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Abstract. There are numerous Data Envelopment Analysis (DEA) applications where the data is 

not accurate. In many real-world scenarios, data is inaccurate. One type of inaccurate data is grey 

data, which exists between the fully defined boundaries of structured and unstructured data. This 

article employs the Nash Bargaining approach for evaluation and target setting. We combine grey 

data DEA scores with the Nash Bargaining problem to find an equilibrium point between the 

minimum and maximum efficiency values for each DMU. Based on the bargaining method, the 

equilibrium point is determined for each of the DMUs as a weighted average or relative 

equilibrium point between the minimum and maximum efficiency. The proposed approach has 

been validated on different datasets according to grey data.  
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1. Introduction 

Game theory was presented in 1944 with the publication of the book “Theory of Games 

and Economic Behavior” [1] by John von Neumann and Oskar Morgenstern. Game theory 

has been expanded with the publication of articles by Nash and Shapley, which included 

both cooperative and non-cooperative game theories. Game theory addresses competition 

and cooperation among intelligent and rational Decision-Makers (DMs) through 

mathematical models. Game theory includes two types of games: non-cooperative, which 

illustrates competition, and cooperative, which illustrates collaboration. The Nash 

bargaining problem represents one of the earliest and most influential results in cooperative 

game theory. Considering the fact that two rational and intelligent players exist along with 

a set of possible allocations, one unique allocation must be chosen among them. The Nash 

bargaining theory evidently provides an elegant approach to solving this problem. 

   To evaluate and enhance the relative efficiency of a set of homogenous operational units 

known as Decision-Making Units (DMU), the non-parametric Data Envelopment Analysis 

(DEA) is employed. These DMUs consume inputs to generate outputs, which may be either 

desirable or undesirable [2]. Based on assumptions, convex technologies such as CRS 

(Constant Returns to Scale) or VRS (Variable Returns to Scale), or non-convex 

technologies such as FDH (Free Disposal Hull) can be utilized to calculate the efficiency. 

The observed distance between the DMU and the efficiency frontier indicates the relative 
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efficiency of a DMU [2]. 

DEA is beneficial from another perspective as well. DEA provides an efficient operational 

target point, that is an efficient model/image, for each DMU. The generated targets depend 

on the specific DEA model applied, but they are almost always chosen to dominate the 

projected DMU. There are a lot of methods for determining DEA targets. All methods that 

calculate efficiency scores also calculate targets. A drawback is that, since they seek the 

maximum potential improvement, they might be far from the observed DMU. To solve 

this issue, various methods have been proposed to calculate the minimum distance to the 

efficient frontier (for instance, see [3]). 

   Data can be categorized into two classes of structured and unstructured. Structured data 

are well-organized and can be easily searched through basic algorithms. They follow a 

precise plan, meaning that they are stored in a predefined frameworks which usually 

consist of rows and columns. Unstructured data lacks a predefined framework or 

organization. They are often text-heavy, but they can include data such as dates, numbers, 

and facts, which cannot be easily organized with a structured approach. 

   Grey data refers to a type of data that exists between the clearly specified boundaries of 

structured and unstructured data. It is not as organized as structured data, such as database 

tables, but it is also not as free-form and disorganized as unstructured data, like text 

documents or social media posts. Grey data, also known as uncertain data, refers to 

information that is inaccurate, incomplete, or uncertain. This type of data exists between 

well-known categories (white data) and completely unknown categories (black data). Grey 

data are particularly related to situations where data is obtained from subjective judgments, 

estimates, or measurements that are not entirely precise. Grey data possess features such 

as being semi-structured, uncertainty, flexibility, and broad information coverage, and it 

can be derived from various sources such as emails, reports, notes, text messages, and 

surveys. Grey data has applications in various contexts such as engineering, economics 

and finance, environmental sciences, healthcare, etc. Here are some examples of grey data: 

emails, sensor data, unorganized web data, spreadsheets, etc. In DEA, grey data can be 

employed to handle uncertain or inaccurate inputs and outputs. For instance, Yang and 

Chen [4] suggested a hybrid method combining AHP and grey relational analysis for 

supplier evaluation and selection. Chen and Chen [5] employed the DEA and grey model 

to evaluate the productivity in the agriculture industry of Vietnam. Kucukonder et al. [6] 

utilized a hybrid DEA approach based on grey relational analysis to conduct a study on 

egg performance. Toninelli chose his thesis topic "Data Envelopment Analysis: 

Uncertainty, Undesirable Outputs, and Application in the Global Cement Industry," 

exploring its use and applications. Wang et al. [7] utilized a combined grey model and 

DEA to evaluate efficiency in e-commerce markets to support better decision-making. 

Salami et al. [8] used grey system theory and a multi-stage DEA model for the Malmquist 

Productivity Index to assess the performance of the electricity supply chain in Iran. Wang 

et al. [9] employed DEA-Grey integration to improve operational efficiency in industrial 

systems (blockchain markets as a service). 

   In this article, Nash Bargaining is utilized to evaluate efficiency and target setting with 

grey data. This is done by modeling the problem as a bargaining problem and calculating 

the Nash Bargaining result (which is unique and Pareto optimal). 

2. Prerequisites 

2.1 The classic data envelopment analysis model 

Assume that n units exist (DMUj, j = 1, 2, …, n) that consume m inputs (xi, i = 1, 2, …, 

m) and generate s outputs (yr, r = 1, 2, …, s). The relative efficiency of each DMU is  

determined by the following model: 
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 𝜃𝑘 = 𝑚𝑎𝑥 ∑ 𝑢𝑟𝑦𝑟𝑘
𝑠
𝑟=1            

𝑡ℎ𝑒 𝑡ℎ𝑒 𝑠. 𝑡     
∑ 𝑣𝑖𝑥𝑖𝑘

𝑚
𝑖=1 = 1   

∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0, 𝑗 = 1, 2, … , 𝑛 

𝑣𝑖 ≥ 0, (𝑖 = 1, 2, … , 𝑚), 𝑢𝑟 ≥ 0, (𝑟 = 1, 2, … , 𝑠)          

(1) 

In this model, vi denotes the input weights, and ur denotes the output weights. DMUk is 

only efficient if in the above model 𝜃𝑘 = 1.  

2.2 The grey numbers theory 

The grey numbers theory was suggested by Deng in 1982 and it has been applied in various 

contexts. In this theory, a grey system is defined as a system containing unknown data, 

which is denoted by grey numbers and grey variables. 

Definition: Imagin X is a reference set, then the grey set G of the reference set is defined 

as: 

 
{

�̄�𝐺(𝑥): 𝑥 → [0,1]

�̱�𝐺(𝑥): 𝑥 → [0,1]
                              (2) 

�̄�𝐺(𝑥) ≥ �̱�𝐺(𝑥), 𝑥 ∈ 𝑋, 𝑋 = ℝ   ،�̄�𝐺(𝑥), and �̱�𝐺(𝑥) are the upper and lower membership 

functions of G, respectively. If �̄�𝐺(𝑥) = �̱�𝐺(𝑥), then the grey set G is a fuzzy set. Meaning 

that the grey theory also encompasses the fuzzy conditions. In general, a grey number is 

represented as ⊗G, where: 

⊗ 𝐺 = 𝐺 {
�̄�
�̱� 

Definition: A grey number with a lower bound and no upper bound is defined as:  

 

 ⊗ 𝐺 = [𝐺, ∞)                         (3) 

Definition: A grey number with a upper bound and no lower bound is defined as:  

 

 ⊗ 𝐺 = (−∞, 𝐺]                         (4) 

Definition: A grey number with lower and upper bounds is referred to as the grey number 

and is defined as: 

 

 ⊗ 𝐺 = [�̱�, �̄�]                        (5) 

A grey number can be demonstrated as: 

[�̱�, �̄�] = �̱� + (�̄� − �̱�) ∗ 𝛼, 0 ≤ 𝛼 ≤ 1 
Mathematical operations on two grey numbers ⊗ 𝐺1 = [�̱�1, �̄�1] and ⊗ 𝐺2 = [�̱�2, �̄�2] is 

defined as follows: 

⊗ 𝐺1 +⊗ 𝐺2 = [�̱�1 + �̱�2, �̄�1 + �̄�2] 

⊗ 𝐺1 −⊗ 𝐺2 = [�̱�1 − �̱�2, �̄�1 − �̄�2] 

⊗ 𝐺1 ×⊗ 𝐺2 = [𝑚𝑖𝑛(�̱�1�̱�2, �̱�1�̄�2, �̄�1�̱�2, �̄�1�̄�2) , 𝑚𝑎𝑥(�̱�1�̱�2, �̱�1�̄�2, �̄�1�̱�2, �̄�1�̄�2)] 

⊗ 𝐺1 ÷⊗ 𝐺2 = [�̱�1 , �̄�1] × [
1

�̄�2
,

1

�̱�2

] 

The length of a grey number is defined as 𝐿(⊗ 𝐺) = [�̄� − �̱�] 
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2.2.1 Linear programming model with grey parameters 

Assume that 𝑋 = [𝑥1𝑥2 , . . . , 𝑥𝑛]𝑡, 𝐶 = [𝑐1(⊗), 𝑐2(⊗), . . . , 𝑐𝑛(⊗)]𝑡, 𝑏 =
[𝑏1(⊗), 𝑏2(⊗), . . . , 𝑏𝑛(⊗)]𝑡 , and 

𝐴(⊗) = [

𝑎11(⊗) 𝑎12(⊗) . . . 𝑎1𝑛(⊗)

𝑎21(⊗) 𝑎22(⊗) . . . 𝑎2𝑛(⊗)
. . . . . . . . . . . .

𝑎𝑚1(⊗) 𝑎𝑚2(⊗) . . . 𝑎𝑚𝑛(⊗)

] 

�̱�𝑗 ≥ 0, 𝑐𝑗 ∈ [�̱�𝑗 , �̄�𝑗], �̱�𝑗 ≥ 0, 𝑏𝑗 ∈ [�̱�𝑗 , �̄�𝑗], �̱�𝑖𝑗 ≥ 0, 𝑎𝑖𝑗 ∈ [�̱�𝑖𝑗 , �̄�𝑖𝑗], 𝑖 = 1,2, . . . , 𝑚, 𝑗

= 1,2, . . . , 𝑛 
Therefore, the following model is a linear programming problem with grey parameters, 

where X is a grey vector: 

 

 𝑚𝑎𝑥 𝐶(⊗)𝑋 

𝑠. 𝑡. 

𝐴(⊗)𝑋 = 𝑏(⊗) 

𝑋 ≥ 0                        

(6) 

2.2.2 Grey data envelopment analysis 

Assume there is n decision-making units, each consuming m inputs and generating s 

outputs. The relative efficiency of each unit is obtained by solving the following model: 

 

 
𝑚𝑎𝑥 𝜃𝑘 = ∑ 𝑢𝑟[�̱�𝑟𝑘 , �̄�𝑟𝑘]

𝑠

𝑟=1

 

𝑠. 𝑡. 

∑ 𝑣𝑖[�̱�𝑖𝑗 , �̄�𝑖𝑗]

𝑚

𝑟=1

− ∑ 𝑢𝑟[�̱�𝑟𝑗 , �̄�𝑟𝑗]

𝑠

𝑟=1

≥ 0, 𝑗 = 1,2, . . . , 𝑛, 𝑗 ≠ 𝑘 

∑ 𝑣𝑖[�̱�𝑖𝑘 , �̄�𝑖𝑘]𝑚
𝑟=1 = 1

𝑢𝑟 ≥ 0, 𝑟 = 1,2, . . . , 𝑠, 𝑣𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑚
                      

(7) 

𝑥𝑖𝑗 = [�̱�𝑖𝑗 , �̄�𝑖𝑗] 𝑎𝑛𝑑 𝑦𝑟𝑗 = [�̱�𝑟𝑗 , �̄�𝑟𝑗] are grey inputs and outputs, respectively. X ij and yij 

are inputs and outputs used by the j-th unit and 𝑢𝑟 , 𝑟 = 1,2, . . . , 𝑠, 𝑎𝑛𝑑 𝑣𝑖, 𝑖 = 1,2, . . . , 𝑚 

are output and input weights, respectively. 

An efficiency score spectrum can be obtained by solving the DEA model for best-case 

scenarios and worst-case scenarios in grey distances. This spectrum reflects the uncertainty 

in input and output data. This approach guarantees the efficiency analysis remains realistic 

and instructive, even when dealing with incorrect or incomplete data. 

Maximum efficiency for DMUk is obtained when it generates the most outputs by using 

the least inputs, while other DMUs generate the least outputs by using the most inputs. The 

mathematical model for the maximum efficiency of DMUk is as follows (best-case 

scenario): 
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max �̅�𝑘 = ∑ 𝑢𝑟�̄�𝑟𝑘

𝑠

𝑟=1

 

𝑠. 𝑡. 

∑ 𝑣𝑖�̄�𝑖𝑗

𝑚

𝑟=1

− ∑ 𝑢𝑟�̱�𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1,2, . . . , 𝑛, 𝑗 ≠ 𝑘 

∑ 𝑣𝑖�̱�𝑖𝑘

𝑚

𝑟=1

= 1 

𝑢𝑟 ≥ 0, 𝑟 = 1,2, . . . , 𝑠, 𝑣𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑚                      

(8) 

   Minimum efficiency for DMUk is obtained when it generates the most outputs by using 

the least inputs, while other DMUs generate the least outputs by using the most inputs. The 

mathematical model for the maximum efficiency of DMUk is as follows (worst-case 

scenario): 

 
max 𝜃𝑘 = ∑ 𝑢𝑟�̱�𝑟𝑘

𝑠

𝑟=1

 

𝑠. 𝑡. 

∑ 𝑣𝑖�̱�𝑖𝑗

𝑚

𝑟=1

− ∑ 𝑢𝑟�̄�𝑟𝑗

𝑠

𝑟=1

≥ 0, 𝑗 = 1,2, . . . , 𝑛, 𝑗 ≠ 𝑘 

∑ 𝑣𝑖�̄�𝑖𝑘

𝑚

𝑟=1

= 1 

𝑢𝑟 ≥ 0, 𝑟 = 1,2, . . . , 𝑠, 𝑣𝑖 ≥ 0, 𝑖 = 1,2, . . . , 𝑚                       

(9) 

 

   The efficiency of DMUk is denoted as 𝜃𝑘 = [�̱�𝑘 , �̄�𝑘]. There are three classes of DMU 

efficiency: 

i. 𝐸∗ = {𝐷𝑀𝑈𝑗|�̱�𝑗 ≥ 1, 𝑗 = 1,2, . . . , 𝑛}, in this case, DMU is efficient. 

ii. 𝐸 = {𝐷𝑀𝑈𝑗|�̱�𝑗 ≤ 1, �̄�𝑗 ≥ 1, 𝑗 = 1,2, . . . , 𝑛}, in this case, DMU is relatively efficient. 

iii. 𝐹 = {𝐷𝑀𝑈𝑗 |�̄�𝑗 ≤ 1, 𝑗 = 1,2, . . . , 𝑛}, in this case, DMU is inefficient. 

There are different ranking methods for grey data. One of these methods is known as the 

Average Method, which is defined as: 

[�̱�𝑗 , �̄�𝑗] ≤ [�̱�𝑙 , �̄�𝑙] ⇔
�̱�𝑗 + �̄�𝑗

2
≤

�̱�𝑙 + �̄�𝑙

2
 

Where 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

 is equal to the efficiency of each unit, considering the average of each 

input and each output in representing the grey number. That is: 

𝑥𝑘
𝑎𝑣𝑒 =

�̱�𝑖𝑘 + �̱�𝑖𝑘

2
, 𝑦𝑘

𝑎𝑣𝑒 =
�̄�𝑟𝑘 + �̱�𝑟𝑘

2
 

Each of 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

 values are obtained using these inputs and outputs. 

2.3 Nash bargaining method 

We denote the set of all individuals as N = {1, 2, …, n}. A bargaining problem consists of 
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a set of N players, each possessing a real-valued utility function; a utility space, in which 

each point is a vector 𝑢 ∈ 𝑅𝑁 , and its members represent the utilities of each player 

according to specific agreements among them. A feasible set 𝑆 ⊂ 𝑅𝑁 contains the vectors 

corresponding to all possible agreements between the players. This feasible set is assumed 

to be closed, bounded, convex, and comprehensive. There is a disagreement (failure) point 

𝑑 ∈ 𝑆 , where the components of d represent the utility of each player in case of a 

disagreement. If a player chooses not to bargain with another player, the disagreement 

point reflects the possible payoff pairs. It is assumed that there is at least one point in S that 

dominates d, meaning ∃𝑢 ∈ 𝑆: 𝑢 > 𝑑. This indicates that there exists a feasible agreement 

in which all players gain higher utility than if they fail to reach an agreement. Nash argued 

that a rational solution must meet the following four criteria: 

i. Pareto efficiency 

ii. Invariance to Affine Transformation 

iii. Independence of irrelevant options 

iv. Symmetry 

According to Nash, the solution to the Nash Bargaining problem is obtained by solving 

the following optimization model: 

  

 𝑚𝑎𝑥 ∏(𝑢𝑟 − 𝑑𝑟)

𝑟∈𝑁

 

𝑠. 𝑡. 

𝑢 ∈ 𝑆 

𝑢 ≥ 𝑑                       

(10) 

The maximization objective function is the product of the utility gain of all players 

(according to the difference point). The solution to the Nash Bargaining problem can be 

specified through various sets of properties that are uniquely identified.  

Integrating the Nash Bargaining method in DEA includes formulating the efficiency 

evaluation as a bargaining problem between several DMUs. The goal is to find a solution 

that maximizes the bargaining of each DMU by considering the inaccuracies in the data. 

In this method, the difference point can be the efficiency scores received by DMUs under 

certain basic conditions or existing conditions. 

2.4 Formulating the proposed Nash bargaining problem 

We combine the DEA scores with the Nash Bargaining problem. This method strives to 

find an equilibrium point among the minimum and maximum efficiency values of each 

DMU. In our approach, we consider the difference point as the efficiency of players 

without bargaining. For each DMU, the equilibrium point has been determined based on 

the bargaining method as either a weighted average or relative equilibrium point among 

the minimum and maximum efficiency. 

The Nash Bargaining solution aims to maximize the product of usefulness against the 

difference points. Therefore, the problem can be stated as follows: 

 
𝑀𝑎𝑥 ∏(𝐸𝑘 − 𝜃𝑘

𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒
)

𝑛

𝑘=1

 

𝑠. 𝑡. 

�̱�𝑘 ≤ 𝐸𝑘 ≤ �̄�𝑘                                 

(11) 

Where Ek is the negotiated efficiency and it is within the [�̱�𝑘 , �̄�𝑘] interval. 

If necessary, grey data can be converted to usable data for DEA models using statistical 
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techniques and Machine Learning. 

When there are lost or uncertain values in the problem, their values depend on several 

factors: the model’s complexity, ease of implementation, prediction accuracy, and value 

of existing data. 

Averaging methods, linear regression, decision tree, and neural networks are some of the 

suitable approaches to address this issue. 

3. Practical example 

Let us consider a service company as an example. This company has 20 decision-making 

units, three grey inputs, and two grey outputs (customer satisfaction being one of these 

grey outputs).  

Inputs include: 

Operation Costs ($K): Denotes the total operating costs, presented as a range to account 

for uncertainty or variations in the costs (in thousands of dollars). 

Labor Hours (K): Denotes the total number of work hours spent, presented as a range to 

take into account the possible fluctuations (in thousands of hours). 

Service Facilities (Unit): Denotes the number of service facilities or operational units 

involved, presented as a range to reflect potential alterations in service availability.  

Outputs include: 

Service Deliveries (Unit): Measures the number of completed service deliveries, provided 

as an interval to account for discrepancies or estimations. 

Customer Satisfaction (Score): Represents the level of customer satisfaction, reported as 

a score range to reflect variations in customer feedback or survey outcomes. 

Table 1. Specifications of grey inputs and grey outputs. 

DMU I1(Operating 

Costs) 

I2(Labor 

Hours) 

I3(Service 

Facilities) 

O1(Service 

Deliveries) 

O2(Customer 

Satisfaction) 

DMU1 (87.49, 

119.01) 

(52.44, 

79.90) 

(47.26, 

62.47) 

(216.15, 

237.92) 

(97.36, 

122.65) 

DMU2 (94.64, 

111.97) 

(50.69, 

88.19) 

(36.62, 

51.27) 

(206.36, 

222.20) 

(102.67, 

120.72) 

DMU3 (83.12, 

103.12) 

(55.18, 

83.25) 

(36.22, 

56.50) 

(204.56, 

228.54) 

(91.81, 

126.71) 

DMU4 (81.16, 

117.32) 

(56.23, 

80.40) 

(44.59, 

62.75) 

(216.36, 

237.21) 

(96.42, 

113.73) 

DMU5 (92.02, 

114.16) 

(60.93, 

73.70) 

(47.74, 

59.44) 

(200.14, 

230.21) 

(90.82, 

121.82) 

DMU6 (81.53, 

107.44) 

(58.19, 

80.36) 

(42.60, 

55.23) 

(202.92, 

234.83) 

(97.74, 

127.22) 

DMU7 (97.69, 

114.24) 

(61.08, 

73.44) 

(37.64, 

61.08) 

(201.49, 

230.63) 

(95.83, 

112.99) 

DMU8 (88.31, 

110.77) 

(52.05, 

89.61) 

(46.80, 

57.88) 

(203.36, 

238.70) 

(91.70, 

120.82) 

DMU9 (85.61, 

109.96) 

(59.23, 

71.24) 

(47.08, 

63.61) 

(208.92, 

232.99) 

(102.44, 

113.95) 

DMU10 (85.71, 

101.23) 

(67.95, 

80.74) 

(37.22, 

61.73) 

(211.62, 

239.55) 

(93.21, 

127.85) 

DMU11 (89.45, 

116.36) 

(60.55, 

72.21) 

(42.11, 

59.48) 

(202.73, 

239.99) 

(90.96, 

116.73) 

DMU12 (98.83, 

105.27) 

(61.63, 

77.52) 

(40.21, 

67.65) 

(200.17, 

223.53) 

(96.52, 

114.24) 
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DMU13 (92.82, 

110.64) 

(66.04, 

81.93) 

(40.58, 

60.32) 

(210.63, 

223.75) 

(98.38, 

127.46) 

DMU14 (92.34, 

109.25) 

(52.53, 

74.07) 

(42.92, 

63.32) 

(217.28, 

228.14) 

(97.95, 

122.33) 

DMU15 (96.35, 

108.68) 

(66.34, 

88.42) 

(41.07, 

60.83) 

(215.78, 

237.47) 

(91.64, 

123.69) 

DMU16 (90.63, 

110.28) 

(68.54, 

83.98) 

(47.47, 

65.34) 

(201.08, 

230.16) 

(103.82, 

118.92) 

DMU17 (91.31, 

105.36) 

(52.93, 

87.61) 

(41.15, 

64.18) 

(212.78, 

224.35) 

(92.89, 

118.98) 

DMU18 (89.97, 

102.59) 

(67.79, 

82.64) 

(37.34, 

51.73) 

(217.48, 

237.21) 

(100.04, 

112.42) 

DMU19 (92.28, 

116.96) 

(64.13, 

84.06) 

(38.92, 

59.12) 

(200.21, 

221.85) 

(98.57, 

121.38) 

DMU20 (82.47, 

100.49) 

(63.65, 

86.48) 

(47.18, 

62.04) 

(210.63, 

234.86) 

(92.92, 

122.74) 

The aforementioned models are utilized for this dataset. The obtained results are 

presented in Table 2. 

Table 2. Results obtained from the models. 

 �̱�𝑘 �̄�𝑘 𝜃𝑘
𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒

 𝐸𝑘  Ranking Average 

Calculation 

Ranking 

(Average) 

DMU1 0.63593 1.62652 0.98816 0.63593 16 1.13123 9 

DMU2 0.65328 1.84225 1.00000 0.65328 14 1.24777 3 

DMU3 0.67910 1.85714 1.00000 0.67910 11 1.26812 2 

DMU4 0.64929 1.49578 1.00000 0.62929 15 1.07254 18 

DMU5 0.62571 1.48675 0.93407 0.48675 5 1.05623 19 

DMU6 0.65500 1.68052 1.00000 0.65500 13 1.31776 1 

DMU7 0.62743 1.54099 0.97136 0.62743 19 1.08421 14 

DMU8 0.63462 1.61426 0.96132 0.63462 18 1.12444 10 

DMU9 0.67203 1.48781 1.00000 0.67203 12 1.07992 15 

DMU10 0.71525 1.71532 1.00000 1.71532 1 1.21529 4 

DMU11 0.63499 1.51827 0.98956 0.63499 17 1.07663 17 

DMU12 0.65101 1.50323 0.91430 1.50323 4 1.07712 16 

DMU13 0.65240 1.61024 0.95115 1.61024 2 1.13132 8 

DMU14 0.68789 1.69569 1.00000 0.68789 10 1.19179 5 

DMU15 0.67931 1.54935 0.94180 1.54935 3 1.11433 12 

DMU16 0.62958 1.36908 0.93152 0.62958 9 0.99933 20 

DMU17 0.69098 1.67802 0.95984 0.69098 8 1.18450 6 

DMU18 0.73797 1.57833 1.00000 0.73797 6 1.15815 7 

DMU19 0.59656 1.58955 0.92668 0.59656 20 1.09306 13 

DMU20 0.71714 1.54096 1.00000 0.71714 7 1.12905 11 

 

   In this table, the focus is on minimum (pessimistic) and maximum (optimistic) 

efficiency, and the equilibrium efficiency is calculated using the average. It is observed 

that based on the equilibrium average, units 2, 3, 4, 6, 9, 10, 14, 18, and 20 are relatively 

efficient. The Negotiated Efficiency column includes efficiency scores for each DMU after 

applying the Nash Bargaining method, considering grey data in inputs and outputs. These 

scores are fair and efficient, reflecting the uncertainty in input and output data. By 

reviewing the ranking columns, we notice the differences between the methods, indicating 

the advantages of our proposed method. This example illustrates how grey data can be 

managed in a service company using DEA and bargaining methods. This approach enables 
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you to accurately assess the efficiency and performance of various units despite data 

uncertainty, leading to more informed decision-making. 

   The Nash bargaining problem aims to maximize the profit for each party involved. For 

DEA with grey data, efficiency scores are calculated for each DMU based on the ratio of 

weighted outputs to weighted inputs. The grey intervals indicate the uncertainty in 

measurements, and the Nash bargaining problem guarantees that the chosen efficiency 

score balances this uncertainty to maximize profit or efficiency for both inputs and outputs. 

This approach symmetrically considers the contribution (output) and resource usage 

(input) of each DMU during the negotiation process, without favoring one DMU over 

another based on whether it is a provider of inputs or a consumer of outputs. Dependent 

transformations include scaling and achieving feasible agreements (inputs and outputs). 

The Nash bargaining solution is consistent with changes in scale or shifts in the input and 

output distances, without altering the relative efficiency scores obtained from the 

negotiation process. Modifications in unrelated options (such as the addition or removal of 

DMUs without directly impacting the negotiation) do not affect the negotiated efficiency 

score. The focus is on negotiating between pairs of DMUs to determine efficient allocation 

based on the given grey distance data, therefore, the specifications of the Nash solution 

hold. 

5. Conclusion 

It is obvious that the conventional DEA method is not valid when there is a lack of certain 

data. The proposed method in this article involves formulating a bargaining problem with 

the Grey Data Envelopment Analysis model. The main contribution of this article is indeed 

the application of a bargaining method. Incorporating the bargaining method into the DEA 

model with grey data can improve the process of evaluating the efficiency of decision-

making units. More accurate and comprehensive results can be obtained by using statistical 

techniques and machine learning to convert grey data into usable data and employing 

optimization algorithms for solving the bargaining model. This approach guarantees robust 

analysis by integrating uncertainty directly into the DEA framework, combined with the 

Nash bargaining method to guarantee a fair and optimal allocation of efficiency scores. 

The presented example shows how to manage grey data in a service company using DEA 

and bargaining methods. Despite the uncertainty of the data, this approach allows us to 

accurately evaluate the efficiency and performance of various units and adopt better 

decisions. Additionally, Nash’s proposed solution is not only Pareto optimized (i.e. 

efficient), but also possesses other specifications of Nash’s solution. 
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