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Abstract. The present article deals with the inter specific competition and intra-specific
competition among predator populations of a prey-dependent three component food chain
model consisting of two competitive predator sharing one prey species as their food. Stability
analysis including local and global stability of the equilibria has been carried out in order to
examine the dynamic behaviour of the system. As a result, intra-specific competition among
predator populations can establish global coexistence. The ecological implications of both the
analytical and numerical findings are discussed at length towards the end.
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1. Introduction

In 1934, Gause competitive exclusion principle states that two predator species
can not coexist for long time on a single prey species which was supported by the
experiments on Paramecium cultures [8]. But in 1969, Ayala’s experimental results
on two species of Drosophila upon a single prey showed that competitive coexistence
is possible in nature [4]. Until now, various competition models have been proposed
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to explain Ayala’s experimental result [1, 3, 12, 18, 22]. Many natural factors such as
inter specific competition [23], heterogeneity [6], stoichiometric principles [16], intra
specific competition of competitors [13, 19], prey refuge [13, 20] etc are considered
in various competitive models so as to get strong coexistence.
Intra-specific competition among a species mainly reduces the predation rates of

that species. They compete with each other for their common resources such as
food, shelter, environment etc by aggressive displays, posturing, fighting, infanticide
and cannibalism [15].
Gakkhar et.al [7] proposed a competitive model consisting of two competitive

predators sharing one prey as follows:

dX

dT
= rX

(
1− X

K

)
− M1XY1

A1 +X
− M2XY2

A2 +X
, X(0) > 0, (1a)

dY1
dT

=
E1M1XY1
A1 +X

−D1Y1 − γ1Y1Y2, Y1(0) > 0, (1b)

dY2
dT

=
E2M2XY2
A2 +X

−D2Y2 − γ2Y1Y2, Y2(0) > 0, (1c)

where X is the population density of prey, Y1 and Y2 are the population densities
of respective predators; r is biotic potential and K is the environmental carrying
capacity of prey species; M1, M2 are predation co-efficients; E1, E2 are conversion
factors; A1, A2 are half-saturation constants; D1 and D2 are the natural death
rate of predators and γ1, γ2 are co-efficients of inter-specific competition between
two predator species. Here, they showed that the persistence is not possible for
two competing predators sharing a single prey species for the system (1). Sarwardi
et.al [21] studied the above model (1) after a modification by introducing constant
proportion of prey refuge and support the result of Gause competitive exclusion
principle. Recently, Haque et.al [11] studied a simple food chain model with intra
specific competition among predator and top-predator species. This study showed
that intra specific competition among predators could be beneficial for predator’s
survival. The influence of intra specific competition in the dynamical behaviour of
simple food chain model motivates us to take a further attempt to establish the
global coexistence of the competitive food chain model system (1) by taking into
account the intra specific competition among predator populations.

2. Mathematical Model Formulation

In this article, we modify the model (1) to get strong coexistence of the system
incorporating intra specific competition among two competitive predator species.
We thus obtain the following system

dX

dT
= rX

(
1− X

K

)
− M1XY1

A1 +X
− M2XY2

A2 +X
, X(0) > 0, (2a)

dY1
dT

=
E1M1XY1
A1 +X

−D1Y1 − γ1Y1Y2 −H1Y
2
1 , Y1(0) > 0, (2b)

dY2
dT

=
E2M2XY2
A2 +X

−D2Y2 − γ2Y1Y2 −H2Y
2
2 , Y2(0) > 0, (2c)

where r, K, M1, M2, E1, E2, A1, A2, D1, D2, γ1, γ2 are defind earlier; H1 and H2

are the intra-specific competition among predator species.
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Using the transformation x = X
K , y1 = Y1

KE1
, y2 = Y2

KE1E2
, t = rT , the system

takes the following form

dx

dt
= x(1− x)− a1xy1

1 + b1x
− a2xy2

1 + b2x
, x(0) > 0, (3a)

dy1
dt

=
a1xy1
1 + b1x

− d1y1 − c1y1y2 − h1y
2
1, y1(0) > 0, (3b)

dy2
dt

=
a2xy2
1 + b2x

− d2y2 − c2y1y2 − h2y
2
2, y2(0) > 0, (3c)

where

a1 =
KM1E1

rA1
, d1 =

D1

r
, c1 =

σ1KE1E2

r
, b1 =

K

A1
, h1 =

H1K1E1

r
,

a2 =
KM1E1E2

rA2
, d2 =

D2

r
, c2 =

γ2KE1

r
, b2 =

K

A2
, h2 =

H2K1E1E2

r
.

The present article is organized as follows. In Section 2 we state the formulation
of the model under consideration and its assumptions. Section 3 contains some
preliminary results. Then in Section 4 the model with intra-specific competition is
analyzed, identifying its equilibria, giving conditions for their feasibility, stability
and bifurcation. Numerical simulation has been carried out in Section 5. Finally,
the article concludes with a discussion of the results obtained.

3. Preliminary Results

3.1. Existence and positive invariance
For t > 0, letting X ≡ (x, y1, y2)

T , F : R3 → R3, F = (f1, f2, f3)
T , system (3) can

be rewritten as dX
dt = F (X). Here fi ∈ C∞(R) for i = 1, 2, 3; where f1 = x(1−x)−

a1xy1

1+b1x
− a2xy2

1+b2x
, f2 =

a1xy1

1+b1x
−d1y1− c1y1y2−h1y

2
1, f3 =

a2xy2

1+b2x
−d2y2− c2y1y2−h2y

2
2.

Since the vector function F is a smooth function of the variables (x, y1, y2) in the
positive octant Ω = {(x, y1, y2) : x > 0, y1 > 0, y2 > 0}, the local existence and
uniqueness of the solution hold.
3.2. Boundedness

The solutions of system (3) which initiate in R3
+ are uniformly bounded.

Proof: Define a positive definite function

Ω(t) = x(t) + y1(t) + y2(t). (4)

From definition, Ω(t) is differentiable in some maximal interval (0, tb). For an ar-
bitrary η > 0, the time derivative of (4) along the solution of the system (3) is

dΩ

dt
+ ηΩ = x(η + 1− x) + y1(η − d1 − h1y1) + y2(η − d2 − h2y2)− (c1 + c2)y1y2

⩽ (η + 1)2

4
+

(η − d1)
2

4h1
+

(η − d2)
2

4h2
.

Hence we can find µ > 0 such that

dΩ

dt
+ ηΩ ⩽ µ ∀ t ∈ (0, tb).
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Applying a theory of differential equation [5], we get

0 < Ω(x, y1, y2) <
µ

η
(1− e−ηt) +Ω(x(0), y(0), z(0))e−ηt ∀ t ∈ (0, tb)

and for tb → ∞, 0 < Ω(x, y1, y2) <
µ
η . Hence all the solutions of system (3) that

initiate at (x(0), y1(0), y2(0)) lie in R3
+ and are confined in the compact region

Γ = {(x, y1, y2) ∈ R3
+;x(t) + y1(t) + y2(t) =

µ

η
+ ε, ∀ ε > 0}. (5)

3.3. Dissipativeness
If a1 > d1(1 + b1) and a2 > d2(1 + b2), then the system (3) is dissipative.
Proof : We obtain from the equation (3a) of the system that

lim sup
t→+∞

x(t) ⩽ 1.

From the equation (3b), we have

lim sup
t→+∞

y1(t) ⩽
1

h1

[
a1

1 + b1
− d1

]
= ỹ1,

where ỹ1 denotes an upper bound of y1(t) and is positive if a1 > d1(1 + b1).
Again, from the equation (3c), we obtain

lim sup
t→+∞

y2(t) ⩽
1

h2

[
a2

1 + b2
− d2

]
= ỹ2,

where ỹ2 denotes an upper bound of y2(t) and is positive if a2 > d2(1+ b2). Hence,
the claim.
3.4. Equilibria and their feasibility

System (3) has the following six equilibria Ei(xi, y1i, y2i), i = 0, 1, .., 5. E0 is the
origin, E1 ≡ (1, 0, 0). For E2, we have x2 = 0, y12 = c1d2−d1h2

h1h2−c1c2
, y22 = c2d1−d2h1

h1h2−c1c2
. E2

will be feasible if c1d2 > d1h2, c2d1 > d2h1, h1h2 > c1c2. But multiplication of first
two inequalities gives h1h2 < c1c2 which contradicts the third inequality. Hence E2

is infeasible. For E3, we have

y23 = 0, y13 =
(1− x3)(1 + b1x3)

a1
,

and x3 is a positive root of the cubic equation

h1b
2
1x

3 + h1b1(2− b1)x
2 + (a21 − d1b1a1 − 2h1b1 + h1)x− (a1d1 + h1) = 0.

For E4, we have

y14 = 0, y24 =
(1− x4)(1 + b2x4)

a2
,

and x4 is a positive root of the cubic equation

h2b
2
2x

3 + h2b2(2− b2)x
2 + (a22 − d2b2a2 − 2h2b2 + h2)x− (a2d2 + h2) = 0.
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For the coexistence equilibrium E5, the population levels are y25 = −B1

B2
, y15 =

−B3

B4
, where

B1 = c2a1x5 − c2d1 − c2d1b1x5 + h1b1x5d2 + h1b1x5
2d2b2 + c2b2x5

2a1 − c2b2x5d1

−c2b2x5
2d1b1 + h1d2b2x5 − h1a2x5 + h1d2 − h1b1x5

2a2,

B2 = −c2c1 − c2c1b1x5 − c2b2x5c1 − c2b2x5
2c1b1 + h1h2 + h1h2b2x5 + h1b1x5h2

+h1b1x5
2h2b2,

B3 = h2b2x5
2d1b1 − h2b2x5

2a1 − d2b2x5
2c1b1 + a2x5

2c1b1 − d2b2x5c1

+h2b2x5d1 − h2a1x5 + h2d1b1x5 + a2x5c1 − d2c1b1x5 − d2c1 + h2d1,

B4 = (1 + b2x5) (−c2c1 − c2c1b1x5 + h1h2 + h1b1x5h2) ,

and x5 is a root of the equation of

5∑
i=0

Qix
i = 0, (6)

where Q5 = −c2b2
2c1b1

2 + h2b2
2h1b1

2,

Q4 = c2b2
2c1b1

2−2 c2b2
2c1b1+2h2h1b2b1

2−2 c2c1b2b1
2−h2b2

2h1b1
2+2h2b2

2h1b1,

Q3 = a2
2h1b1

2 + 2 c2b2
2c1b1 + 2 c2c1b2b1

2 − c2c1b1
2 + h2b2

2h1 + h2h1b1
2 −

c2b2a1a2b1 − 2h2h1b2b1
2 + 4h2b2h1b1 − 4 c2b2c1b1 + h2b2

2a1
2 − d2b2h1b1

2a2 +
d2b2

2b1a1c1 − 2h2b2
2h1b1 − h2b2

2a1d1b1 − c2b2
2c1 − a2b1a1b2c1 + c2b2d1b1

2a2,

Q2 = −c2b2a1a2 − h2h1b1
2 + 2 a2

2h1b1 + c2d1b1
2a2 + 2h2h1b1 + 4 c2b2c1b1 −

a2b1a1c1 + 2 d2b1a1b2c1 + 2 c2b2d1a2b1 − a2a1b2c1 − d2h1b1
2a2 + d2b2

2a1c1 +
2h2b2h1 − 2 c2c1b1 − 2 c2b2c1 − 2h2a1b2d1b1 − h2b2

2h1 − h2b2
2a1d1 − c2a1a2b1 −

2 d2b2h1a2b1 + 2h2b2a1
2 − 4h2b2h1b1 + c2c1b1

2 + c2b2
2c1,

Q1 = −2h2a1b2d1 + 2 d2a1b2c1 + 2 c2d1a2b1 − 2h2h1b1 − d2b2h1a2 + c2b2d1a2 −
c2c1 − 2 d2h1a2b1 − 2h2b2h1 + 2 c2c1b1 + h2a1

2 + d2b1a1c1 + 2 c2b2c1 − h2d1b1a1 −
a2a1c1 + h2h1 + a2

2h1 − c2a1a2,
Q0 = d2a1c1 + c2d1a2 + c2c1 − d2h1a2 − h2d1a1 − h2h1.
A fifth degree equation has five roots in the complex domain. We now find suf-

ficient conditions for it to have at least a positive root. Since the degree of the
equation is odd, by Descartes’ rule of sign, we get a real root and correspondingly
a linear factor of the polynomial. The fifth degree polynomial can then be factorized
as

5∑
i=0

Qix
i = Q5(x+ p)(x4 +A1x

3 +A2x
2 +A3x+A4)

= Q5[x
5 + (p+A1)x

4 + (pA1 +A2)x
3 + (pA2 +A3)x

2

+(pA3 +A4)x+ pA4] (7)

where p is to be determined. By equating coefficients of like powers of x on the
left and the right, we find A1 + p = Q4

Q5
, A2 + pA1 = Q3

Q5
, A3 + pA2 = Q2

Q5
,

A4 + pA3 = Q1

Q5
, pA4 = Q0

Q5
, from which we have p = Q0

Q5A4
. One root of equa-
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tion (6) is thus found as x5 = −p. By imposing conditions p < 0, we obtain
x5 > 0. This ensures that the feasible coexistence equilibrium is unique. As for
example, for the set of parameter values a1 = 14.0, a2 = 9.1, b1 = 13.2, b2 = 7.5,
d1 = 0.9, d2 = 0.9, c1 = 0.001, c2 = 0.001, h1 = 0.1, h2 = 0.2, E5 becomes
(0.4521503585, 0.08218809244, 0.1846819947).

4. System Behaviour Around Boundary Equilibria

The Jacobian matrix of the system at any arbitrary point is given by

J(x, y, z) =

 G11 − a1x
1+b1x

− a2x
1+b2x

a1y1

(1+b1x)2
G22 −c1y1

a2y2

(1+b2x)2
−c2y2 G33

 ,

where G11 = 1− 2x− a1y1

(1+b1x)2
− a2y2

(1+b2x)2
,

G22 =
a1x

1+b1x
− d1 − c1y2 − 2h1y1,

G33 =
a2x

1+b2x
− d2 − c2y1 − 2h2y2.

4.1. System behaviour near the origin
Theorem 1. E0 is unstable.
Proof: The eigenvalues of the jacobian matrix J0 at E0 are 1, −d1, −d2. Hence, the
proof.
4.2. System behaviour near the equilibrium E1(1, 0, 0)

Theorem 2. E1 is locally asymptotically stable if a1 < d1(1+b1) and a2 < d2(1+b2).
Proof: The eigenvalues of the jacobian matrix J1 at E1 are −1, a1

1+b1
−d1,

a2

1+b2
−d2.

Hence E1 is locally asymptotically stable if the conditions a1 < d1(1 + b1) and
a2 < d2(1 + b2) are satisfied.
4.3. System behaviour near the equilibrium E3(x3, y13, 0)

Theorem 3.

(i) E3 is locally asymptotically stable if a1b1y13 < (1 + b1x3)
2 and a2x3 < (d2 +

c2y13)(1 + b2x3).

(ii) The system experiences Hopf-bifurcation around E3 for a1 = a
[1HB]
1 , where

a
[1HB]
1 = (x3+h1y13)(1+b1x3)2

b1x3y13
.

Proof: (i) The jacobian matrix J3 evaluated at E3 is given by J3 = (cij)3×3, where

c11 = −x3 +
a1b1x3y13

(1+b1x3)2
, c12 = − a1x3

1+b1x3
< 0, c13 = − a2x3

1+b2x3
< 0, c21 = a1y13

(1+b1x3)2
> 0,

c22 = −h1y13 < 0, c23 = −c1y13 < 0, c31 = 0, c32 = 0, c33 =
a2x3

1+b2x3
− d2− c2y13. Its

eigenvalues are

λ1,2 =
1

2

[
c11 + c22 ±

√
(c11 + c22)2 − 4(c11c22 − c12c21)

]
, λ3 = c33. (8)

If we assume c11 < 0 and c33 < 0 then λ3 < 0 and λ1,2 both are either negative
or complex numbers with negative real parts. Hence, E3 is locally asymptotically
stable if c11 < 0 and c33 < 0, that is, a1b1y13 < (1 + b1x3)

2 and a2x3 < (d2 +
c2y13)(1 + b2x3).
(ii) From (8), we see that λ3 is real, λ1 and λ2 will be purely imaginary if and

only if there is a a1 = a
[1HB]
1 such that a

[1HB]
1 = (x3+h1y13)(1+b1x3)2

b1x3y13
. But for i = 1, 2,

Re(
dλi

da1
)|[a1 = a

[1HB]
1 ] =

b1x3y13
(1 + b1x3)

̸= 0.
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Therefore, the system enters into Hopf-bifurcation at E3 for a1 = a
[1HB]
1 .
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Figure 1. Stability around the equilibrium E3 for a1 = 2.5 < a
[1HB]
1 = 2.880393. The

other parameter values are a2 = 0.9, b1 = 1.72, b2 = 0.6, d1 = 0.4, d2 = 0.5, c1 = 1.0,
c2 = 0.4, h1 = 0.2, h2 = 0.1. Here a1b1y13 = 1.829735481 < (1+ b1x3)

2 = 2.252825522 and
a2x3 = 0.2621205760 < (d2 + c2y13)(1 + b2x3) = 0.7873248148.
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Figure 2. (a) 2D view of Hopf-bifurcation behaviour of the system (3) around the equilib-

rium E3 for a1 = 7.0 > a
[1HB]
1 = 2.880393. (b) 3D phase portrait. The other parameter

values are same as in Figure 1.

4.4. System behaviour near the equilibrium E4(x4, 0, y24)
Theorem 4.

(i) E4 is locally asymptotically stable if a2b2y24 < (1 + b2x4)
2 and a1x4 < (d1 +

c1y24)(1 + b1x4).

(ii) The system experiences Hopf-bifurcation around E4 for a2 = a
[2HB]
2 , where

a
[2HB]
2 = (x4+h2y24)(1+b2x4)2

b2x4y24
.

Proof: The proofs are similar with the proofs of Theorem 3.
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Figure 3. Stability around the equilibrium E4 for a2 = 2.4 < a
[2HB]
2 = 2.88037. The

other parameter values are a1 = 4.0, b1 = 1.5, b2 = 1.8, d1 = 1.0, d2 = 0.5, c1 = 0.2,
c2 = 0.02, h1 = 0.3, h2 = 0.2. Here a2b2y24 = 1.815956550 < (1 + b2x4)

2 = 3.166729035
and a1x4 = 1.732290146 < (d1 + c1y24)(1 + b1x4) = 1.788294819.



354 N. Ali & S. Chakravarty/ IJM2C, 05 - 04 (2015) 347-360.

(a) 0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

Po
pu

la
tio

ns

 

 
Prey
Predator 1
Predator 2

(b) 0.05
0.1

0.15
0.2

0.25

0

0.02

0.04

0.06

0.08

0.1
0.1

0.15

0.2

0.25

0.3

0.35

PreyPredator 1

P
re

d
a
to

r 
2

Figure 4. (a) 2D view of Hopf-bifurcation behaviour of the system (3) around the equilib-

rium E4 for a2 = 6.0 > a
[2HB]
2 = 2.88037. (b) 3D phase portrait. The other parameter

values are same as in Figure 3.

5. System Behaviour Near the Coexistence Equilibrium

The Jacobian matrix J5 evaluated at E5 has the components

J11 = −x5 +
a1b1x5y15
(1 + b1x5)2

, J12 = − a1x5
(1 + b1x5)

< 0, J13 = − a2x5
1 + b2x5

< 0, (9)

J21 = − a1x5
(1 + b1x5)2

> 0, J22 = −h1y15 < 0, J23 = −c1y15 < 0,

J31 =
a2y25

(1 + b2x5)2
> 0, J32 = −c2y25 < 0, J33 = −h2y25 < 0.

Theorem 5.

(i) The equilibrium point E5 is locally asymptotically stable if

J11 < 0, [J21J33 − J31J23] < 0, [J23J32 − J22J33] < 0, [J31J22 − J21J32] < 0.(10)

(ii) The local stability ensures its global stability around E5 if the conditions
a1y15(1 + b2x5) + a2y25(1 + b1x5) < (1 + b1x5)(1 + b2x5) and {c1(1 + b1x5) +
c2(1 + b2x5)}2 < 4h1h2(1 + b1x5)(1 + b2x5) hold.

(iii) The system enters into a Hopf-bifurcation at E5 for λ = λi, for a suitable value

a1 = a
[3HB]
1 if (10) holds.

Proof:
(i) The characteristic equation of J5 is λ3 +A1λ

2 +A2λ+A3 = 0 where
A1 = −J11 − J22 − J33,
A2 = J22J33 + J11J22 + J11J33 − J12J21 − J23J32 − J13J31,
A3 = J12[J21J33 − J31J23] + J11[J23J32 − J22J33] + J13[J31J22 − J21J32].
From the Routh-Hurwitz criterion, the equilibrium point is locally asymptotically
stable if A1 > 0, A3 > 0 and A1A2 > A3. Now

A1A2 −A3 = −(J11)
2J22 − (J11)

2J33 − J11(J22)
2 − J11(J33)

2 − 2J11J22J33

+J11J12J21 + J11J13J31 + J22J12J21 + J22[J23J32 − J22J33]

+J13J31J33 + J33[J23J32 − J22J33] + J12J31J23 + J13J21J32.

If we take J11 < 0, [J21J33−J31J23] < 0, [J23J32−J22J33] < 0, [J31J22−J21J32] < 0
in view of the signs of the Jacobian entries (9) all the Routh-Hurwitz conditions
hold. But this requirement amounts to the assumptions (10). Hence, the claim.
(ii) Let R3

∗ = {(x, y1, y2) ∈ R3
+, x > 0, y1 > 0, y2 > 0} and consider the scalar
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function L : R3
∗ → R defined by

L = k1

[
x− x5 − x5ln

x

x5

]
+ k2

[
y1 − y15 − y15ln

y1
y15

]
+ k3

[
y2 − y25 − y25ln

y2
y25

]
(11)

where k1, k2 and k3 are positive constants to be determined later. The derivative
of the above equation (11) along the solution of the system (3) is given by

dL

dt
= k1

[
1− x5

x

]
dx

dt
+ k2

[
1− y15

y1

]
dy1
dt

+ k3

[
1− y25

y2

]
dy2
dt

,

= k1(x− x5)

[
1− x− a1y1

1 + b1x
− a2y2

1 + b2x

]
+ k2(y1 − y15)

[
a1x

1 + b1x
− d1

−c1y2 − h1y1

]
+ k3(y2 − y25)

[
a2x

1 + b2x
− d2 − c2y1 − h2y2

]
.

At the equilibrium point E5 of the system (3), we have

1 = x5 +
a1y15

1 + b1x5
− a2y25

1 + b2x5
, d1 =

a1x5
1 + b1x5

− c1y25 − h1y15,

d2 =
a2x5

1 + b2x5
− c2y15 − h2y25. (12)

Using (12), the time derivative of L becomes

dL

dt
= k1(x− x5)

[
− (x− x5)−

a1y1
1 + b1x

+
a1y15

1 + b1x5
− a1y2

1 + b2x
+

a1y25
1 + b2x5

]
+k2(y1 − y15)

[
a1x

1 + b1x
− a1x5

1 + b1x5
− c1(y2 − y25)− h1(y1 − y15)

]
+k3(y2 − y25)

[
a2x

1 + b2x
− a2x5

1 + b2x5
− c2(y1 − y15)− h2(y2 − y25)

]
,

= k1(x− x5)

[
− (x− x5)−

a1(y1 − y15)

1 + b1x
+

a1y15(x− x5)

(1 + b1x)(1 + b1x5)
− a2(y2 − y25)

1 + b2x

+
a2y25(x− x5)

(1 + b2x)(1 + b2x5)

]
+ k2(y1 − y15)

[
a1(x− x5)

(1 + b1x)(1 + b1x5)
− c1(y2 − y25)

−h1(y1 − y15)

]
+ k3(y2 − y25)

[
a2(x− x5)

(1 + b2x)(1 + b2x5)
− c2(y1 − y15)− h2(y2 − y25)

]
,

= −
[
k1

(
1− a1y15

(1 + b1x)(1 + b1x5)
− a2y25

(1 + b2x)(1 + b2x5)

)]
(x− x5)

2

−
[
a1k1 −

a1k2
1 + b1x5

]
(x− x5)(y1 − y15)

1 + b1x
−
[
a2k1 −

a2k3
1 + b2x5

]
(x− x5)(y2 − y25)

1 + b2x

−k2h1(y1 − y15)
2 − (c1k2 + c2k3)(y1 − y15)(y2 − y25)− k3h2(z − z3)

2.
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Assuming, k1 = 1, k2 = (1 + b1x5) and k3 = (1 + b2x5), we have

dL

dt
⩽ −

[(
1− a1y15

(1 + b1x)(1 + b1x5)
− a2y25

(1 + b2x)(1 + b2x5)

)]
(x− x5)

2

−k2h1(y1 − y15)
2 − (c1k2 + c2k3)(y1 − y15)(y2 − y25)− k3h2(z − z3)

2,

⩽ −
[(

1− a1y15
(1 + b1x5)

− a2y25
(1 + b2x5)

)]
(x− x5)

2

−k2h1(y1 − y15)
2 − (c1k2 + c2k3)(y1 − y15)(y2 − y25)− k3h2(z − z3)

2,

⩽ 0, (13)

if a1y15(1 + b2x5) + a2y25(1 + b1x5) < (1 + b1x5)(1 + b2x5)

and (c1k2 + c2k3)
2 < 4k2k3h1h2

i, e {c1(1 + b1x5) + c2(1 + b2x5)}2 < 4h1h2(1 + b1x5)(1 + b2x5),

and dL
dt = 0 when (x, y1, y2) = (x5, y15, y25). The proof follows from(13) and

Lyapunov-Lasale invariance principle [9].
(iii) The Routh-Hurwitz conditions are satisfied, as seen above, if we assume

J11 < 0. To have a Hopf bifurcation, we need however A1A2 = A3 for some value

of a1, say a1 = a
[3HB]
1 . Since A2 > 0 at a1 = a

[3HB]
1 , for some a1 > ϵ > 0 there

is an interval (a
[3HB]
1 − ϵ, a

[3HB]
1 + ϵ) in which A2 > 0. Thus in this interval the

characteristic equation cannot have real positive roots.

Now, for a1 = a
[3HB]
1 , the characteristic equation factorizes (λ2+A2)(λ+A1) = 0 to

give the three roots λ1 = i
√
A2, λ2 = −i

√
A2, λ3 = −A1. These roots are functions

of a1 ∈ (a
[3HB]
1 − ϵ, a

[3HB]
1 + ϵ) and can therefore be written as λ1 = α(a1)+ iβ(a1),

λ2 = α(a1)− iβ(a1), λ3 = −A1(a1) .
Now we verify the transversality condition

Re

(
dλi

da1

)
|a1=a

[3HB]
1

̸= 0, i = 1, 2.

Substituting λj = α(a1) + iβ(a1), j = 1, 2, into the characteristic equation and
differentiating w.r.t a1, we have

ω(a1)α
′(a1)− ϕ(a1)β

′(a1) + η(a1) = 0, ϕ(a1)α
′(a1) + ω(a1)β

′(a1) + µ(a1) = 0,

where

ω(a1) = 3α2(a1) + 2A1(a1)α(a1) +A2(a1)− 3β2(a1), (14)

ϕ(a1) = 6α(a1)β(a1) +A1(a1)β(a1), (15)

η(a1) = α2(a1)A
′
1(a1) +A′

2(a1)α(a1) +A′
3(a1)−A′

1(a1)β
2(a1), (16)

µ(a1) = 2α(a1)β(a1)A
′
1(a1) +A′

2(a1)β(a1). (17)

Since ϕ(a1)µ(a1) + ω(a1)η(a1) ̸= 0, we have

Re

(
dλj

da1

)
|a1=a

[3HB]
1

= −ϕµ+ ωη

ϕ2 + ω2
̸= 0, j = 1, 2, λ3(a1) = −A1(a1) ̸= 0.

Hence, the claim.
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Equilibria Stability condition Equilibrium nature
E0 No condition Unstable
E1 a1 < d1(1 + b1), a2 < d2(1 + b2) LAS
E2 No condition LAS
E3 a1b1y13 < (1 + b1x3)

2, LAS
a2x3 < (d2 + c2y13)(1 + b2x3)

E3 a1 =
(x3+h1y13)(1+b1x3)2

b1x3y13
Hopf-bifurcation

E4 a1x4 < (d1 + c1y24)(1 + b1x4) LAS
E5 a1b1y15 < (1 + b1x5)

2 LAS
E5 Conditions stated in 5.(ii) GAS

E5 a1 =
(1+b1x5)2

b1y15
Hopf-bifurcation

Table 1. Schematic representation of our analytical results: LAS ≡ locally asymptotically stable, GAS ≡ Globally

asymptotically stable.

6. Numerical Simulation

The numerical simulation based on the theoretical findings of the system (3) is
illustrated for the purpose of clear understanding of the complex dynamical be-
haviour of the system. Numerical study of this model is performed by MATLAB
2010a and MAPLE 16. The findings are summarized and represented schemati-
cally in Table-1. All these results are verified by means of numerical illustrations of
which some chosen ones are exhibited in the figures. The equilibrium E3 has been
shown to be asymptotically stable for a set of parameter values a1 = 2.5, a2 = 0.9,
b1 = 1.72, b2 = 0.6, d1 = 0.4, d2 = 0.5, c1 = 1.0, c2 = 0.4, h1 = 0.2, h2 = 0.1 satis-
fying the conditions of the subsection 4.3.(i) which has been exhibited in Figure 1.

When the parameter a1 exceeds its critical value a
[1HB]
1 = 2.880393 for this set of

parameter values which is mentioned in the subsection 4.3.(ii), the present system
does experience Hopf bifurcation around E3 which has been exhibited in Figure
2. Similarly, the stable behaviour of the system (3) at equilibrium E4 for a set of
parameter values a2 = 2.4, a1 = 4.0, b1 = 1.5, b2 = 1.8, d1 = 1.0, d2 = 0.5, c1 = 0.2,
c2 = 0.02, h1 = 0.3, h2 = 0.2 satisfying the conditions mentioned in the subsection
4.4.(i) has been displayed in Figure 3. When the parameter a2 exceeds its critical

value a
[2HB]
2 = 2.88037 for this set of parameter values which is mentioned in the

subsection 4.4.(ii), the present system does experience Hopf bifurcation around E4

which has been displayed in Figure 4.
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Figure 5. (a) When h1 = 0, h2 = 0, the predator 2 wins the competition and predator 1
tends towards extinction; (b) When h1 = 0, h2 = 0.4, the predator 1 wins the competition
and predator 2 tends towards extinction; (c) When h1 = 0.5, h2 = 0, the predator 2 wins
the competition and predator 1 tends towards extinction. The other parameter values are
a1 = 2.0, a2 = 0.8, b1 = 1.2, b2 = 0.2, d1 = 0.4, d2 = 0.2, c1 = 0.2, c2 = 0.02.

The coexistence interior equilibrium point E5 has also been found through numer-
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ical simulations whose global asymptotically stable behaviour has been depicted in
Figure 6. The set of parameter values that has been taken for the results of Figure
6 is indicated in the caption of the figure in which all the three populations are
settled at non-zero levels, i.e., towards E5. Moreover, the chosen set of parameter
values satisfies the condition of global stability as mentioned in section 5.1.(ii) and
hence the global coexistence of the system (3) around E5 is ensured which has been
depicted in Figure 6.
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Figure 6. (a) When h1 = 0.5, h2 = 0.4, both the competitive predators of the system (3)
coexist globally around the equilibrium E5(0.4511575297, 0.2446196414, 0.3154052167); (b)
3D phase portrait. The other parameter values are same as in Figure 5.

7. Conclusions and Comments

Ecological research mainly involves to find out the whole mechanism through pop-
ulation dynamics operate [14, 17]. It is well known that intra-specific competition
terms can greatly affect the outcome of food chain models [2, 10, 11]. For the case
of competitive food chain consisting of two competitive predators competing for a
common prey resource, our results indicate that intra-specific competition of one
competitor not only ensures the long term survival of itself, but also guarantees
the existence of the other competitor, which would otherwise be out competed.
Uniform persistence is not possible for the system (3) in absence of intra-specific

competitions in predators populations [7]. But introduction of intra-specific com-
petition terms make the system coexistent not only in the sense of uniform per-
sistence, but also in the sense of existence of a globally stable positive equilib-
rium (Figure 6). For the set of parameter values a1 = 2.0, a2 = 0.8, b1 = 1.2,
b2 = 0.2, d1 = 0.4, d2 = 0.2, c1 = 0.2, c2 = 0.02, h1 = 0.5, h2 = 0.4, all
the conditions in theorem 5 for global stability i.e J11 = −0.3396751461 < 0,
[J21J33 − J31J23] = −0.01512224496 < 0, [J23J32 − J22J33] = −0.01559332662 < 0,
[J31J22 − J21J32] = −0.02466570586 < 0, a1y15(1 + b2x5) + a2y25(1 + b1x5) =
0.9223137945 < (1 + b1x5)(1 + b2x5) = 1.680470890 and {c1(1 + b1x5) + c2(1 +
b2x5)}2 = 0.1089544154 < 4h1h2(1 + b1x5)(1 + b2x5) = 1.344376712 are satisfied.
Hence the coexistence equilibrium E5(0.4511575297, 0.2446196414, 0.3154052167)
is globally stable. A possible explanation for this situation is that intra-specific
competition in one competitive predator prevents it from reducing the density of
the prey below the minimum value needed for the other predator to be able to
maintain itself.
Another interesting observed situation for the set of parameter values a1 = 14.0,

a2 = 9.1, b1 = 13.2, b2 = 7.5, d1 = 0.9, d2 = 0.9, c1 = 0.001, c2 = 0.001, h1 = 0.1,
h2 = 0.2 is that the system (3) is locally asymptotically stable around E5 but when
a1 is increased, E5 loses its stability and a Hopf-bifurcation occurs when a1 passes
a critical value (Figure 7).
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Figure 7. (a) Stable behaviour of the system (3) around the equilibrium

E5(0.4521503585, 0.08218809244, 0.1846819947) for a1 = 14.0 < a
[3HB]
1 = 14.47465,

(b) 2D view of Hopf-bifurcation behaviour of the system (3) around the equilibrium E5

for for a1 = 14.5 > a
[3HB]
1 = 14.47465, (b) 3D phase portrait. The other parameter values

are a2 = 9.1, b1 = 13.2, b2 = 7.5, d1 = 0.9, d2 = 0.9, c1 = 0.001, c2 = 0.001, h1 = 0.1,
h2 = 0.2.

So, the major significant findings of our analysis are as follows:
At a significant level of competition,
(i) Intra specific competition prevents predator extinction from the system and
damp predator prey oscillation.
(ii) Strong coexistence of all species is possible due to intra specific competition
under appropriate conditions on the environmental parameters.
(iii) These results can be used to make biological control mechanism.
(iv) These results will be helpful in theoretical research of ecology.
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