

CHS13 29.3 78.2 5.34 

CHS14 29.3 78.2 5.34 
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CHS15 29.3 78.2 5.34 

CHS16 29.3 78.2 5.34 

CHS17 29.3 78.2 5.34 

CHS18 29.3 78.2 5.34 

CHS19 29.3 78.2 5.34 

CHS20 29.3 78.2 5.34 

CHS21 29.3 78.2 5.34 

CHS22 29.3 78.2 5.34 

CHS23 34.582 177.3 15.787 

CHS24 35.6 196.4 17.8 

CHS25 35.6 196.4 17.8 

CHS26 35.6 196.4 17.8 

CHS27 35.6 196.4 17.8 

CHS28 35.6 196.4 17.8 

CHS29 29.3 78.2 5.34 

CHS30 35.6 196.4 17.8 

Total 922.082 3154.3 245.407 

 
In the following, we suppose that the output sales are non-transferable. Tables 14 show 

the results of model (12) by considering sales as non-transferable output. The stores CHS1-

CHS16 obtain efficient store CHS25 as their benchmark. The stores CHS18-CHS29 select 

the efficient store CHS14 as their benchmark. The stores CHS17 and CHS30 choose a 

different virtual unit on the efficiency frontier of semi-additive production technology as a 

benchmark. The total man-hours and size as inputs decreased to 1456.134 and 146.997 

compared to their initial values in Table 4, respectively. The total profit as transferable 

output does not change and is 212.82. Because model (12) is input-orientated, only inputs 

are reduced. 

Table 14. Results of input and output targets for chain stores by model (12). 

The results of model (12) sales non-transferable. 

Chain stores Man-hours Size Profit 

CHS1 42.3 3.28 8.21 

CHS2 42.3 3.28 8.21 

CHS3 42.3 3.28 8.21 

CHS4 42.3 3.28 8.21 

CHS5 42.3 3.28 8.21 

CHS6 42.3 3.28 8.21 

CHS7 42.3 3.28 8.21 

CHS8 42.3 3.28 8.21 

CHS9 42.3 3.28 8.21 

CHS10 42.3 3.28 8.21 

CHS11 42.3 3.28 8.21 

CHS12 42.3 3.28 8.21 

CHS13 42.3 3.28 8.21 

CHS14 42.3 3.28 8.21 

CHS15 42.3 3.28 8.21 

CHS16 42.3 3.28 8.21 

CHS17 30.009 3.932 5.496 

CHS18 29.3 3.97 5.34 

CHS19 29.3 3.97 5.34 

CHS20 29.3 3.97 5.34 
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CHS21 29.3 3.97 5.34 

CHS22 29.3 3.97 5.34 

CHS23 29.3 3.97 5.34 

CHS24 29.3 3.97 5.34 

CHS25 42.3 3.28 8.21 

CHS26 29.3 3.97 5.34 

CHS27 29.3 3.97 5.34 

CHS28 29.3 3.97 5.34 

CHS29 29.3 3.97 5.34 

CHS30 31.157 7.941 9.014 

Total 1102.566 111.303 212.82 

6. Conclusion 

The traditional DEA models obtain targets for each DMU separately; the CRA is a different 

approach that projects all the DMUs simultaneously onto the efficiency frontier. In this 

paper, we propose a new CRA model for the semi-additive production technology in DEA. 

The semi-additive production technology considers the aggregation of DMUs in the 

process of efficiency analysis. We showed that the CRA model in the semi-additive 

production technology obtains the projection of the DMUs based only on the observed 

DMUs, and there is no need to consider all aggregations of DMUs. In the first stage, the 

CRA model seeks radial reductions in the total consumption of all the inputs. In the second 

stage, the CRA model seeks to maximize the value of inefficiency slacks in the input and 

output components. In this model, we suppose that the central DM aims to minimize the 

total input consumption by all DMUs in the organization. We develop this model for the 

general case of CRA in the semi-additive production technology based on the idea of Fang 

[6]. We developed a CRA model for considering adjustments to inefficient units by using 

efficient units in the semi-additive production technology based on the idea of Asmild et 

al. [1]. In the following, we propose the CRA model in semi-additive production 

technology for incorporating non-adjustable input variables and non-transferable outputs. 

Finally, for the reader's better understanding of CRA models, we gave a simple numerical 

example. Geometrically, we showed how DMUs are depicted in semi-additive production 

technology. An application of the approach presented in this paper to a set of data from a 

set of 30 chain stores in Iran that operate under central management was also presented. 

The performance of each model in determining the benchmark or operational points was 

explained. We have shown that the total value of each input is reduced by the CRA model 

in the semi-additive production technology. In each case, this percentage reduction was 

determined. It was also found that some stores may choose other, more efficient stores as 

targets. Thus, by solving only one model, we can provide efficient targets for all stores on 

the efficiency frontier of semi-additive production technology. The CRA model 

significantly reduces the number of calculations. As a further work, we develop the models 

presented in this paper for non-radial models in DEA in the semi-additive production 

technology. Also, the models in this paper can be developed for the case where the inputs 

and outputs are in the form of imprecise data, such as fuzzy or robust data. These models 

can be proposed for cost-fixed allocation in DEA. 
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