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Abstract.In this paper, we present a computational method for solving boundary integral
equations with logarithmic singular kernels which occur as reformulations of a boundary value
problem for Laplace’s equation. The method is based on the use of the Galerkin method
with CAS wavelets constructed on the unit interval as basis. This approach utilizes the non-
uniform Gauss-Legendre quadrature rule for approximating logarithm-like singular integrals
and so reduces the solution of boundary integral equations to the solution of linear systems of
algebraic equations. The properties of CAS wavelets are used to make the wavelet coefficient
matrices sparse, which eventually leads to the sparsity of the coefficient matrix of the obtained
system. Finally, the validity and efficiency of the new technique are demonstrated through a
numerical example.
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1. Introduction

Consider the boundary value problem for Laplace’s equation

∆u(x) = 0, x ∈ D ⊂ R2, (1)
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with linear Robin boundary condition

∂u(x)

∂nx
+ p(x)u(x) = g(x), x ∈ ∂D, (2)

whereD is a bounded, open, simply connected region in the plane, nx is the outward
unit normal on ∂D, p(x) and g(x) are given functions on ∂D with p(x) ⩾ 0 but
p ̸≡ 0 and u(x) is the unknown function to be determined [6].
Using Green’s formula, we can represent the solution u(x) ∈ C1(D̄)∩C2(D), for

every x ∈ D, by [11]

u(x) =
1

2π

∫
∂D

u(y)

(
p(y) ln |x− y| − g(y) ln |x− y|+ ∂ ln |x− y|

∂ny

)
dsy. (3)

The boundary condition of u(x) on ∂D satisfies the boundary integral equation of
the second kind

u(x)− 1

π

∫
∂D

u(y)

(
p(y) ln |x− y|+ ∂ ln |x− y|

∂ny

)
dsy = − 1

π

∫
∂D

g(y) ln |x− y|dsy,

(4)
for every x ∈ ∂D. Let the boundary ∂D be a smooth simple closed curve with a
twice continuously differentiable [6] and parameterized by

r(t) = (ξ(t), η(t)), 0 ⩽ t ⩽ 1, (5)

with r ∈ C2[0, 1] and |r′(t)| ̸= 0. We also assume the parametrization traverses
∂D in a counter-clockwise direction. Introduce the interior unit normal n(t) that
is orthogonal to the curve ∂D at r(t):

n(t) =
(−η′(t), ξ′(t))√
ξ′(t)2 + η′(t)2

, (6)

and thus we obtain the following quantities

dsy =
√
ξ′(t)2 + η′(t)2ds, (7)

and

∂ ln |x− y|
∂ny

=


−η′(s)[ξ(t)−xi(s)]+ξ′(s)[η(t)−η(s)]√

ξ′(s)2+η′(s)2([ξ(t)−ξ(s)]2+[η(t)−η(s)]2)
, s ̸= t,

−η′(t)ξ
′′
(t)+ξ′(t)η

′′
(t)

2
√

ξ′(s)2+η′(s)2(ξ′(t)2+η′(t)2)
, s = t.

(8)

Using these representations and multiplying in (4) by −π, then (4) can be written
as

−πu(t) +
∫ 1

0
K(t, s)u(s)ds = f(t), 0 ⩽ t ⩽ 1, (9)

or in the operator form

(−π +K)u = f, (10)
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where

K(t, s) = p(r(s))
√
ξ′(s)2 + η′(s)2 ln |r(t)− r(s)|+ q(t, s), (11)

with

q(t, s) =


−η′(s)[ξ(t)−xi(s)]+ξ′(s)[η(t)−η(s)]

[ξ(t)−ξ(s)]2+[η(t)−η(s)]2 , s ̸= t,

−η′(t)ξ
′′
(t)+ξ′(t)η

′′
(t)

2(ξ′(t)2+η′(t)2) , s = t,

(12)

and

f(t) =

∫ 1

0
g(r(s))

√
ξ′(s)2 + η′(s)2 ln |r(t)− r(s)|ds. (13)

Note that in the weakly singular integral equation (9), we have used u(t) ≡ u(r(t))
for simplicity in notation.
It is well-known that integral equations are one of the significant topics in compu-

tational mathematics and a large number of papers have presented many numerical
methods for solving them [4, 17, 19, 21]. In recent years, several simple and accurate
methods based on orthogonal basic functions, including wavelets, have been used to
approximate the solution of integral and integro-differential equations [2, 9, 12, 20].
The main advantage of using orthogonal basis is that it reduces the problem into
solving a system of algebraic equations. Overall, there are so many different families
of orthogonal functions which can be used in this method so that it is sometimes
difficult to select the most suitable one. Since 1991, wavelet technique has been
applied to solve integral equations. Wavelets, as very well localized functions, are
considerably useful for solving integral equations and provide accurate solutions.
Also, the wavelet technique allows the creation of very fast algorithms when com-
pared with the algorithms ordinarily used [5].
Several methods have been proposed for solving the Fredholm integral equa-

tion of the second kind with logarithmic singular kernel. Discrete Petrov-Galerkin
methods [8] and iterated fast multiscale Galerkin methods [16] have been applied
to solve Fredholm integral equations of the second kind with weakly singular ker-
nels. Pedas and Vainikko [18] used the piecewise polynomial collocation method to
solve weakly singular integral equations. In [7], a numerical solution of Fredholm
integral equations of the second kind with weakly singular kernels by using the
hybrid collocation method is studied. Daubechies interval wavelet [22], Legendre
wavelet [1, 5] and trigonometric Hermit wavelet [13] are used to give a numerical
solution of weakly singular integral equations.
The main purpose of this article is to present a numerical method for solving

the weakly singular integral equation (9) by using CAS wavelets. The properties of
CAS wavelets are used to convert (9) into a linear system of algebraic equations.
We will notice that this wavelet make the wavelet coefficient matrices sparse and
accordingly leads to the sparsity of the coefficient matrix of the final system and
provide accurate solutions.
The outline of the paper is as follows: In Section 2, we review some properties of

CAS wavelets and approximate the one variable function f(x) and also the kernel
function K(x, y) by these wavelets. Section 3 is devoted to present a computational
method for solving the integral equation (9) utilizing CAS wavelets. A numerical
example is given in Section 4. Finally, we conclude the article in Section 5.
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2. Properties of CAS Wavelets

2.1 CAS Wavelets

Wavelets consist of a family of functions constructed from dilation and translation
of a single function called the mother wavelet. When the dilation parameter a
and the translation parameter b vary continuously, we have the following family of
continuous wavelets [10]

ψa,b(t) = |a|
−1

2 ψ(
t− b

a
), a, b ∈ R, a ̸= 0. (14)

If we restrict the parameters a and b to discrete values a = a−k
0 , b = nb0a

−k
0 ,

a0 > 1, b0 > 0 where n and k are positive integers, then we have the following
family of discrete wavelets

ψk,n(t) = |a0|
k

2ψ(ak0t− nb0), (15)

where ψk,n(t) form a wavelet basis for L2(R). In particular, when a0 = 2, b0 = 1
then ψk,n(t) forms an orthonormal basis [10, 23].
The CAS wavelets, ψnm(t) = ψ(k, n,m, t) have four arguments; n = 1, 2, ..., 2k,

k is any non-negative integer, m is any integer and t is the normalized time. The
orthonormal CAS wavelets are defined on the interval [0, 1) by [1, 23]

ψnm(t) =

{
2k/2CASm(2kt− n+ 1), n−1

2k ⩽ t < n
2k ,

0, otherwise,
(16)

where

CASm(t) = cos(2mπt) + sin(2mπt). (17)

Remark 1 Note that for m = 0, the CAS wavelets have the following form [14]

ψn0(t) = 2k/2Bn(t) = 2k/2
{
1, n−1

2k ⩽ t < n
2k ,

0, otherwise,
(18)

where {Bn(t)}2
k

n=1 are a basis set that are called the block pulse functions (BPFs)
over [0, 1).

2.2 Function Approximation

A function f(x) ∈ L2[0, 1] may be expanded as

f(x) =

∞∑
n=1

∑
m∈Z

cnmψnm(x), (19)

where

cnm =< f(x), ψnm(x) >=

∫ 1

0
f(x)ψnm(x)dx, (20)
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in which < ., . > denotes the inner product. The series (19) is truncated as

f(x) ≃ Pk,M (f(x)) =
2k∑
n=1

M∑
m=−M

cnmψnm(x) = CtΨ(x), (21)

where C and Ψ(x) are two vectors given by

C = [c1(−M), c1(−M+1), ..., c1M , c2(−M), ..., c2M , ..., c(2k)(−M), ..., c(2k)M ]t

= [c1, c2, ..., c2k(2M+1)]
t, (22)

and

Ψ(x) = [ψ1(−M)(x), ψ1(−M+1)(x), ..., ψ1M (x), ψ2(−M)(x), ..., ψ2M (x),

..., ψ(2k)(−M)(x), ..., ψ(2k)M (x)]t

= [ψ1(x), ψ2(x), ..., ψ2k(2M+1)(x)]
t. (23)

Based on the above formulations, we can present the following theorem from [1]:

Theorem 2.1 A function f(x) ∈ L2[0, 1], with bounded second derivative, say
|f ′′

(x)| ⩽ γ, can be expanded as an infinite sum of the CAS wavelets, and the
series converges uniformly to f(x), that is

f(x) =

∞∑
n=1

∑
m∈Z

cnmψnm(x). (24)

Furthermore, we have

∥Pk,Mf − f∥∞ ⩽ γ

π2

∞∑
n=2k+1

∞∑
m=M+1

1

n
5

2m2
, x ∈ [0, 1]. (25)

Similarly, by considering i = n(2M + 1)−M +m and j = n′(2M + 1)−M +m′,
we approximate K(x, y) ∈ L2([0, 1]× [0, 1]) as

K(x, y) ≃
2k(2M+1)∑

i=1

2k(2M+1)∑
j=1

Kijψi(x)ψj(y), (26)

or in the matrix form

K(x, y) ≃ Ψt(x)KΨ(y), (27)

where K = [Kij ]1⩽i,j⩽2k(2M+1) with the entries

Kij =< ψi(x), < K(x, y), ψj(y) >>=

∫ 1

0

∫ 1

0
ψi(x)ψj(y)K(x, y)dxdy. (28)

Remark 2 Note that the weakly singular logarithmic kernels are in L2([0, 1]× [0, 1])
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and consonantly define the compact integral operators on L2[0, 1] as [6]

Ku(x) =
∫ 1

0
K(x, y)u(y)dy.

3. Solution of Boundary Integral Equations

In this section, the CAS wavelet method is used for solving boundary integral
equations with logarithmic singular kernels of the second kind in the form (9). For
this aim, we approximate the functions f(x), u(x) and K(x, y) in the matrix forms:

f(t) ≃ F tΨ(t), (29)

u(t) ≃ U tΨ(t), (30)

K(t, s) ≃ Ψt(t)KΨ(s), (31)

By substituting (29), (30) and (31) into (9), we obtain

πΨt(t)U ≃
∫ 1

0
Ψt(t)KΨ(s)Ψt(s)Uds−Ψt(t)F (32)

= Ψt(t)K

(∫ 1

0
Ψ(s)Ψt(s)ds

)
U −Ψt(t)F. (33)

Now, we define the residual Rk,M (t) as

Rk,M (t) = πΨt(t)U −Ψt(t)K

(∫ 1

0
Ψ(s)Ψt(s)ds

)
U +Ψt(t)F, (34)

By using the orthonormality of the CAS wavelets on [0, 1] implies that∫ 1

0
Ψ(s)Ψt(s)ds = I, (35)

where I2k(2M+1)×2k(2M+1) is the identity matrix. So, we have

Rk,M (t) = πΨt(t)U −Ψt(t)KU +Ψt(t)F. (36)

Our aim is to compute u1, u2, ..., u2k(2M+1) such that Rk,M (x) ≡ 0, but in general,

it is not possible to choose such ui, i = 1, 2, ..., 2k(2M + 1). In this work, utilizing
the Galarkin method, Rk,M (x) is made as small as possible such that

< ψmn(t), Rk,M (t) >= 0, (37)

where n = 1, 2, ..., 2k and m = −M,−M + 1, ...,M .
Now by taking inner product < Ψ(x), . > upon both sides of (36) and using (35),
we obtain

(K− πI)U = F. (38)
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Remark 1 As a conclusion from the property of the sparsity of matrix K presented
in [1], when i or j → ∞ then |Kij | → 0. Accordingly, by increasing k or M , we can
make K sparse. For this purpose, we choose a threshold ε0 and define

K̄ = [K̄ij ]2k−1M×2k−1M , (39)

where

K̄ij =

{
Kij , |Kij | ⩾ ε0

0, otherwise.
(40)

Obviously, K̄ is a sparse matrix. Now, we rewrite the integral equation (38) as
follows

(K̄− πI)U = F. (41)

Therefore, we can use (41) instead of (38).

There are two types of integrals to be evaluated in the system (38) or (41) as

I. the inner products < f(t), ψnm(t) >,
II. the double integrals < ψi(t), < K(t, s), ψj(s) >>.

To approximate these integrals, we use the composite qN -point Gauss-Legendre
rule with M non-uniform subdivisions relative to the coefficients {vk} and weights
{wk} in interval [−1, 1]. Suppose that g(x) defined on (0, 1) satisfies

|g(2k)(x)| ⩽ Cx−ϵ−2k, for all x ∈ (0, 1), (42)

for some ϵ ∈ (0, 1) and the constant C. Then, for any given integer M > 0, there
holds

∫ 1

0
g(x)dx =

qN∑
k=1

wk

M∑
q=1

∆xq
2
g(θqk) +O(

1

M2qN
), (43)

where

θqk =
∆xq
2
vk + x̄q, ∆xq = xq − xq−1 and x̄q =

xq + xq−1

2
,

with

xq =
( q

M

)s
, s =

2qN + 1

1− ϵ
.

Based on the definitions of k(t, s) and f(t) in (11) and (13), respectively, it is clear
that the logarithm-like singular integrals I and II are not convenient for numerical
computations, since the singularity occurs along the diagonal. To deal with the
singularity of k(t, s) and f(t) efficiently, we find that a change of variables for the
integral is most helpful [11]. Let

t = y − x, s = y + x or x =
s− t

2
,

s+ t

2
.
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With this change of variables, the unit square is transformed into the diamond

{(t, s) : |t|+ |s− 1| ⩽ 1},

and so, the singularity shifts at the line x = 0. Since the condition (42) for any
positive integer k and for any small positive number ϵ is now satisfied [11], we can
use the composite qN -point Gauss-Legendre rule withM non-uniform subdivisions
for approximating the integrals I and II.

4. Numerical Experiment

Consider the boundary value problem for Laplace’s equation [11]

∆u(x) = 0, x ∈ D =

{
(x1, x2) : x

2
1 +

x22
4
< 1

}
, (44)

with boundary condition

∂u(x)

∂nx
+ p(x)u(x) = g(x), x ∈ ∂D =

{
(x1, x2) : x

2
1 +

x22
4

= 1

}
. (45)

Based on the discussions in Section 1 and using the parameterization on ∂D by

r(t) = (cos(2πt), 2 sin(2πt)), 0 ⩽ t ⩽ 1,

we can reduce the boundary value problem (44) with boundary condition (45) to
the logarithmic singular Fredholm integral equation of the second kind given in the
form

u(t)−
∫ 1

0
K(t, s)u(s)ds = f(t), 0 ⩽ t ⩽ 1, (46)

for the unknown u(t) = u(cos(2πt), 2 sin(2πt)), with the kernel given by

K(s, t) = 2p(cos(2πs), 2 sin(2πs))
√

1 + cos2(2πs)

ln
(
2| sin(π(t− s))|

√
1 + 3 cos2(π(t+ s))

)
+

2

1 + 3 cos2(π(t+ s))
,

and the right-hand side by

f(t) = −2

∫ 1

0
g(cos(2πs), 2 sin(2πs))

√
1 + 3 cos2(π(t+ s))

× ln
(
2| sin(π(t− s))|

√
1 + 3 cos2(π(t+ s))

)
ds.

In this example, we choose [11]

p(x) = 1, and g(x) =
2x1√
1 + 3x21

, x ∈ ∂D,
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Table 1. Some numerical results
x Exact solution Approximate solution Approximate solution Method in [15]

k = 5,M = 1, ε0 = 10−5 k = 7,M = 2, ε0 = 10−4 J = 6,M = 128
0.0 2.000000000 2.012793632 1.999845675 1.997598453
0.1 1.809016994 1.801758813 1.809845719 1.817502729
0.2 1.309016994 1.313681740 1.309368174 1.313650253
0.3 0.690983006 0.699015322 0.690215035 0.709715322
0.4 0.190983005 0.196792468 0.190315246 0.196792468
0.5 0.000000000 0.004976471 0.000225436 0.001501546
0.6 0.190983005 0.182415187 0.190895428 0.198530388
0.7 0.690983006 0.698631822 0.690863182 0.663110146
0.8 1.309016994 1.290284679 1.309849641 1.290284678
0.9 1.809016994 1.803207533 1.809847554 1.803207532
1.0 2.000000000 2.029639157 2.000287293 2.005675432

Table 2. Some error estimates
k M ∥ uex − û ∥∞ ∥ uex − û ∥2
4 2 9.12× 10−2 7.21× 10−2

4 3 6.91× 10−2 3.15× 10−2

5 2 4.31× 10−2 3.72× 10−2

5 3 3.34× 10−2 1.68× 10−2

6 2 2.15× 10−2 1.81× 10−2

6 3 1.64× 10−2 9.23× 10−3

7 2 9.21× 10−3 8.34× 10−3

7 3 7.92× 10−3 4.65× 10−3

so that the boundary value problem (44) with boundary condition (45) has the
unique exact solution

uex(x) = u(x1, x2) = 1 + x1, x ∈ D.

Table 4 shows the numerical results for this example with k = 5,M = 1, ε0 = 10−5

and k = 5,M = 1, ε0 = 10−4 and meanwhile, results are compared with those of
[15]. The approximate solution for k = 4−7,M = 2, ε0 = 10−5 is graphically shown
in Figure 1 which agrees with exact solution. It is seen the numerical results are
improved, as parameter k increases. Table 4 represents the error estimate for the
result obtained of ∥ . ∥∞ and ∥ . ∥2. The following norms are used for the errors of
the approximation which are defined by

∥ uex − û ∥∞ = max{|uex(x)− û(x)|, 0 ⩽ x ⩽ 1},

and

∥ uex − û ∥2 =
(∫ 1

0
|uex(x)− û(x)|2dx

) 1

2

,

where û(x) is the approximate solution of the exact solution uex(x). In our
compactions, we have used the 10-points composite non-uniform Gauss-Legendre
(CNGL) quadrature rule with 10 subdivisions to approximate the integration nu-
merically. The final linear algebraic systems are solved directly by using ”Linear-
Solve” command from ”LinearAlgebra” package in Maple 15 software with the
Digits environment variable assigned to be 20. All calculations are run on a Pen-
tium 4 PC Laptop with 2.50 GHz of CPU and 4 GB of RAM.

5. Conclusion

Boundary integral equations with logarithmic singular kernels are usually diffi-
cult to solve analytically. Therefore, the study of these types of integral equations
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Figure 1. Approximate solutions with k = 4− 7, M = 2, ε0 = 10−5

and numerical methods for solving them are very useful in application. The main
purpose of this article is to describe an efficient and accurate scheme for solving
boundary integral equations of the second kind with logarithmic singular kernels
using the CAS wavelets. The properties of CAS wavelets are used to reduce the
problem to the solution of algebraic equations. To obtain better results, use of the
larger parameter k is recommended. The convergence accuracy of this method was
examined in a numerical example.
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