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Abstract.In this paper, we introduce an efficient method based on Haar wavelet to approxi-
mate a solution for the two-dimensional linear stochastic Fredholm integral equation. We also
give an example to demonstrate the accuracy of the method.
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1. Introduction

As we know, two dimensional ordinary integral equations provide an important tool
for modeling a numerous problems in engineering and science [6,16]. The second
kind of two-dimensional integral equations appear in nonhomogeneous elasticity
and electrostatics, the Dorboux problem, contact problems for bodies with com-
plex properties, radio wave propagation, the elastic problem of axial translation
of a rigid elliptical disc-inclusion, various physical and mechanical and biological
problems [1,11,4,10, 20, 23, 25, 28]. Some numerical schemes have been inspected
for resolvent of two-dimensional ordinary integral equations by several probers.
Computational complexity of mathematical operations is the most important ob-
stacle for solving ordinary integral equations in higher dimensionas.
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These include the Nystrom method, collocation method, Gauss product quadra-
ture rule method, Galerkin method, using triangular fuctions, Legender polynomial
method, differential transform method, meshless method, Bernstein polynomials
method and Haar wavelet method [5,7,8,9,12, 13,14, 15,19, 21, 22, 24, 29, 30]. This
paper is first focused on proposing a generic framework for numerical solution of
two-dimensional ordinary linear Fredholm integral equations of second kind. The
use of the Haar wavelet for the numerical solution of linear integral equations
has previously been discussed in [3] and references therein. In [2] a new numer-
ical method based on Haar wavelet is introduced for solution of nonlinear one-
dimensional Fredholm and Volterra integral equations. In [27] the Haar wavelet
method [2] is extended to numerical solution of integro-differential equation. In
[26] the Haar wavelet method [2,27] is improved in terms of efficiency by intro-
ducing one-dimentional Haar wavelet approximation of the kernel function. The
method [3] is fundamentally different from the other numerical methods based on
Haar wavelet for the numerical solution of integral equations as it approximates
kernel function using Haar wavelet. It’s easy to show that the Fredholm integral
form of the general hyperbolic differential equation [10] is given by two-dimentional
integral equation

1,1
g(z,y) = f(z,y) +/0 /0 Ki(z,y,s,t)g(s,t)dsdt.

If we import statistical noise in the general hyperbolic differential equation [10],
we can obtain two-dimensional linear stochastic Fredholm integral equation of the
second kind, i.e.

1 1
o(z,y) = f@,9) + /0 /O Ky (2,9, 5,t)g(s, t)dsdt (1)

1,1
+/0 /0 Ko(x,y,s,t)g(s,t)dB(s)dB(t)

(x,y) € ]0,1] x [0,1]

where the kernels Ki(x,y,s,t) and Ky(z,y,s,t) in (1.1) are known functions and
f(z,y) is also a known function whereas g(x,y) is unknown function and is called
the solution of two-dimensional stochastic integral equation.

Lemma 1.Put ¢(t,s) = K(xz,y,s,t)g(s,t). Let ¢ be a function in L*([0,1]?).
Then there exists a sequence ¢, of off-diagonal step functions such that [18]

n—00

b b
Jim / / | 6(t,5) — dn(t,s) |2 dtds = 0.

Definition 1. Let ¢ € L*([0,1]%). Then the double Wiener-Ito integral of ¢ is
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defined as [18]

//(;StsdB t)dB(s hm//gbntsdB )dB(s)  in  L*(Q).

n—oo

Theorem 1. Let ¢(t,s) € L*([a, b]?). Then [18]

//d)tsdB )dB(s) _2/ [/qstsdB()]dB() (2)

where ¢ is the symmetrization of ¢ that is defined by

O(t,s) = 5 (B(t5) + d(s,1)) (3)

N | =

Also for the integral ff B(t)dB(t) we have [18]

/B t)dB(t f{B — B(a)>—(b—a)}. (4)

2. Haar Wavelets

A wavelet family (1;,; (y))jen,icz is an orthonormal subfamily of the Hilbert space
L?(R) with the property that all function in the wavelet family are generated from
a fixed function v called mother wavelet through dilations and translations.The
wavelet family satisfies the following relation

i (y) = 20729 (Py — i) .

For Haar wavelet family on the interval [0,1) we have:

_J L, for ye[0,1)
h(y) = {0, otherwise, (5)
and
1, forye [a, B)
hily) =4 -1, forye [B,7) (6)
0, otherwise i=2,3,...,
where
anzﬁa Bn:(n+0'5)v n:(n+1)a
m m m
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The integer ¢ indicats the level of the wavelet and n is the translation parameter.
Any square integrable function f(y) defined on [0, 1) can be expressed as follows:

Fly) =" aihiy),
=1

where a; are real constants.

For approximation aim we consider a maximum value L of the integer ¢, level of
the Haar wavelet in the above definition. The integer L is then called maximum
level of resolution. We also define integer M = 2”. Hence for any square integrable
function f(y) we have a finite sum of Haar wavelets as follows:

2M
Fly) =D aihi(y).
=1

3. Numerical Method

In this section proposed numerical method [3] will be discussed for two-dimensional
linear stochastic Fredholm integral equation of the second kind. In the first subsec-
tion, we state some results for efficient evalution of two-dimensional Haar wavelet
approximations. In the second subsection, we apply these results for finding nu-
merical solutions equation (1.1).

For Haar wavelet approximation of a function f(x,y) of two real variables x and
y, we assume that the domain 0 < z,y < 1 is divided into a grid of size 2M x 2N
using the following collocation points

m — 0.5
Tm — W,m:LQ,...,QM, (7)
n—0.5
Un = "5 ,n=12,..2N. (8)
3.1 Two-dimensional Haar wavelet system

A real-valued function G(z,y) of two real variables z and y can be approximated
using two-dimensional Haar wavelets basis as [3, 17]:

2M 2N

G(z,y) ~ Z Z bp,ghp(2)hg(y). 9)

p=1g=1

In order to calculate the unknown coefficients b; ;’s, the collocation points defined
in Egs. (3.1) and (3.2) are substituted in Eq. (3.3).Hence, we obtain the following
2M x 2N linear system with unknowns b; ;’s:

2M 2N

G(@mstn) = DY bpghp(@m)hg(yn),m =1,2,...,2M, n=1,2,...2N. (10)
p=1q=1
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The solution of system (3.4) can be calculated from the following theorem.

Theorem 2. The solution of the system (3.4) is given below:

2M 2N

b1 = 9T 2N;;G TmsYn),

B1 2N

bi,l PIXQN ZZmevyn - Z ZGwmvyn ) 122,3,

p=ay g=1 p=P1+1 g¢=1

2M B2

i g (3 G -3 3 G| 520

p=1 q=ax p=1g=F>+1

B1 B2 B1 Y2 1 B2
bij = : Yo CG@myn) =D, Y Gamy) = D> Y G(@m,yn)
pLpa p=on g=a2 p=0au g=F2+1 p=PB1+1q=az
+ ) Z G@m,yn) | , i=23,..,2M | j=23,..,2N

p=PB1+1q=p>+1

where

ar =pi(or—1)+1,
Br=pi(or —1)+ 5
Y1 = p101,

pr =21

oL =1—TL,

7 = 2llogs(i-1)]

and similarly,

az =p2(o2 — 1) +1,
Ba = pa(og — 1)+ &
Y2 = p202,

pa =2,

g2 :.7 — T2,

Ty = QLIng(j_l)J

Proof. See [2].

)

365

(11)

(12)
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Consider a function G(z,y, s, t) of four variables z, y, s and t. Suppose G(z, y, s, t)
is approximated using two-dimensional Haar wavelet as follows [3]:

2M 2N

Gla,y,5,6) =) D bpg(,y)hy(s)hg(t). (13)

p=1q=1

Substituting the collocation points

s = i;]\()f . i=1,2,...,2M,
and
t; =2 ;]3‘5 . j=1,2,...2N,
we obtain the linear system
2M 2N
Gz, y,si,t5) = > > bpgla,php(si)hg(ty) , i=1,2,..,2M , j=12,..,2N.
p=1 g=1

(14)

Corollary 1. The solution of the system (3.8) for any value of z.y € [0, 1] is given
as follows [3]:

2M 2N
b G(
1@ y) = 2M><2NZ_;; (.1, 5p, g
1 2N Y1
bii(x,y) = ><2N ZZGJI Y, Sp,tq Z ZGCC Y, Spytg) | .1 =2,3,...,2M,
P1 p=a; g=1 p=PF1+1g¢=1
2M B2 Y2
bl:j(x7 y) 2M >< p Z Z G x y? Spvtq Z Z x y? Spvtq) 7j = 2’ 3’ "'72N’
2 p=1g=02 p=1 q=pB2+1
1 2 1 Y2
bz,](wvy) < Z Z G .Z' 'Y, Sp7 Z Z I’ y78p7 )
1 P2 p=ay g=az p=a1 q=F2+1

Y1

Z ZGI’y,Sp, Z Z $y,8p, ) 9

p=pF1+1g=0z p=PF1+1qg=PL2+1

i=2,3,..,2M , j=2,3,....2N,
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where a1, 81,71 and p; are defined as in Eq. (3.5) and ag, B2, 72 and py are defined
as in Eq. (3.6).

Corollary 2. Suppose a function G(z,y) of two variables x and y is approximated
using Haar wavelet approximation given in Eq. (3.3). Suppose further that G(z,y)
is known at collocation points (Zp,ym), m = 1,2,...,2M,n = 1,2,...,2N. Then
the approximate value of the function G(x,y) at any other point of the domain
can be calculated as follows [3]:

2M 2N

1
G(J} y) QMXQNPE:E:IG xmaym)hl( )hl( )
2M 1 81 2N Y1
'f‘ZW Z ZG(ﬂcm,ym Z ZG $myym Z(J:)hl(y)
-1 L p=0 g=1 p=Pi+1q=1
2M P2 V2
+Z2M ZZme,ym Z Z sz,ym hl( )h( )
X P2 p=1 g=0o- p=1q=pB>+1
2M 2N B B2 B1 Y2
3 S S G- 3 S Fla)
i=1 j=1 pip2 pP=a1 qg=Qz p=0au g=F2+1
Y1 B2
Z ZG(wm,ym Z Z "Emyym h1($)hj(y)’
p=P1+1g=az p=F1+1 g=F2+1

where aq, 81,71 and p; are defined as in Eq. (3.5) and «aq, 82,72 and py are defined
as in Eq. (3.6).
3.2 Two-dimensional linear stochastic Fredholm integral equation

Consider the two-dimensional linear stochastic Fredholm integral equation (1.1).
First we define:

Kg(x,y, s,t)g(s,t) = ¢(t7 S)>

afterward from (1.3) we have

B(t,) = 5 {Kale,,t,8)9(6, ) + Kol 5, 0)g(5,1)}

Assume that the function K(z,y, s, t)g(s,t) is approximated using two-dimensional
Haar wavelet as follows:

2M 2N

Ki(z,y,s,t)g ZZbdxy s)hj(t), (15)

=1 j=1
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2M 2N
)R Y > (@, y)hi(s)hy(t). (16)
i=1 j=1
With this approximation and using Eq. (1.2) we can write Eq. (1.1) as follows:
12M 2N

1
g(x7y) - f(x,y) +/0 / Z sz}j('x?y)hi(s)hj(t)d‘gdt (17)

i=1 j=1

t 2M 2N
/ l/ > cii(x,y)hi(s)h;()dB(s) | dB(t).

=1 j=1

Eq. (3.11) can be written in a more compact form using the notations introduced
in equations (2.1) and (2.2) and is given as follows:

2N

9(z,y) = f(z,y) +bra(z,y) + 2 (01,1(96711) x Itol(1) + ch,j(flfay) x Ito2(j)
j=2

2M 2M 2N
+ZC“ x,y) X Itol(i +ZZCU x,y) X Ito3(i, j)

=2 1=2 j=2

where in recent equation from Eq. (1.4) we have:

Ttol(1) = /h1 [/ ha(s)dB(s ]dB /B 1)dB(t ()
Ttol (i) = /O i) [ /O thi(s)dB(s)] dB(t) = /O 1 [ /a 5 dB(s) — /{3 7 dB(s)} dB(t)

= (2B(Bi) — B(ai) — B(vi)) B(1),

[\D\H

Itol(j) = /0 1 hy(t) [ /0 t hl(s)dB(s)} dB(t) = /O 1 hi(t)B(t)dB(t)

= . B(t)dB(t) — " B(t)dB(t) = 2mB?(3;) — B*(a;) — B*(y;) + 1

Qa; B 2m

)

and

It03(i, ) = /0 1 hy(t) [ /0 t hi(s)dB(s)] dB(t)
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_ /0 o) [ j dB(s) — ; d,B(s)] dB(t)

= [2B(8i) — Blai) — B(wi)] [2B(8;) — B(ey) — B(;)] -

Substituting the collocation points given in (3.1) and (3.2), we obtain the follow-
ing system of equations:

2N
g(l‘m, yn) = f($m7yn) + bl,l(mma yn) +2 Cl,l(xmvyn) X It01(1) + ch,j($m7yn)
=2
oM 2M 2N
xIto2(y —1—2611 Ty Yn) X Ttol(i —I—ZZC%J Ty Yn) X Tto3(1,7)
=2 =2 j=2
Now b;; , ¢ = 1,2,..,2M , j = 1,2,..,2N and similarly ¢;; , ¢ =

1,2,..,2M , j = 1,2,...,2N can be replaced with their expressions given in
Corollary 1 and the following system of equations is obtained:

2M 2N
1
g(JUmayn) = f(ﬁmvyn) + WXQJVpZ:;;Kl(xm’y"’sp’tq)g(spatq) (18)
2M 2N
e 2N;;¢ tgrsp) | % Itol(1)
2N 1 2M B 2
+Z M % pa DD dltgrsp) - Z D g, sp) | xIto2())
=2 p=lg=a p=1q=p+1
2M 1 1 2N 1
+Z x N Zz¢tq’5p Z qutq,sp xItol(i)
i= P! p=a g=1 p=B1+1q=1
oM 2N B B 5 "
S DIDILCEIED DED SRR
1=2 j= 2 p=0 g=az p=a1 g=B2+1

" B2 " V2
S s+ D> D g sp)| x Tto3(i, ).

p=P1+1q=0a2 p=p1+1qg=p2+1
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Table 1. The solution mean with %95 confidence interval for above example
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L M 2M (x,y) g(z,y) %95 Confidence
L Interval U

(0.25,0.25) 0.394433  0.392491 0.396374
0 1 2 (0.25,0.75) 0.881874  0.879448 0.884299
(0.75,0.25) 0.882179  0.879495 0.884864
(0.125,0.625) 0.626416  0.621964 0.630868
1 2 4 (0.375,0.375) 0.626752  0.619833 0.633671
(0.875,0.375) 1.06476 1.03276 1.09675
(0.0625,0.8125) 0.625749  0.620075 0.631423
2 4 8 (0.4375,0.4375) 0.616593  0.611904 0.621282
(0.9375,0.1875) 0.854036  0.834678 0.873394
(0.03125,0.84375) 0.532988  0.522597 0.543379
3 8 16 (0.40625, 0.40625) 0.459968  0.449544 0.470391
(0.9375,0.1875) 0.695789  0.686792 0.704786
(0.015625,0.515625) 0.0968562 0.0897225 0.10399
4 16 32 (0.765625, 0.765625) 0.87951 0.868732 0.890288
(0.984375,0.234375) 0.746029  0.735251 0.756807

Eq. (3.12) represents 2M x 2N system which can be solved using either prevalent
methods for solving linear systems. The solution of this system gives values of
g(z,y) at the collocation points. The values of g(x,y) at points other than

collocation points can be calculated using Corollary 2.

4. Numerical Example

In this section, the numerical example is given to demonstrate the applicability and
accuracy of our method. Consider the following linear two dimensional stochastic

Fredholm integral equation of second kind:

1,1 1,1
u(m,y):f(x,y)+/0 /0 (x+y+t—s)g(s,t)dsdt+/0 /0 (z4y+t+s)g(s,t)dB(s)dB(t)

where

f(z,y)

12

1
=r+y— sy

(2% 4 422y + 4xy® + 9°).

The solution mean with confidence interval at the collocation points 1000 iterative
of system (3.12) is shown in Table 1. In Figs. 1, three-dimensional graph of the
approximate solution for level L = 4 is shown.
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Figure 1. Approximate solution plot (L = 4).
5. Conclusion

The numerical solution of two-dimensional stochastic integral equations because
of the randomness is very difficult or sometimes impossible. In this paper, we have
successfully developed Haar wavelets numerical method for approximate a solution
of two-dimensional linear stochastic Fredholm integral equations. The example
confirm that the method is considerably fast and highly accurate as sometimes
lead to exact solution. Although, theoretically for getting higher accuracy we can
set the method with larger values of M and N and also larger of the degree of
approximation, p and ¢, but it leads to solving MN linear systems of size pg X pq,
that have its difficulties. The method can be improved to be more accurate by
using other numerical methods. Mathematica has been used for computations.
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